CN102620807A - System and method for monitoring state of wind generator - Google Patents
System and method for monitoring state of wind generator Download PDFInfo
- Publication number
- CN102620807A CN102620807A CN2012100919939A CN201210091993A CN102620807A CN 102620807 A CN102620807 A CN 102620807A CN 2012100919939 A CN2012100919939 A CN 2012100919939A CN 201210091993 A CN201210091993 A CN 201210091993A CN 102620807 A CN102620807 A CN 102620807A
- Authority
- CN
- China
- Prior art keywords
- vibration
- dsp
- signal
- computer
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 44
- 230000002159 abnormal effect Effects 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 238000001228 spectrum Methods 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 17
- 230000003750 conditioning effect Effects 0.000 claims description 12
- 238000012423 maintenance Methods 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 238000010219 correlation analysis Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 230000009347 mechanical transmission Effects 0.000 claims description 2
- 230000008901 benefit Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种风力发电机状态监测系统及方法,属于风力发电机监测技术领域。The invention relates to a wind power generator state monitoring system and method, and belongs to the technical field of wind power generator monitoring.
技术背景 technical background
风能是非常重要并储量巨大的能源,它具有安全、清洁、充裕、稳定等特点。目前,风力发电已成为风能利用的主要形式,发展速度很快。近几年,风力发电产业开始进入一个高速增长期。截止到2009年,全球风力发电机装机容量已达到159213MW,新增装机容量38312MW,根据目前的增长趋势,世界风能协会预测到2020年底,全球装机容量至少为1.9×106MW。Wind energy is a very important energy source with huge reserves. It is characterized by safety, cleanliness, abundance and stability. At present, wind power generation has become the main form of wind energy utilization, and the development speed is very fast. In recent years, the wind power industry has entered a period of rapid growth. As of 2009, the global installed capacity of wind turbines has reached 159,213MW, and the new installed capacity is 38,312MW. According to the current growth trend, the World Wind Energy Association predicts that by the end of 2020, the global installed capacity will be at least 1.9×106MW.
我国风电发展自2000年起,几乎每年以成倍的增长速度不断增加,到2009年12月底总装机容量达到25805.3MW,是除美国、德国外拥有风电装机容量最大的国家。Since 2000, my country's wind power development has been increasing at a double rate almost every year. By the end of December 2009, the total installed capacity reached 25805.3MW, which is the country with the largest wind power installed capacity except the United States and Germany.
受风场自然环境、风力发电机组和电力电子装置复杂等因素的影响,风力发电机组事故日趋增多。风力发电机组高额的运行维护成本严重影响了风场的经济效益。据相关数据统计,对于设计寿命为20年的风力发电机机组,运行维护成本估计占到风场收入的10%~15%;对于海上风场,用于风力发动机运行维护的成本高达风场收入的20%~25%。高额的运行维护费用增加了风场的运营成本,降低了风电的经济效益。Affected by factors such as the natural environment of the wind field, the complexity of wind turbines and power electronic devices, accidents of wind turbines are increasing day by day. The high operation and maintenance costs of wind turbines have seriously affected the economic benefits of wind farms. According to relevant statistics, for wind turbines with a design life of 20 years, the operation and maintenance costs are estimated to account for 10% to 15% of the wind farm revenue; for offshore wind farms, the cost of wind turbine operation and maintenance is as high as the wind farm revenue 20% to 25% of that. High operation and maintenance costs increase the operating costs of wind farms and reduce the economic benefits of wind power.
风力发电机结构复杂,价格昂贵,工作环境恶劣。地处野外,受自然条件影响大。风力发电机安装于五、六十米高的塔筒上,处于非常恶劣的环境,维修非常困难,因此,如何做到既不过剩维修,又能及时维修显得尤为重要。通过在线监测系统可实时监测风力发电机的状态,可以及时掌握其状态,及时干预,预先安排相应的维护维修计划,减少停机次数和时间,大幅度降低发电机组的运营成本,避免突发故障的发生,延长设备的使用寿命。最大限度的多发电。Wind turbines are complex in structure, expensive, and work in harsh environments. Located in the wild, greatly affected by natural conditions. Wind turbines are installed on towers with a height of 50 to 60 meters. They are located in a very harsh environment and maintenance is very difficult. Therefore, it is particularly important to ensure timely maintenance without excessive maintenance. Through the online monitoring system, the status of wind turbines can be monitored in real time, and its status can be grasped in time, timely intervention, and corresponding maintenance and repair plans can be arranged in advance to reduce the number and time of downtime, greatly reduce the operating cost of generator sets, and avoid sudden failures. occurs, prolonging the service life of the equipment. Generate as much electricity as possible.
国内大型风力发电机状态监测情况是:一部分风力发电机运营商使用国外风电公司的状态监测系统产品;一部分风力发电机只有发电量及电气设备状态监测系统,缺少机械传动系统的状态监测;还有一部分风力发电机采用几个振动传感器与简单仪表组成的简易监测系统,不能满足使用要求。近年来国内一些公司开展此类技术产品的研究,使用的监测方法一种是利用无线传感网络技术,该方法存在振动信号采样速度慢、信号处理和传输速度慢、可靠性差等缺点,不能满足实际要求;另一种采用Internet网络进行远程监测,使用现场服务器、远程服务器等,系统结构比较复杂,应用情况不明。The condition monitoring of domestic large-scale wind turbines is as follows: some wind turbine operators use condition monitoring system products of foreign wind power companies; Some wind turbines use a simple monitoring system composed of several vibration sensors and simple instruments, which cannot meet the requirements of use. In recent years, some domestic companies have carried out research on such technical products. One of the monitoring methods used is the use of wireless sensor network technology. This method has shortcomings such as slow vibration signal sampling speed, slow signal processing and transmission speed, and poor reliability. Actual requirements; the other uses the Internet network for remote monitoring, using on-site servers, remote servers, etc., the system structure is relatively complicated, and the application situation is unknown.
发明内容Contents of the invention
本发明的目的是提供一种风力发电机状态监测系统及方法,该系统及方法能够实时掌握风力发电机状态,及时干预,预先安排相应的维护维修计划,减少停机次数和时间,大幅度降低发电机组的运营成本,避免突发故障的发生,延长设备的使用寿命。本发明还具有振动信号采样快、信号处理、传输速度快、可靠性强、成本低。The purpose of the present invention is to provide a wind turbine status monitoring system and method, which can grasp the status of the wind generator in real time, intervene in time, arrange corresponding maintenance and repair plans in advance, reduce the number and time of shutdowns, and greatly reduce power generation. Reduce the operating cost of the unit, avoid sudden failures, and prolong the service life of the equipment. The invention also has the advantages of fast vibration signal sampling, high signal processing and transmission speed, strong reliability and low cost.
技术解决方案:Technical solution:
本发明风力发电机状态监测系统,包括两级计算机监测结构,下位机为数字信号处理系统DSP,固定于风力发电机顶部的机舱内,上位机为PC计算机,位于风力发电机地面监控室内,下位机DSP与上位机PC计算机利用通信接口实现数字信号的通信;还包括固定在风力发电机上机械传动系统上的传感器,振动传感器的输出端与信号调理单元的输入端连接,信号调理单元的输出端再与信号采集单元的输入端连接,信号采集单元输出端与数字信号处理系统DSP的输入端连接。The wind power generator state monitoring system of the present invention includes a two-stage computer monitoring structure, the lower computer is a digital signal processing system DSP, fixed in the cabin on the top of the wind power generator, the upper computer is a PC computer, located in the ground monitoring room of the wind power generator, the lower The computer DSP and the upper computer PC computer use the communication interface to realize the communication of digital signals; it also includes the sensor fixed on the mechanical transmission system of the wind turbine, the output end of the vibration sensor is connected to the input end of the signal conditioning unit, and the output end of the signal conditioning unit Then it is connected with the input end of the signal acquisition unit, and the output end of the signal acquisition unit is connected with the input end of the digital signal processing system DSP.
所述传感器包括:转速传感器、加速度传感器或速度传感器。The sensors include: rotational speed sensors, acceleration sensors or speed sensors.
所述风力发电机的机舱上安装有速度传感器;发动机输入轴上安装有转速传感器;主轴承座、发动机轴承及增速箱上分别安装有加速度传感器。A speed sensor is installed on the engine room of the wind generator; a speed sensor is installed on the input shaft of the engine; and an acceleration sensor is installed on the main bearing seat, the engine bearing and the speed increasing box respectively.
本发明风力发电机状态监测系统的监测方法如下:传感器采集的风力发电机振动信号经过信号调理单元的变换、滤波、放大,由信号采集单元完成模拟量到数字量的转换,再送入数字信号处理系统DSP分析处理。数字信号处理系统DSP对各个振动信号进行时域有量纲特征参数、无量纲特征参数的提取以及通过AR模型在频域进行频谱的快速估计,从而获得风力发电机振动状态的信息,然后数字信号处理系统DSP将这些特征参数通过通信接口传送到PC计算机,PC计算机实时显示风力发电机的状态,显示振动特征参数变化趋势图,存储异常状态下的各种特征参数,供查看分析。The monitoring method of the wind power generator state monitoring system of the present invention is as follows: the wind power generator vibration signal collected by the sensor is converted, filtered and amplified by the signal conditioning unit, and the signal acquisition unit completes the conversion from analog to digital, and then sends it to digital signal processing System DSP analysis and processing. The digital signal processing system DSP extracts the dimensioned characteristic parameters and dimensionless characteristic parameters of each vibration signal in the time domain, and quickly estimates the spectrum in the frequency domain through the AR model, so as to obtain the information of the vibration state of the wind turbine, and then the digital signal The processing system DSP transmits these characteristic parameters to the PC computer through the communication interface, and the PC computer displays the status of the wind turbine in real time, displays the change trend diagram of the vibration characteristic parameters, and stores various characteristic parameters under abnormal conditions for viewing and analysis.
所述数字信号处理系统DSP处理信号的流程如下:The process of the digital signal processing system DSP processing signal is as follows:
①.DSP对各个传感器采样,将模拟信号转换为数字量,采样按固定频率和数据量进行,边采样边将数字量保存在DSP内存中;①. DSP samples each sensor, converts the analog signal into a digital quantity, the sampling is carried out according to a fixed frequency and data volume, and the digital quantity is stored in the DSP memory while sampling;
②.由转速传感器的采样值计算出风力发电机转速;由各个振动传感器的采样数据分别计算出振动信号的时域统计特征值,时域统计特征包括:平均值、有效值、方差、概率密度函数、相关分析、峭度、波形系数、裕度指标,将以上计算结果保存到DSP内存;②. Calculate the speed of the wind turbine from the sampling value of the speed sensor; calculate the time-domain statistical characteristic value of the vibration signal from the sampling data of each vibration sensor. The time-domain statistical characteristics include: average value, effective value, variance, probability density Function, correlation analysis, kurtosis, form factor, margin index, save the above calculation results to DSP memory;
③.利用AR模型快速计算出各个振动传感器信号的功率谱,并保存功率谱信息到DSP内存中;③. Use the AR model to quickly calculate the power spectrum of each vibration sensor signal, and save the power spectrum information to the DSP memory;
④.DSP请求与上位机PC通信,将风力发电机转速值、各个振动传感器信号的时域统计特征和功率谱信息传送到上位机PC计算机;DSP完成一次大循环工作;④. DSP requests to communicate with the upper computer PC, and transmits the wind turbine speed value, the time-domain statistical characteristics and power spectrum information of each vibration sensor signal to the upper computer PC computer; DSP completes a large cycle of work;
DSP处理信号的流程按上述步骤①至步骤④依次循环进行。The process of DSP signal processing is carried out sequentially according to the
本发明PC计算机监测程序为:显示风力发电机状态监测界面菜单,响应数字信号处理系统DSP的传送信号请求,接收DSP传送的每一帧信号,以曲线或棒图方式显示时域、频域特征参数,根据各个振动传感器的振动特征参数,对照风力发电机振动判定标准,判断风力发电机的状态,若振动值属于正常则以绿色显示当前振动值;当出现异常振动且超标不大时以黄色闪烁显示报警状态并存储报警值和报警时间;当出现异常振动且超标较大时,表明需停机检修排除故障,计算机以红色闪烁方式显示振动特征值并以声音提示,存储异常值和发生时间。The PC computer monitoring program of the present invention is: display the wind power generator state monitoring interface menu, respond to the transmission signal request of the digital signal processing system DSP, receive each frame signal transmitted by the DSP, and display the time domain and frequency domain characteristics in the form of curves or bar graphs Parameters, according to the vibration characteristic parameters of each vibration sensor, compare the wind turbine vibration judgment standard to judge the status of the wind turbine generator. If the vibration value is normal, the current vibration value will be displayed in green; Flashes to display the alarm status and stores the alarm value and alarm time; when abnormal vibration occurs and exceeds the standard, it indicates that it needs to be shut down for maintenance and troubleshooting.
本发明通过振动传感器、转速传感器获取风力发电机状态信号,采用两级监测结构,将数字信号处理系统DSP与PC计算机通过通信总线实现数字信号的快速可靠通信。The invention obtains the state signal of the wind power generator through the vibration sensor and the rotation speed sensor, adopts a two-level monitoring structure, and realizes the fast and reliable communication of the digital signal through the communication bus between the digital signal processing system DSP and the PC computer.
本发明数字信号处理系统DSP通过信号分析处理对采集后的各路振动信号进行时域有量纲、无量纲特征值的提取以及通过AR模型在频域进行频谱的估计,得到风力发电机振动状态的信息,然后将这些表示风力发电机状态的信息利用通信总线传送到地面控制室内的PC计算机。由PC计算机实时显示并存储风力发电机的振动特征信息,根据振动时域特征量值、发展趋势以及频域特征值信息综合分析,与风力发电机振动评定标准对比,判断出风力发电机状态有无故障,状态属于正常、异常报警或危险中哪一种,发展程度如何等信息,同时递推存储特征值和报警异常值。The DSP of the digital signal processing system of the present invention extracts dimensioned and dimensionless eigenvalues in the time domain of the collected vibration signals through signal analysis and processing, and estimates the spectrum in the frequency domain through the AR model to obtain the vibration state of the wind power generator. The information, and then the information representing the state of the wind turbine is transmitted to the PC computer in the ground control room through the communication bus. The PC computer displays and stores the vibration characteristic information of the wind turbine in real time, and according to the comprehensive analysis of the vibration time domain characteristic value, development trend and frequency domain characteristic value information, and compares it with the wind turbine vibration evaluation standard, it is judged that the wind turbine status is ineffective. No fault, whether the state belongs to normal, abnormal alarm or danger, the degree of development and other information, and recursively store the characteristic value and alarm abnormal value at the same time.
DSP以一定的采样频率和采样时间控制信号采集单元完成多通道模拟信号的数字量转换,然后将采集转换后的数字量保存在DSP的内存中。计算当前转速值,快速计算每一通道振动信号的时域统计特征。时域统计特征包括:平均值、有效值、方差、概率密度函数、相关分析、峭度、波形系数、裕度系数。利用AR模型对振动信号的频谱进行快速估计分析,得到各通道振动信号的频谱信息,将以上时域、频域特征信息暂存到DSP内存中。最后DSP与上位机PC利用通信总线通信,将以上转速值、每个振动传感器的时域特征参数、功率谱信息传送到PC计算机。DSP controls the signal acquisition unit with a certain sampling frequency and sampling time to complete the digital conversion of multi-channel analog signals, and then saves the converted digital data in the memory of DSP. Calculate the current speed value and quickly calculate the time-domain statistical characteristics of the vibration signal of each channel. Time-domain statistical features include: average value, effective value, variance, probability density function, correlation analysis, kurtosis, form coefficient, and margin coefficient. The AR model is used to quickly estimate and analyze the frequency spectrum of the vibration signal, and the frequency spectrum information of the vibration signal of each channel is obtained, and the above time domain and frequency domain characteristic information are temporarily stored in the DSP memory. Finally, the DSP communicates with the upper computer PC through the communication bus, and transmits the above speed values, time-domain characteristic parameters and power spectrum information of each vibration sensor to the PC computer.
上位机PC计算机:显示风力发电机状态监测界面菜单,响应数字信号处理系统DSP的传送信号请求,接收DSP传送的每一帧信号,递推存储风力发电机振动特征参数,以曲线、棒图等方式显示时域、频域特征值,与振动标准比较判断风力发电机目前的状态:正常、报警、危险,显示状态信息。同时根据需要可查看历史报警数据、统计报警值。PC computer: display the wind turbine status monitoring interface menu, respond to the transmission signal request of the digital signal processing system DSP, receive each frame signal transmitted by the DSP, recursively store the vibration characteristic parameters of the wind turbine, and use curves, bar graphs, etc. Display time-domain and frequency-domain eigenvalues by way of comparison with vibration standards to judge the current state of the wind turbine: normal, alarm, danger, and display status information. At the same time, you can view historical alarm data and statistical alarm values as needed.
风力发电机状态监测系统及方法,是一项综合了信息处理技术、计算机技术、传感器技术、概率与统计等学科的综合技术。利用DSP硬件功能强大、可靠性高和软件的高效高速等特点,对振动传感器输出信号的加工处理、去伪存真。运用时域统计原理,采用AR模型提取出能够敏感反映风力发电机状态的多种特征参数,达到实时在线监测判断风力发电机状态的目的。The wind power generator condition monitoring system and method is a comprehensive technology integrating information processing technology, computer technology, sensor technology, probability and statistics and other disciplines. Utilizing the features of powerful DSP hardware, high reliability, and high-efficiency and high-speed software, the output signal of the vibration sensor is processed, removed from the false and preserved from the true. Using the principle of time domain statistics, the AR model is used to extract a variety of characteristic parameters that can sensitively reflect the status of wind turbines, so as to achieve the purpose of real-time online monitoring and judgment of the status of wind turbines.
通过风力发电机状态监测系统及方法产生的优点是:(1)系统采用两级计算机监测系统,充分发挥DSP数字信号处理能力强、快速、体积小、可靠性高的特点,充分发挥PC计算机强大的图形显示功能、数据管理和人机对话功能;(2)利用统计模型对振动信号功率谱快速估计,比使用常规FFT的变换方法具有简单、频谱分辨率高等优点;(3)监测系统可靠,满足风力发电机现场条件要求;价格低,便于推广使用。The advantages produced by the wind power generator condition monitoring system and method are: (1) The system adopts a two-level computer monitoring system, which fully utilizes the characteristics of DSP digital signal processing capability, fast, small size and high reliability, and fully utilizes the powerful PC computer Graphical display, data management and man-machine dialogue functions; (2) The use of statistical models to quickly estimate the power spectrum of vibration signals has the advantages of simplicity and high spectral resolution compared to conventional FFT transformation methods; (3) The monitoring system is reliable, It meets the requirements of wind power generator site conditions; the price is low, and it is easy to popularize and use.
附图说明 Description of drawings
图1风力发电机状态监测系统工作原理框图;Figure 1. Block diagram of the working principle of the wind turbine condition monitoring system;
图2风力发电机状态监测系统传感器安装布置示意图;Fig. 2 Schematic diagram of the sensor installation and layout of the wind turbine condition monitoring system;
图3风力发电机状态监测方法流程图;Fig. 3 is a flow chart of a method for monitoring the condition of a wind power generator;
图4数字信号处理系统DSP软件流程图。Figure 4 is a flow chart of the DSP software of the digital signal processing system.
具体实施方式 Detailed ways
下面结合附图详细说明本发明的实施例:Embodiments of the present invention are described in detail below in conjunction with accompanying drawings:
参阅附图1和图3,本发明涉及一种风力发电机状态监测系统及方法,监测系统为两级计算机监测结构,下位机为数字信号处理系统DSP,固定于风力发电机顶部的机舱内,上位机为PC计算机,位于风力发电机地面监控室内,下位机DSP与上位机PC计算机利用通信接口实现数字信号的通信;在风力发电机机舱内轴向和横向位置处分别安装有速度传感器1;主轴承座的轴承径向、增速箱的行星齿轮径向、中间轴轴承径向、高速轴轴承径向及发电机靠近联轴器端轴承径向、自由端轴承径向位置处分别安装有加速度传感器2,发电机输入轴上安装有转速传感器3,速度传感器1、加速度传感器2和转速传感器3的输出端分别与信号调理单元的输入端连接,信号调理单元的输出端与信号采集单元的输入端连接,信号采集单元输出端与数字信号处理系统DSP的输入端连接,数字信号处理系统DSP的输出端与PC计算机连接。Referring to accompanying drawings 1 and 3, the present invention relates to a wind power generator state monitoring system and method, the monitoring system is a two-stage computer monitoring structure, the lower computer is a digital signal processing system DSP, fixed in the cabin on the top of the wind power generator, The upper computer is a PC computer, which is located in the ground monitoring room of the wind turbine, and the lower computer DSP and the upper computer PC computer use the communication interface to realize the communication of digital signals; the speed sensor 1 is respectively installed at the axial and lateral positions in the wind turbine cabin; The radial direction of the bearing of the main bearing housing, the radial direction of the planetary gear of the gearbox, the radial direction of the intermediate shaft bearing, the radial direction of the high-speed shaft bearing, the radial position of the bearing near the coupling end of the generator, and the radial direction of the free end bearing of the generator are respectively installed with Acceleration sensor 2, rotational speed sensor 3 is installed on the generator input shaft, the output ends of speed sensor 1, acceleration sensor 2 and rotational speed sensor 3 are respectively connected with the input end of signal conditioning unit, the output end of signal conditioning unit is connected with the signal acquisition unit The input end is connected, the output end of the signal acquisition unit is connected with the input end of the digital signal processing system DSP, and the output end of the digital signal processing system DSP is connected with the PC computer.
数字信号处理系统DSP对传感器即:速度传感器1、加速度传感器2和转速传感器3采集到的信号进行处理分析,提取多种振动特征信息,依据风力发电机振动标准,判断风力发电机状态,从而实现风力发电机的实时状态监测。The digital signal processing system DSP processes and analyzes the signals collected by the sensors:
【传感器】【sensor】
传感器用来获取风力发电机振动信号和转速。附图2所示的是一种实施方式,传感器包括六个加速度传感器、二个速度传感器、一个转速传感器。The sensor is used to obtain the vibration signal and rotational speed of the wind turbine. What shown in accompanying drawing 2 is an embodiment, and sensor comprises six acceleration sensors, two velocity sensors, one rotational speed sensor.
图2所示为风力发电机状态监测系统传感器安装布置示意图,风力发电机主要包括叶片、联轴器、增速箱、发电机、机舱等部件。图中箭头所示为本实施例中传感器的安装位置。Figure 2 shows a schematic diagram of the sensor installation and layout of the wind turbine condition monitoring system. The wind turbine mainly includes components such as blades, couplings, gearboxes, generators, and nacelles. The arrows in the figure show the installation positions of the sensors in this embodiment.
【信号调理单元】【Signal Conditioning Unit】
信号调理单元对各个传感器输出信号进行变换、调理及抗混叠滤波,输出符合A/D转换器范围的电压信号。The signal conditioning unit performs conversion, conditioning and anti-aliasing filtering on the output signals of each sensor, and outputs a voltage signal conforming to the range of the A/D converter.
【信号采集单元】【Signal Acquisition Unit】
将信号调理单元输出的模拟信号转换成数字信号,以便数字信号处理系统DSP分析计算、处理、存储。该单元电路具有限幅、隔离保护措施及模数转换功能。The analog signal output by the signal conditioning unit is converted into a digital signal for analysis, calculation, processing and storage by the digital signal processing system DSP. The unit circuit has limiter, isolation protection measures and analog-to-digital conversion functions.
【数字信号处理系统DSP】【Digital Signal Processing System DSP】
风力发电机的状态是以各种振动特征值表现出来的,因此,首先在振动敏感的部位安装适当的传感器,全方位获取风力发电机状态;其次DSP进行分析计算,提取各测点振动信号的特征值。DSP按固定频率自动完成各测点传感器信号的采样、特征值计算、频谱计算。The state of the wind turbine is represented by various vibration characteristic values. Therefore, firstly, install appropriate sensors in vibration-sensitive parts to obtain the state of the wind turbine in all directions; secondly, DSP performs analysis and calculation to extract the vibration signal of each measuring point. Eigenvalues. DSP automatically completes the sampling, eigenvalue calculation and frequency spectrum calculation of sensor signals at each measuring point at a fixed frequency.
DSP分析提取的振动信号特征参数主要包括:振动信号的时域特征参数和频域特征参数,当风力发电机由于机械故障原因,若出现轴不对中、基础松动、增速箱齿轮磨损,必将导致各种特征参数中某个或几个或全部特征值超出正常范围。依据判断标准即可识别出风力发电机处于异常报警范围。当风力发电机故障程度严重时,振动幅值必将增大,DSP提取的特征参数将超出正常范围更大,超出正常范围的特征参数个数也更多。因此,据此可得到风力发电机正常、报警、危险三种状态。The vibration signal characteristic parameters extracted by DSP analysis mainly include: time domain characteristic parameters and frequency domain characteristic parameters of the vibration signal. One or several or all of the characteristic values of various characteristic parameters are out of the normal range. According to the judgment standard, it can be identified that the wind turbine is in the abnormal alarm range. When the fault degree of the wind turbine is serious, the vibration amplitude will increase, the characteristic parameters extracted by DSP will be larger than the normal range, and the number of characteristic parameters beyond the normal range will be more. Therefore, according to this, three states of the wind turbine, normal, alarm, and dangerous, can be obtained.
所述数字信号处理系统DSP处理信号的流程如下:The process of the digital signal processing system DSP processing signal is as follows:
①.DSP对各个传感器采样,将模拟信号转换为数字量,采样按固定频率和数据量进行,边采样边将数字量保存在DSP内存中;①. DSP samples each sensor, converts the analog signal into a digital quantity, the sampling is carried out according to a fixed frequency and data volume, and the digital quantity is stored in the DSP memory while sampling;
②.由转速传感器的采样值计算出风力发电机转速;由各个振动传感器的采样数据分别计算出振动信号的时域统计特征值,时域统计特征包括:平均值、有效值、方差、概率密度函数、相关分析、峭度、波形系数、裕度指标,将以上计算结果保存到DSP内存;②. Calculate the speed of the wind turbine from the sampling value of the speed sensor; calculate the time-domain statistical characteristic value of the vibration signal from the sampling data of each vibration sensor. The time-domain statistical characteristics include: average value, effective value, variance, probability density Function, correlation analysis, kurtosis, form factor, margin index, save the above calculation results to DSP memory;
③.利用AR模型快速计算出各个振动传感器信号的功率谱,并保存功率谱信息到DSP内存中;③. Use the AR model to quickly calculate the power spectrum of each vibration sensor signal, and save the power spectrum information to the DSP memory;
④.DSP请求与上位机PC通信,将风力发电机转速值、各个振动传感器信号的时域统计特征和功率谱信息传送到上位机PC计算机;DSP完成一次大循环工作;④. DSP requests to communicate with the upper computer PC, and transmits the wind turbine speed value, the time-domain statistical characteristics and power spectrum information of each vibration sensor signal to the upper computer PC computer; DSP completes a large cycle of work;
DSP处理信号的流程按上述步骤①至步骤④依次循环进行。The process of DSP signal processing is carried out sequentially according to the
图4所示为数字信号处理系统DSP软件流程图。Figure 4 shows the flow chart of the digital signal processing system DSP software.
【PC计算机】【PC computer】
显示风力发电机状态监测界面菜单,响应数字信号处理系统DSP的传送信号请求,接收DSP传送的每一帧信号,递推存储风力发电机振动特征参数,以曲线、棒图等方式显示时域、频域特征值,与振动标准比较判断风力发电机目前的状态:正常、报警、危险,给出报警信息。同时根据需要可查看历史报警数据、统计报警值。Display the wind turbine status monitoring interface menu, respond to the transmission signal request of the digital signal processing system DSP, receive each frame signal transmitted by the DSP, recursively store the vibration characteristic parameters of the wind turbine, and display the time domain, The characteristic value in the frequency domain is compared with the vibration standard to judge the current state of the wind turbine: normal, alarm, and dangerous, and the alarm information is given. At the same time, you can view historical alarm data and statistical alarm values as needed.
根据各测点振动特征量值对照振动判定标准,判断风力发电机处于哪种状态并显示在计算机上。当振动值正常则以绿色显示当前振动值;当出现异常振动且超标不大时以黄色闪烁显示报警状态并存储报警值和报警时间;当出现异常振动且超标较大时,表明需停机检修排除故障,计算机以红色闪烁方式显示振动特征值并以声音提示,存储异常值和发生时间,供分析之用。According to the vibration characteristic value of each measuring point and the vibration judgment standard, it is judged which state the wind turbine is in and displayed on the computer. When the vibration value is normal, the current vibration value is displayed in green; when there is abnormal vibration and the excess is not large, the alarm status is displayed with yellow flashes and the alarm value and alarm time are stored; when abnormal vibration occurs and the excess is large, it indicates that it needs to be stopped for maintenance In case of failure, the computer displays the vibration characteristic value in red flashing mode and prompts with sound, and stores the abnormal value and occurrence time for analysis.
综上所述,本发明涉及风力发电机状态监测系统及方法,通过安装多个传感器分别获取风力发电机状态信号,利用数字信号处理系统DSP的快速信号分析处理功能,采用信号时域统计分析方法和AR模型快速估计功率谱,提取出各种敏感且稳定性好的特征参数,进而为判断风力发电机状体奠定坚实的基础。再经过通信接口将转速、各个振动传感器的时域特征参数、功率谱等信息传送到位于地面监控室的PC计算机,PC计算机实时显示风力发电机的当前状态信息以及各种振动特征参数,并存储报警值和报警时间。In summary, the present invention relates to a wind power generator state monitoring system and method, by installing a plurality of sensors to obtain wind power generator state signals respectively, utilizing the fast signal analysis and processing function of the digital signal processing system DSP, and adopting a signal time domain statistical analysis method and AR model to quickly estimate the power spectrum, extract various sensitive and stable characteristic parameters, and then lay a solid foundation for judging the shape of the wind turbine. Then through the communication interface, the speed, time domain characteristic parameters of each vibration sensor, power spectrum and other information are transmitted to the PC computer located in the ground monitoring room. The PC computer displays the current status information of the wind turbine and various vibration characteristic parameters in real time, and stores them. Alarm value and alarm time.
本发明充分发挥DSP数字信号处理能力强、快速、可靠性高的特点;充分发挥PC计算机强大的图形显示功能、数据管理和人机对话功能。本发明将DSP系统与PC计算机很好结合起来,发挥各自优势,形成一种可靠、有效的风力发电机状态监测系统及方法。The invention fully utilizes the characteristics of DSP digital signal processing capability, high speed and high reliability; fully utilizes the powerful graphic display function, data management and man-machine dialogue function of PC computer. The invention perfectly combines the DSP system and the PC computer, exerts their respective advantages, and forms a reliable and effective wind power generator state monitoring system and method.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100919939A CN102620807A (en) | 2012-03-22 | 2012-03-22 | System and method for monitoring state of wind generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100919939A CN102620807A (en) | 2012-03-22 | 2012-03-22 | System and method for monitoring state of wind generator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102620807A true CN102620807A (en) | 2012-08-01 |
Family
ID=46560862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100919939A Pending CN102620807A (en) | 2012-03-22 | 2012-03-22 | System and method for monitoring state of wind generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102620807A (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980651A (en) * | 2012-11-02 | 2013-03-20 | 华锐风电科技(集团)股份有限公司 | Monitoring method and monitoring device and monitoring system of wind turbine generator condition |
CN103048619A (en) * | 2012-12-16 | 2013-04-17 | 华南理工大学 | On-line extracting device and extracting method for fault characteristics of wind generating set |
CN103123303A (en) * | 2012-12-25 | 2013-05-29 | 福州大学 | Quantifying and online monitoring method of bridge girder safe reliability |
CN103162805A (en) * | 2013-03-14 | 2013-06-19 | 南京楚通自动化科技有限公司 | Wind generating set state monitoring system with audio-visual function |
CN103243743A (en) * | 2013-05-21 | 2013-08-14 | 福州大学 | Quantitative detection method of safe reliability of tower foundation of wind generator |
CN103256974A (en) * | 2013-04-15 | 2013-08-21 | 北京天诚同创电气有限公司 | Internally-arranged FFT on-line frequency detection module application |
CN103309243A (en) * | 2013-05-10 | 2013-09-18 | 重庆大学 | Seaborne floating wind power generation simulation system |
CN103557932A (en) * | 2013-11-13 | 2014-02-05 | 北京普拉斯科技发展有限公司 | Configurable online signal collecting and storing device of wind turbine generator |
CN103727979A (en) * | 2013-12-19 | 2014-04-16 | 安徽泰特斯电力技术有限公司 | Draught fan vibration on-line monitoring terminal |
CN103744021A (en) * | 2013-12-23 | 2014-04-23 | 煤炭科学研究总院 | Apparatus and method for motor fault monitoring |
CN103835882A (en) * | 2014-03-18 | 2014-06-04 | 上海电机学院 | Large wind generating set state monitoring and fault diagnosis system |
CN104103163A (en) * | 2013-04-12 | 2014-10-15 | 海尔集团公司 | Information pushing device and information pushing method of wind-speed sensor |
CN105587475A (en) * | 2015-12-16 | 2016-05-18 | 北京金风科创风电设备有限公司 | Wind generating set and detection method and device for tower system state thereof |
CN105606323A (en) * | 2016-02-22 | 2016-05-25 | 宁波华斯特林电机制造有限公司 | Visual detection device for motor vibration tests and stability adjusting method |
CN105675112A (en) * | 2015-12-31 | 2016-06-15 | 北京金风科创风电设备有限公司 | Method and device for monitoring abnormal vibration of wind turbine generator |
CN106052578A (en) * | 2016-05-16 | 2016-10-26 | 宁波华斯特林电机制造有限公司 | Method for evaluating relative distance deviation of objects |
CN106605261A (en) * | 2014-08-27 | 2017-04-26 | 蓬塞有限公司 | Method, arrangement and user interface for presenting data describing forest work unit operation |
CN106762472A (en) * | 2017-01-03 | 2017-05-31 | 国网福建省电力有限公司 | One kind strengthens virtual reality technology Wind turbines examination and repair system based on time-varying |
CN107167229A (en) * | 2017-06-01 | 2017-09-15 | 浙江工业大学 | A kind of shell solid liquid interation detecting system and its control method |
CN107796611A (en) * | 2017-10-20 | 2018-03-13 | 龚土婷 | A kind of warning system for being used to detect wind-driven generator abnormal work |
CN108168811A (en) * | 2017-12-12 | 2018-06-15 | 电子科技大学 | The Portable acquiring analytical equipment and method of a kind of vibration signal |
CN109255447A (en) * | 2018-09-19 | 2019-01-22 | 华润电力风能(威海)有限公司 | A kind of automatic analysis method of vibration data |
CN109525405A (en) * | 2017-09-16 | 2019-03-26 | 郑州数丁信息科技有限公司 | A kind of electromechanical device state monitoring system and method based on NB-IoT |
CN109580221A (en) * | 2018-11-30 | 2019-04-05 | 电子科技大学 | A kind of machine driving rumble spectrum anti-aliasing technology |
CN110631810A (en) * | 2018-05-31 | 2019-12-31 | 新疆金风科技股份有限公司 | Method and device for detecting abnormal vibration of wind power generating set and wind power generating set |
CN111031069A (en) * | 2019-12-26 | 2020-04-17 | 广东省智能制造研究所 | Vibration acquisition and analysis terminal with edge calculation function and method |
CN111076808A (en) * | 2019-12-20 | 2020-04-28 | 中国北方发动机研究所(天津) | Real-time vibration monitoring and early warning system for diesel engine bench test |
CN111649863A (en) * | 2020-06-15 | 2020-09-11 | 盐城工学院 | A wind detection device for a wind turbine |
CN112177865A (en) * | 2020-12-02 | 2021-01-05 | 南京智谷人工智能研究院有限公司 | Method for solving marking noise and insufficient marks in fan fault detection |
CN112177862A (en) * | 2020-08-28 | 2021-01-05 | 盐城工学院 | Operation and maintenance method of operation and maintenance system of wind driven generator |
CN112540947A (en) * | 2020-12-04 | 2021-03-23 | 北京融智世纪节能技术服务有限公司 | High sampling rate vibration analysis device based on Zynq UltraScale + MPSoC platform |
CN112665706A (en) * | 2020-11-30 | 2021-04-16 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Marine platform vibration monitoring and analyzing method and system |
CN113272659A (en) * | 2018-12-07 | 2021-08-17 | Itt制造企业有限责任公司 | Embedded system for vibration detection and analysis |
CN113298134A (en) * | 2021-05-20 | 2021-08-24 | 华中科技大学 | BPNN-based remote non-contact health monitoring system and method for fan blade |
CN113777488A (en) * | 2021-09-14 | 2021-12-10 | 中国南方电网有限责任公司超高压输电公司昆明局 | State evaluation method and device for valve cooling main pump motor and computer equipment |
CN114089033A (en) * | 2022-01-24 | 2022-02-25 | 天津安力信通讯科技有限公司 | Abnormal signal detection method and system based on spectrum analysis |
CN114858387A (en) * | 2022-06-06 | 2022-08-05 | 滁州学院 | Vibration monitoring system of monitoring platform for food machinery on-line monitoring |
CN116380445A (en) * | 2023-06-05 | 2023-07-04 | 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) | Equipment state diagnosis method and related device based on vibration waveform |
CN118032116A (en) * | 2023-12-25 | 2024-05-14 | 北京大成国测科技股份有限公司 | Digital analysis method and system for automatic monitoring equipment |
US12196169B2 (en) | 2020-08-31 | 2025-01-14 | Tmv Detections Oy | Hydro turbine with reduced cavitation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1113739A (en) * | 1994-06-23 | 1995-12-27 | 王湘生 | Function testing system for vegetative nervous system and its method |
US20060129389A1 (en) * | 2000-05-17 | 2006-06-15 | Den Brinker Albertus C | Spectrum modeling |
CN101118437A (en) * | 2007-09-03 | 2008-02-06 | 石毅 | New style numerically controlled machine remote condition monitoring and failure diagnosis system realizing method |
CN201417174Y (en) * | 2009-06-19 | 2010-03-03 | 武汉钢铁(集团)公司 | Monitoring system for mechanical and electrical equipment |
CN102156043A (en) * | 2010-12-31 | 2011-08-17 | 北京四方继保自动化股份有限公司 | Online state monitoring and fault diagnosis system of wind generator set |
-
2012
- 2012-03-22 CN CN2012100919939A patent/CN102620807A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1113739A (en) * | 1994-06-23 | 1995-12-27 | 王湘生 | Function testing system for vegetative nervous system and its method |
US20060129389A1 (en) * | 2000-05-17 | 2006-06-15 | Den Brinker Albertus C | Spectrum modeling |
CN101118437A (en) * | 2007-09-03 | 2008-02-06 | 石毅 | New style numerically controlled machine remote condition monitoring and failure diagnosis system realizing method |
CN201417174Y (en) * | 2009-06-19 | 2010-03-03 | 武汉钢铁(集团)公司 | Monitoring system for mechanical and electrical equipment |
CN102156043A (en) * | 2010-12-31 | 2011-08-17 | 北京四方继保自动化股份有限公司 | Online state monitoring and fault diagnosis system of wind generator set |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980651A (en) * | 2012-11-02 | 2013-03-20 | 华锐风电科技(集团)股份有限公司 | Monitoring method and monitoring device and monitoring system of wind turbine generator condition |
CN103048619A (en) * | 2012-12-16 | 2013-04-17 | 华南理工大学 | On-line extracting device and extracting method for fault characteristics of wind generating set |
CN103123303A (en) * | 2012-12-25 | 2013-05-29 | 福州大学 | Quantifying and online monitoring method of bridge girder safe reliability |
CN103123303B (en) * | 2012-12-25 | 2015-07-01 | 福州大学 | Quantifying and online monitoring method of bridge girder safe reliability |
CN103162805A (en) * | 2013-03-14 | 2013-06-19 | 南京楚通自动化科技有限公司 | Wind generating set state monitoring system with audio-visual function |
CN104103163A (en) * | 2013-04-12 | 2014-10-15 | 海尔集团公司 | Information pushing device and information pushing method of wind-speed sensor |
CN103256974A (en) * | 2013-04-15 | 2013-08-21 | 北京天诚同创电气有限公司 | Internally-arranged FFT on-line frequency detection module application |
CN103309243A (en) * | 2013-05-10 | 2013-09-18 | 重庆大学 | Seaborne floating wind power generation simulation system |
CN103309243B (en) * | 2013-05-10 | 2015-09-09 | 重庆大学 | Floating marine formula wind power generation simulation system |
CN103243743A (en) * | 2013-05-21 | 2013-08-14 | 福州大学 | Quantitative detection method of safe reliability of tower foundation of wind generator |
CN103557932A (en) * | 2013-11-13 | 2014-02-05 | 北京普拉斯科技发展有限公司 | Configurable online signal collecting and storing device of wind turbine generator |
CN103727979A (en) * | 2013-12-19 | 2014-04-16 | 安徽泰特斯电力技术有限公司 | Draught fan vibration on-line monitoring terminal |
CN103744021A (en) * | 2013-12-23 | 2014-04-23 | 煤炭科学研究总院 | Apparatus and method for motor fault monitoring |
CN103835882A (en) * | 2014-03-18 | 2014-06-04 | 上海电机学院 | Large wind generating set state monitoring and fault diagnosis system |
CN106605261A (en) * | 2014-08-27 | 2017-04-26 | 蓬塞有限公司 | Method, arrangement and user interface for presenting data describing forest work unit operation |
CN105587475A (en) * | 2015-12-16 | 2016-05-18 | 北京金风科创风电设备有限公司 | Wind generating set and detection method and device for tower system state thereof |
CN105587475B (en) * | 2015-12-16 | 2018-12-21 | 北京金风科创风电设备有限公司 | Method and device for detecting state of wind power generating set and its tower system |
CN105675112A (en) * | 2015-12-31 | 2016-06-15 | 北京金风科创风电设备有限公司 | Method and device for monitoring abnormal vibration of wind turbine generator |
CN105606323A (en) * | 2016-02-22 | 2016-05-25 | 宁波华斯特林电机制造有限公司 | Visual detection device for motor vibration tests and stability adjusting method |
CN106052578A (en) * | 2016-05-16 | 2016-10-26 | 宁波华斯特林电机制造有限公司 | Method for evaluating relative distance deviation of objects |
CN106052578B (en) * | 2016-05-16 | 2019-03-01 | 宁波华斯特林电机制造有限公司 | A kind of evaluation method of object relative distance deviation |
CN106762472A (en) * | 2017-01-03 | 2017-05-31 | 国网福建省电力有限公司 | One kind strengthens virtual reality technology Wind turbines examination and repair system based on time-varying |
CN107167229A (en) * | 2017-06-01 | 2017-09-15 | 浙江工业大学 | A kind of shell solid liquid interation detecting system and its control method |
CN109525405A (en) * | 2017-09-16 | 2019-03-26 | 郑州数丁信息科技有限公司 | A kind of electromechanical device state monitoring system and method based on NB-IoT |
CN107796611B (en) * | 2017-10-20 | 2020-05-15 | 烟台清能风力发电有限公司 | Alarm system for detecting abnormal work of wind driven generator |
CN107796611A (en) * | 2017-10-20 | 2018-03-13 | 龚土婷 | A kind of warning system for being used to detect wind-driven generator abnormal work |
CN108168811A (en) * | 2017-12-12 | 2018-06-15 | 电子科技大学 | The Portable acquiring analytical equipment and method of a kind of vibration signal |
CN110631810B (en) * | 2018-05-31 | 2021-07-27 | 新疆金风科技股份有限公司 | Method and equipment for detecting abnormal vibration of wind generating set and wind generating set |
CN110631810A (en) * | 2018-05-31 | 2019-12-31 | 新疆金风科技股份有限公司 | Method and device for detecting abnormal vibration of wind power generating set and wind power generating set |
CN109255447B (en) * | 2018-09-19 | 2021-09-28 | 华润电力风能(威海)有限公司 | Automatic analysis method of vibration data |
CN109255447A (en) * | 2018-09-19 | 2019-01-22 | 华润电力风能(威海)有限公司 | A kind of automatic analysis method of vibration data |
CN109580221A (en) * | 2018-11-30 | 2019-04-05 | 电子科技大学 | A kind of machine driving rumble spectrum anti-aliasing technology |
CN113272659A (en) * | 2018-12-07 | 2021-08-17 | Itt制造企业有限责任公司 | Embedded system for vibration detection and analysis |
CN111076808A (en) * | 2019-12-20 | 2020-04-28 | 中国北方发动机研究所(天津) | Real-time vibration monitoring and early warning system for diesel engine bench test |
CN111076808B (en) * | 2019-12-20 | 2022-03-22 | 中国北方发动机研究所(天津) | Real-time vibration monitoring and early warning system for diesel engine bench test |
CN111031069A (en) * | 2019-12-26 | 2020-04-17 | 广东省智能制造研究所 | Vibration acquisition and analysis terminal with edge calculation function and method |
CN111649863A (en) * | 2020-06-15 | 2020-09-11 | 盐城工学院 | A wind detection device for a wind turbine |
CN111649863B (en) * | 2020-06-15 | 2021-02-26 | 盐城工学院 | A wind detection device for a wind turbine |
CN112177862A (en) * | 2020-08-28 | 2021-01-05 | 盐城工学院 | Operation and maintenance method of operation and maintenance system of wind driven generator |
US12196169B2 (en) | 2020-08-31 | 2025-01-14 | Tmv Detections Oy | Hydro turbine with reduced cavitation |
CN112665706B (en) * | 2020-11-30 | 2023-04-11 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Vibration monitoring and analyzing method and system for maritime work platform |
CN112665706A (en) * | 2020-11-30 | 2021-04-16 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Marine platform vibration monitoring and analyzing method and system |
CN112177865A (en) * | 2020-12-02 | 2021-01-05 | 南京智谷人工智能研究院有限公司 | Method for solving marking noise and insufficient marks in fan fault detection |
CN112540947A (en) * | 2020-12-04 | 2021-03-23 | 北京融智世纪节能技术服务有限公司 | High sampling rate vibration analysis device based on Zynq UltraScale + MPSoC platform |
CN113298134A (en) * | 2021-05-20 | 2021-08-24 | 华中科技大学 | BPNN-based remote non-contact health monitoring system and method for fan blade |
CN113777488A (en) * | 2021-09-14 | 2021-12-10 | 中国南方电网有限责任公司超高压输电公司昆明局 | State evaluation method and device for valve cooling main pump motor and computer equipment |
CN113777488B (en) * | 2021-09-14 | 2023-12-12 | 中国南方电网有限责任公司超高压输电公司昆明局 | State evaluation method and device for valve cooling main pump motor and computer equipment |
CN114089033A (en) * | 2022-01-24 | 2022-02-25 | 天津安力信通讯科技有限公司 | Abnormal signal detection method and system based on spectrum analysis |
CN114858387A (en) * | 2022-06-06 | 2022-08-05 | 滁州学院 | Vibration monitoring system of monitoring platform for food machinery on-line monitoring |
CN116380445A (en) * | 2023-06-05 | 2023-07-04 | 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) | Equipment state diagnosis method and related device based on vibration waveform |
CN116380445B (en) * | 2023-06-05 | 2023-08-08 | 吉林市特种设备检验中心(吉林市特种设备事故调查服务中心) | Equipment state diagnosis method and related device based on vibration waveform |
CN118032116A (en) * | 2023-12-25 | 2024-05-14 | 北京大成国测科技股份有限公司 | Digital analysis method and system for automatic monitoring equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102620807A (en) | System and method for monitoring state of wind generator | |
CN104019000B (en) | The loading spectrum of wind power generating set is determined and perspective maintenance system | |
CN110469462B (en) | Wind turbine generator system intelligent state monitoring system based on multiple templates | |
CN105787584B (en) | Wind turbine group fault early warning method based on cloud platform | |
CN204099123U (en) | Blade of wind-driven generator vibration monitoring and protective gear | |
WO2022048186A1 (en) | Vibration monitoring system, wind power generation system, and wind farm | |
CN202710100U (en) | Wind generating set remote on-line health state monitoring and fault diagnosing system | |
CN105760617A (en) | Calculation method applied to multi-parameter fault prediction and judgment indexes of wind generating set | |
CN103234585A (en) | Online monitoring and fault diagnosis system of large wind turbine units | |
CN103940611B (en) | An adaptive anomaly detection method for rolling bearings under variable operating conditions of wind turbines | |
CN202326011U (en) | State-monitoring and fault-diagnosis system of wind-power set | |
CN103343728A (en) | Wind generating set remote on-line multi-mode health state monitoring and fault diagnosis system | |
CN201311360Y (en) | Vibrating online monitoring failure diagnostic device | |
CN103758696A (en) | SCADA (supervisory control and data acquisition) temperature parameter based wind turbine set security evaluation method | |
CN101825893A (en) | Centralized and remote control monitoring, and fault diagnosis system of wind turbine | |
CN101858778A (en) | Automatic fault diagnosis method of wind turbine based on vibration monitoring | |
CN104515677A (en) | Failure diagnosing and condition monitoring system for blades of wind generating sets | |
CN109425483A (en) | Running of wind generating set status assessment and prediction technique based on SCADA and CMS | |
TW201120310A (en) | The state telemetry technology and fault diagnosing system in large-scale wind power farms | |
CN202994473U (en) | Wind power generation unit vibration on-line monitoring and fault diagnosis system | |
CN202453182U (en) | Fault diagnosis device of gearbox of wind generation set | |
CN111453619B (en) | An Adaptive Intelligent Monitoring and Status Evaluation System for Quay Crane Operating Mechanism | |
CN115798163A (en) | High-turbulence mountain wind field generator set tower safety detection method | |
CN211174438U (en) | A diagnostic device for hydroelectric power generating units | |
CN205175690U (en) | Online fault diagnostic of wind generating set based on DSP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120801 |