CN102521651A - Bow net contact force prediction method based on NARX neural networks - Google Patents
Bow net contact force prediction method based on NARX neural networks Download PDFInfo
- Publication number
- CN102521651A CN102521651A CN2011104362224A CN201110436222A CN102521651A CN 102521651 A CN102521651 A CN 102521651A CN 2011104362224 A CN2011104362224 A CN 2011104362224A CN 201110436222 A CN201110436222 A CN 201110436222A CN 102521651 A CN102521651 A CN 102521651A
- Authority
- CN
- China
- Prior art keywords
- data
- neural network
- contact force
- test
- mrow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012360 testing method Methods 0.000 claims abstract description 53
- 238000012549 training Methods 0.000 claims abstract description 11
- 238000004088 simulation Methods 0.000 claims abstract description 7
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims description 19
- 238000010606 normalization Methods 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 238000005094 computer simulation Methods 0.000 claims description 6
- 230000001934 delay Effects 0.000 claims description 3
- 238000012886 linear function Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 abstract description 5
- 238000003062 neural network model Methods 0.000 abstract description 2
- 230000003137 locomotive effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了铁路安全运行控制技术领域中的一种基于NARX神经网络的弓网接触力预测方法。包括:通过仿真试验获取试验数据;对试验数据进行归一化处理;建立NARX神经网络预测模型;从归一化处理后的试验数据中,抽取第一设定数量的数据对作为训练样本,采用贝叶斯正则化算法训练NARX神经网络预测模型;再从归一化处理后的试验数据中,抽取第二设定数量的数据对作为测试样本,以测试样本中作为输入数据输入到训练的NARX神经网络预测模型中,将输出结果反归一化处理后作为弓网接触力预测值。本发明采用NARX神经网络模型预测弓网接触力,提高了弓网接触力的预测精度。
The invention discloses a pantograph-catenary contact force prediction method based on a NARX neural network in the technical field of railway safety operation control. Including: obtaining test data through simulation tests; normalizing the test data; establishing a NARX neural network prediction model; extracting the first set number of data pairs as training samples from the normalized test data, using The Bayesian regularization algorithm trains the NARX neural network prediction model; and then extracts a second set number of data pairs as test samples from the normalized test data, and inputs the test samples as input data into the trained NARX In the neural network prediction model, the output results are denormalized and used as the prediction value of pantograph-catenary contact force. The invention adopts the NARX neural network model to predict the pantograph-catenary contact force, and improves the prediction accuracy of the panto-catenary contact force.
Description
技术领域 technical field
本发明属于铁路安全运行控制技术领域,尤其涉及一种基于NARX神经网络的弓网接触力预测方法。The invention belongs to the technical field of railway safety operation control, in particular to a pantograph-catenary contact force prediction method based on a NARX neural network.
背景技术 Background technique
发展高速铁路是我国铁路现代化建设的必然趋势,而电力机车以其运量大、速度快、能耗低、污染小、运价廉和安全可靠等优点,成为高速机车中的主力军。在高速电气化铁路系统中,与列车速度直接相关的是弓网受流系统,即在列车高速运行时,必须保持稳定的受流状态,也就是说受电弓与接触线间要有一定的接触压力。当接触压力过小时,易造成离线,即受电弓脱离接触线并产生电弧;当接触压力过大时,接触线抬升量过大,使接触线局部弯曲,引起接触线疲劳损伤,同时使接触线磨耗增大,严重时造成弓网事故。因此,弓网接触力的测量对于保证列车行车安全以及我国高速铁路的发展都具有重要意义。The development of high-speed railways is an inevitable trend of my country's railway modernization, and electric locomotives have become the main force in high-speed locomotives due to their advantages such as large capacity, high speed, low energy consumption, low pollution, cheap transportation, and safety and reliability. In the high-speed electrified railway system, the pantograph-catenary current receiving system is directly related to the train speed, that is, when the train is running at high speed, it must maintain a stable current receiving state, that is to say, there must be a certain contact between the pantograph and the contact wire pressure. When the contact pressure is too small, it is easy to cause off-line, that is, the pantograph breaks away from the contact wire and generates an arc; when the contact pressure is too high, the contact wire lifts too much, causing the contact wire to locally bend, causing fatigue damage to the contact wire, and making the contact Wire wear increases, causing pantograph-catenary accidents in severe cases. Therefore, the measurement of pantograph-catenary contact force is of great significance to ensure the safety of trains and the development of high-speed railways in my country.
原华,毕继红等人采用在弓网间建立“接触对”的方法来实现弓网耦合,建立了刚性悬挂接触网耦合模型,对模型进行非线性瞬态动力分析,得到接触力及滑板竖向位移的变化曲线。徐海东,许敏等人基于铁路大系统动力学理论建立了弓网动力学模型,并将机车顶部受电弓基座处的振动响应作为弓网系统的激饶,应用于动力学模型,探讨了车轨耦合振动对弓网接触压力的影响。Yuan Hua, Bi Jihong and others used the method of establishing a "contact pair" between pantograph and catenary to realize pantograph-catenary coupling, established a rigid suspension catenary coupling model, and performed nonlinear transient dynamic analysis on the model to obtain the contact force and the vertical direction of the skateboard. The displacement curve. Xu Haidong, Xu Min and others established a pantograph-catenary dynamics model based on the dynamics theory of large railway systems, and applied the vibration response at the pantograph base on the top of the locomotive as the excitation of the pantograph-catenary system to the dynamic model. Effect of rail-coupled vibration on pantograph-catenary contact pressure.
国内外学者对弓网的研究方法有现场试验、半实物半虚拟(受电弓为实物,接触网通过计算机仿真得到)试验及计算机模拟等。现场试验对测量方法、数据处理等的要求极高,只有德国等少数国家能够直接测量受电弓与接触网间的接触力。随着高速电子计算机的出现,使利用数值方法来全真模拟接触网这个庞大结构成为可能,计算机模拟方法已成为最通用的研究方法。Scholars at home and abroad have researched pantograph-catenary methods on-site, semi-physical and semi-virtual (the pantograph is the real object, and the catenary is obtained by computer simulation) test and computer simulation. Field tests have extremely high requirements for measurement methods and data processing, and only a few countries such as Germany can directly measure the contact force between the pantograph and the catenary. With the emergence of high-speed electronic computers, it is possible to use numerical methods to fully simulate the huge structure of catenary, and computer simulation methods have become the most general research method.
接触网与受电弓耦合的实现方法基本分为两种:一种是吴天行等提出的通过弓、网在接触点处位移相等来实现耦合,另外一种是张卫华等提出的通过弹簧实现耦合。前者不必选择接触刚度,但无法考虑离线;而对于后者,由于实际中弓网间的动态接触力和滑板位移的关系是:相接触时,两者保持接触刚度的关系;一旦离线,接触力将始终为零,两者间不再存在任何联系。因此用弹簧模拟弓网耦合不能研究离线以后弓、网的振动。There are basically two methods to realize the coupling between catenary and pantograph: one is proposed by Wu Tianxing et al. to realize the coupling by equal displacement of bow and net at the contact point, and the other is to achieve coupling by spring proposed by Zhang Weihua et al. The former does not need to select the contact stiffness, but offline cannot be considered; for the latter, because the actual relationship between the dynamic contact force between the pantograph and the catenary and the displacement of the slider is: when they are in contact, the relationship between the two maintains the contact stiffness; once offline, the contact force will always be zero, there is no longer any connection between the two. Therefore, using the spring to simulate the pantograph-network coupling cannot study the vibration of the bow-network after offline.
还可以使用工程设计软件ANSYS中的生死单元技术来模拟受电弓沿接触网的移动,具体做法是在接触线每个节点处都建立一个受电弓,在求解过程中通过生死单元技术,来激活或杀死相应的受电弓。这种方法最大的缺陷是无法考虑受电弓的节点速度、位移的连续性和传递性,因此计算结果与事实相差很大,很不准确。It is also possible to use the life-death element technology in the engineering design software ANSYS to simulate the movement of the pantograph along the catenary. Activate or kill the corresponding pantograph. The biggest defect of this method is that it cannot consider the nodal velocity of the pantograph, the continuity and transferability of displacement, so the calculation results are very different from the facts and are very inaccurate.
通过上述介绍可以看出,现有弓网接触力预测方法均存在着不同程度的缺陷,因此有必要提出一种新的弓网接触力预测方法,以提高弓网接触力预测的准确性。From the above introduction, it can be seen that the existing pantograph-catenary contact force prediction methods have different degrees of defects, so it is necessary to propose a new pantograph-catenary contact force prediction method to improve the accuracy of pantograph-catenary contact force prediction.
发明内容 Contents of the invention
本发明的目的是,提供一种基于NARX神经网络的弓网接触力预测方法,用以解决常用的弓网接触力预测方法计算的弓网接触力精度不高的问题。The purpose of the present invention is to provide a pantograph-catenary contact force prediction method based on NARX neural network to solve the problem that the precision of the panto-catenary contact force calculated by the commonly used pantograph-catenary contact force prediction method is not high.
为了实现上述目的,本发明采用的技术方案是,一种基于NARX神经网络的弓网接触力预测方法,其特征是所述方法包括:In order to achieve the above object, the technical solution adopted in the present invention is, a kind of pantograph-catenary contact force prediction method based on NARX neural network, it is characterized in that described method comprises:
步骤1:通过仿真试验获取试验数据;其中,试验数据包括接触线不平顺数据和与其对应的弓网接触力数据;Step 1: Obtain test data through simulation tests; where the test data includes contact line irregularity data and corresponding pantograph-catenary contact force data;
步骤2:对试验数据进行归一化处理;Step 2: Normalize the test data;
步骤3:建立NARX神经网络预测模型;Step 3: Establish NARX neural network prediction model;
步骤4:从归一化处理后的试验数据中,抽取第一设定数量的数据对作为训练样本;其中,数据对是指归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据;Step 4: From the normalized test data, extract the first set number of data pairs as training samples; wherein, the data pair refers to the normalized contact line irregularity data and the corresponding normalized Pantograph-catenary contact force data after processing;
步骤5:将训练样本中的归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据分别作为输入数据和输出数据,采用贝叶斯正则化算法训练NARX神经网络预测模型;Step 5: Take the normalized contact line irregularity data in the training sample and the corresponding normalized pantograph-catenary contact force data as the input data and output data respectively, and use the Bayesian regularization algorithm to train NARX neural network prediction model;
步骤6:再从归一化处理后的试验数据中,抽取第二设定数量的数据对作为测试样本;其中,数据对是指归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据;Step 6: From the normalized test data, extract a second set number of data pairs as test samples; wherein, the data pairs refer to the normalized contact line irregularity data and the corresponding normalized Pantograph-catenary contact force data after normalization processing;
步骤7:以测试样本中的归一化处理后的接触线不平顺数据作为输入数据输入到步骤5训练的NARX神经网络预测模型中,对输出结果进行反归一化处理,将反归一化处理后的输出结果作为弓网接触力预测值。Step 7: Input the normalized contact line irregularity data in the test sample into the NARX neural network prediction model trained in step 5, denormalize the output results, and denormalize The output after processing is used as the predicted value of pantograph-catenary contact force.
所述通过仿真试验获取试验数据具体是,先建立弓网耦合动力学模型,再利用MATLAB/Simulink软件进行动态仿真获取接触线不平顺数据和与其对应的弓网接触力数据。Specifically, the acquisition of test data through simulation tests is to first establish a pantograph-catenary coupling dynamic model, and then use MATLAB/Simulink software to perform dynamic simulation to obtain contact line irregularity data and corresponding pantograph-catenary contact force data.
所述对试验数据进行归一化处理具体是利用公式The described experiment data is carried out normalization process specifically is to utilize formula
对试验数据xi进行归一化处理;其中, n为试验数据的个数。Normalize the experimental data x i ; where, n is the number of test data.
所述NARX神经网络预测模型的中间层节点采用tan-sigmoid函数,输出层节点采用线性函数,输入层节点个数为1,中间层节点数目为15,输出层节点数目为1,输入输出延迟都为45;其中,所述tan-sigmoid函数为x为隐层的输入数据,T为缩放系数,θ为位移系数。The middle layer node of described NARX neural network forecasting model adopts tan-sigmoid function, the output layer node adopts linear function, the number of input layer nodes is 1, the number of middle layer nodes is 15, the number of output layer nodes is 1, and the input and output delays are both is 45; wherein, the tan-sigmoid function is x is the input data of the hidden layer, T is the scaling coefficient, and θ is the displacement coefficient.
所述第一设定数量的数据对为1300个数据对。The first set number of data pairs is 1300 data pairs.
所述第二设定数量的数据对为700个数据对。The second set number of data pairs is 700 data pairs.
所述步骤7之后还包括采用均方根误差法评价NARX神经网络预测模型性能的步骤,具体是利用公式After said step 7, also include the step of adopting the root mean square error method to evaluate the performance of the NARX neural network prediction model, specifically using the formula
评价训练后的NARX神经网络预测模型的性能;其中,y(i)为测试样本中的目标值,ym(i)为反归一化处理后的预测值,N为测试样本中的数据个数。Evaluate the performance of the NARX neural network prediction model after training; among them, y(i) is the target value in the test sample, y m (i) is the predicted value after denormalization processing, and N is the number of data in the test sample number.
本发明采用NARX神经网络模型预测弓网接触力,提高了弓网接触力的预测精度。The invention adopts the NARX neural network model to predict the pantograph-catenary contact force, and improves the prediction accuracy of the panto-catenary contact force.
附图说明 Description of drawings
图1是基于NARX神经网络的弓网接触力预测方法流程图;Fig. 1 is the flow chart of pantograph-catenary contact force prediction method based on NARX neural network;
图2是NARX神经网络结构图;Figure 2 is a structural diagram of the NARX neural network;
图3是弓网接触力测试数据输出与NARX神经网络输出对比图;Figure 3 is a comparison chart between pantograph-catenary contact force test data output and NARX neural network output;
图4是弓网接触力测试数据输出与NARX神经网络输出的相关性分析。Figure 4 is the correlation analysis between pantograph-catenary contact force test data output and NARX neural network output.
具体实施方式 Detailed ways
下面结合附图,对优选实施例作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。The preferred embodiments will be described in detail below in conjunction with the accompanying drawings. It should be emphasized that the following description is only exemplary and not intended to limit the scope of the invention and its application.
图1是基于NARX神经网络的弓网接触力预测方法流程图。图1中,基于NARX神经网络的弓网接触力预测方法包括:Figure 1 is a flowchart of the pantograph-catenary contact force prediction method based on NARX neural network. In Figure 1, the pantograph-catenary contact force prediction method based on NARX neural network includes:
步骤1:通过仿真试验获取试验数据;其中,试验数据包括接触线不平顺数据和与其对应的弓网接触力数据。Step 1: Obtain test data through simulation tests; where the test data includes contact line irregularity data and corresponding pantograph-catenary contact force data.
通过仿真试验获取试验数据具体是,先建立弓网耦合动力学模型,再利用MATLAB/Simulink软件进行动态仿真获取接触线不平顺数据和与其对应的弓网接触力数据。To obtain test data through simulation experiments, the pantograph-catenary coupling dynamic model is established first, and then dynamic simulation is performed using MATLAB/Simulink software to obtain contact line irregularity data and corresponding pantograph-catenary contact force data.
步骤2:对试验数据进行归一化处理。Step 2: Normalize the test data.
对试验数据进行归一化处理包括对接触线不平顺数据和与其对应的弓网接触力数据的归一化处理。归一化处理具体是利用公式The normalization of the test data includes the normalization of the contact line irregularity data and the corresponding pantograph-catenary contact force data. The normalization process specifically uses the formula
对接触线不平顺数据和弓网接触力数据进行归一化处理;其中, n为试验数据的个数,xi为接触线不平顺数据/弓网接触力数据。Normalize the contact line irregularity data and pantograph-catenary contact force data; among them, n is the number of test data, and xi is the contact line irregularity data/pantograph-catenary contact force data.
步骤3:建立NARX神经网络预测模型。Step 3: Establish NARX neural network prediction model.
NARX神经网络(Nonlinear Auto-Regressive with eXogenous input NeuralNetworks)的结构如图2所示。NARX神经网络预测模型的中间层节点采用tan-sigmoid函数,输出层节点采用线性函数,输入层节点个数为1,中间层节点数目为15,输出层节点数目为1,输入输出延迟都为45。其中,tan-sigmoid函数为x为隐层的输入数据,T为缩放系数,θ为位移系数。The structure of NARX neural network (Nonlinear Auto-Regressive with eXogenous input NeuralNetworks) is shown in Figure 2. The middle layer node of the NARX neural network prediction model uses the tan-sigmoid function, the output layer node uses the linear function, the number of input layer nodes is 1, the number of middle layer nodes is 15, the number of output layer nodes is 1, and the input and output delays are both 45 . Among them, the tan-sigmoid function is x is the input data of the hidden layer, T is the scaling coefficient, and θ is the displacement coefficient.
步骤4:从归一化处理后的试验数据中,抽取1300个数据对作为训练样本;其中,数据对是指归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据。Step 4: From the normalized test data, extract 1300 data pairs as training samples; where, the data pair refers to the normalized contact line irregularity data and the corresponding normalized Pantograph-catenary contact force data.
步骤5:将训练样本中的归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据分别作为输入数据和输出数据,采用贝叶斯正则化算法训练NARX神经网络预测模型。Step 5: Take the normalized contact line irregularity data in the training sample and the corresponding normalized pantograph-catenary contact force data as the input data and output data respectively, and use the Bayesian regularization algorithm to train NARX Neural Network Forecasting Model.
贝叶斯正则化(BR,Bayesian Regularization)算法,是指为了提高网络推广能力,训练过程中要建立一个由各层输出误差、权值和阀值构成的特殊性能参数,通过依据Levenberg-Martquartdt优化理论对网络的权值和阀值进行调整,使该参数最小化。Bayesian regularization (BR, Bayesian Regularization) algorithm refers to the establishment of a special performance parameter composed of output errors, weights and thresholds of each layer in the training process in order to improve the network promotion ability, and optimize it according to Levenberg-Martquartdt Theory adjusts the weights and thresholds of the network to minimize this parameter.
步骤6:再从归一化处理后的试验数据中,抽取700个数据对作为测试样本;其中,数据对是指归一化处理后的接触线不平顺数据和与其对应的归一化处理后的弓网接触力数据。Step 6: From the normalized test data, extract 700 data pairs as test samples; where, the data pairs refer to the normalized contact line irregularity data and the corresponding normalized The pantograph-catenary contact force data.
步骤7:以测试样本中的归一化处理后的接触线不平顺数据作为输入数据输入到步骤5训练的NARX神经网络预测模型中,对输出结果进行反归一化处理,将反归一化处理后的输出结果作为弓网接触力预测值。Step 7: Input the normalized contact line irregularity data in the test sample into the NARX neural network prediction model trained in step 5, denormalize the output results, and denormalize The output after processing is used as the predicted value of pantograph-catenary contact force.
还可以采用均方根误差法评价上述NARX神经网络预测模型的性能,具体是利用公式The root mean square error method can also be used to evaluate the performance of the above-mentioned NARX neural network prediction model, specifically using the formula
评价训练后的NARX神经网络预测模型的性能;其中,y(i)为测试样本中的目标值,ym(i)为反归一化处理后的预测值,N为测试样本中的数据个数。Evaluate the performance of the NARX neural network prediction model after training; among them, y(i) is the target value in the test sample, y m (i) is the predicted value after denormalization processing, and N is the number of data in the test sample number.
RMSE值越小,表示模型的预测精度越高,预测值越接近目标值。其次,对模型输出和目标输出进行曲线拟合,可较直观地反映出目标输出值与模型输出值之间的近似程度,如图3所示。最后,对模型输出和目标输出进行线性回归分析,可精确地计算出目标输出值与模型输出值之间的相关系数,如图4所示,其中,A神经网络输出数据,T代表测试输出数据。The smaller the RMSE value, the higher the prediction accuracy of the model, and the closer the predicted value is to the target value. Secondly, the curve fitting between the model output and the target output can intuitively reflect the degree of approximation between the target output value and the model output value, as shown in Figure 3. Finally, linear regression analysis is performed on the model output and the target output, and the correlation coefficient between the target output value and the model output value can be accurately calculated, as shown in Figure 4, where A neural network output data, T represents the test output data .
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104362224A CN102521651A (en) | 2011-12-22 | 2011-12-22 | Bow net contact force prediction method based on NARX neural networks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104362224A CN102521651A (en) | 2011-12-22 | 2011-12-22 | Bow net contact force prediction method based on NARX neural networks |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102521651A true CN102521651A (en) | 2012-06-27 |
Family
ID=46292562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104362224A Pending CN102521651A (en) | 2011-12-22 | 2011-12-22 | Bow net contact force prediction method based on NARX neural networks |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102521651A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110457822A (en) * | 2019-08-13 | 2019-11-15 | 西南交通大学 | A contact force threshold model construction method for judging the occurrence of pantograph-catenary contact arc |
CN111209999A (en) * | 2018-11-21 | 2020-05-29 | 成都唐源电气股份有限公司 | Contact network performance degradation prediction method based on recurrent neural network |
CN111367173A (en) * | 2020-03-06 | 2020-07-03 | 西南交通大学 | High-speed railway pantograph robust prediction control method based on state estimation |
CN113028999A (en) * | 2021-02-24 | 2021-06-25 | 河南辉煌科技股份有限公司 | Contact line lift measurement method and system based on convolutional neural network |
CN113076949A (en) * | 2021-03-31 | 2021-07-06 | 成都唐源电气股份有限公司 | Method and system for quickly positioning parts of contact net |
CN113267286A (en) * | 2021-07-02 | 2021-08-17 | 中国国家铁路集团有限公司 | Railway bow net contact force identification method and device |
CN114169223A (en) * | 2021-11-15 | 2022-03-11 | 西南交通大学 | An Optimal Design Method for Distributed Coordinates of High-speed Catenary Suspended Strings |
JP7613115B2 (en) | 2021-01-13 | 2025-01-15 | 富士電機株式会社 | Contact state estimation support system, contact state estimation support device, contact state estimation device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101819407A (en) * | 2010-04-02 | 2010-09-01 | 杭州电子科技大学 | Sewage pump station water level prediction method base on neural network |
CN101963638A (en) * | 2010-09-07 | 2011-02-02 | 西南交通大学 | Bow net electric contact characteristic testing device |
-
2011
- 2011-12-22 CN CN2011104362224A patent/CN102521651A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101819407A (en) * | 2010-04-02 | 2010-09-01 | 杭州电子科技大学 | Sewage pump station water level prediction method base on neural network |
CN101963638A (en) * | 2010-09-07 | 2011-02-02 | 西南交通大学 | Bow net electric contact characteristic testing device |
Non-Patent Citations (2)
Title |
---|
XUE-MIAO PANG ET AL: "The Prediction of Derailment Coefficient Using NARX Neural Networks", 《ICTIS 2011》, 2 July 2011 (2011-07-02) * |
蔡磊,等: "利用NARX神经网络由IMF与太阳风预测暴时SYM_H指数", 《中国科学》, vol. 40, no. 1, 31 December 2010 (2010-12-31) * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111209999A (en) * | 2018-11-21 | 2020-05-29 | 成都唐源电气股份有限公司 | Contact network performance degradation prediction method based on recurrent neural network |
CN111209999B (en) * | 2018-11-21 | 2023-04-07 | 成都唐源电气股份有限公司 | Contact network performance degradation prediction method based on recurrent neural network |
CN110457822A (en) * | 2019-08-13 | 2019-11-15 | 西南交通大学 | A contact force threshold model construction method for judging the occurrence of pantograph-catenary contact arc |
CN110457822B (en) * | 2019-08-13 | 2022-04-29 | 西南交通大学 | Contact force threshold value model construction method for judging generation of bow net contact arc |
CN111367173A (en) * | 2020-03-06 | 2020-07-03 | 西南交通大学 | High-speed railway pantograph robust prediction control method based on state estimation |
CN111367173B (en) * | 2020-03-06 | 2021-06-25 | 西南交通大学 | A robust predictive control method for high-speed railway pantograph based on state estimation |
JP7613115B2 (en) | 2021-01-13 | 2025-01-15 | 富士電機株式会社 | Contact state estimation support system, contact state estimation support device, contact state estimation device |
CN113028999A (en) * | 2021-02-24 | 2021-06-25 | 河南辉煌科技股份有限公司 | Contact line lift measurement method and system based on convolutional neural network |
CN113076949A (en) * | 2021-03-31 | 2021-07-06 | 成都唐源电气股份有限公司 | Method and system for quickly positioning parts of contact net |
CN113267286A (en) * | 2021-07-02 | 2021-08-17 | 中国国家铁路集团有限公司 | Railway bow net contact force identification method and device |
CN113267286B (en) * | 2021-07-02 | 2022-12-13 | 中国国家铁路集团有限公司 | Method and device for identifying railway pantograph-catenary contact force |
CN114169223A (en) * | 2021-11-15 | 2022-03-11 | 西南交通大学 | An Optimal Design Method for Distributed Coordinates of High-speed Catenary Suspended Strings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102521651A (en) | Bow net contact force prediction method based on NARX neural networks | |
Song et al. | Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test | |
CN111144039B (en) | Train dynamic weighing system and weighing method based on deep learning | |
CN106056210B (en) | A kind of PM2.5 concentration value Forecasting Methodologies based on hybrid neural networks | |
Yao et al. | A study on the mechanism of vehicle body vibration affecting the dynamic interaction in the pantograph–catenary system | |
Xu et al. | Coupler rotation behaviour and its effect on heavy haul trains | |
CN106844949B (en) | Training method of bidirectional LSTM model for realizing energy-saving control of locomotive | |
Liu et al. | Effect of wind speed variation on the dynamics of a high-speed train | |
Facchinetti et al. | Real-time catenary models for the hardware-in-the-loop simulation of the pantograph–catenary interaction | |
CN104156769A (en) | Electric power system vulnerability assessment method | |
CN102360454A (en) | Wheel-track force prediction method based on NARX (Nonlinear Auto-regressive with Extra Inputs) neural network | |
Peng et al. | A novel bagged tree ensemble regression method with multiple correlation coefficients to predict the train body vibrations using rail inspection data | |
Zhang et al. | Sensitivity analysis and research on optimisation methods of design parameters of high‐speed railway catenary | |
Sterling et al. | An investigation of the aerodynamic admittances and aerodynamic weighting functions of trains | |
Wang et al. | Design optimisation of railway pantograph-catenary systems with multiple objectives | |
CN102567576A (en) | Method for predicting rate of wheel load reduction | |
Xie et al. | A data-driven convolutional regression scheme for on-board and quantitative detection of rail corrugation roughness | |
CN105740606A (en) | High speed train reliability analysis method based on reliability GERT (Graphical Evaluation and Review Technique) model | |
Wang et al. | Energy harvesting of track-borne transducers by train-induced wind | |
Xia et al. | Investigation of the dynamic airtightness coefficient of high-speed trains traveling through a tunnel: A field study | |
CN109341989B (en) | Bridge influence line identification method capable of eliminating vehicle power effect | |
CN102567786A (en) | Method for predicting derailment coefficients | |
Liu et al. | Research of the track irregularity spectrum of Shanghai high-speed transrapid demonstration line | |
CN106021917A (en) | Method for calculating and predicting structure reliability of support connection parts of power supply system of high-speed rail | |
Liu et al. | Response prediction and probabilistic analysis of the vehicle-ballasted track system considering track irregularity based on long-short term memory neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120627 |