CN102385628B - Java data base connectivity (JDBC)-based data distributed processing method - Google Patents
Java data base connectivity (JDBC)-based data distributed processing method Download PDFInfo
- Publication number
- CN102385628B CN102385628B CN201110359435.1A CN201110359435A CN102385628B CN 102385628 B CN102385628 B CN 102385628B CN 201110359435 A CN201110359435 A CN 201110359435A CN 102385628 B CN102385628 B CN 102385628B
- Authority
- CN
- China
- Prior art keywords
- data
- jdbc
- sql
- database
- virtual database
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003672 processing method Methods 0.000 title abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 7
- 238000012423 maintenance Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims 1
- 238000013500 data storage Methods 0.000 abstract description 4
- 238000007726 management method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000012550 audit Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明涉及一种基于JDBC的数据分布式处理方法,具体步骤如下:1)在客户端或Web应用程序中设置虚拟数据库JDBC驱动包文件,建立虚拟数据库连接,并按照JDBC规范向虚拟数据库发送SQL调用请求;2)在虚拟数据库进行参数设置,通过JDBC驱动层与各实体数据库建立连接,将数据缓存和/或存储于分布式系统的多个数据库中;3)所述虚拟数据库的数据分布式处理器接收数据SQL调用请求,并进行语句分析,然后分发执行,实现数据的分布式处理。本发明只需要在原有应用程序的类加载路径中加入虚拟数据库驱动包,对虚拟数据库进行简单配置,即可提高原有程序的数据处理能力;扩展性强,可通过垂直扩展方式提高数据存储能力,也可通过横向扩展方式提高并发处理能力。
The present invention relates to a kind of data distributed processing method based on JDBC, concrete steps are as follows: 1) install virtual database JDBC driver package file in client or Web application program, set up virtual database connection, and send SQL to virtual database according to JDBC standard Invoke request; 2) carry out parameter setting in virtual database, set up connection with each entity database by JDBC driver layer, with data cache and/or be stored in the multiple databases of distributed system; 3) the data distribution of described virtual database The processor receives the data SQL call request, analyzes the statement, and then distributes the execution to realize the distributed processing of the data. The present invention only needs to add a virtual database driver package to the class loading path of the original application program, and simply configure the virtual database to improve the data processing capability of the original program; the scalability is strong, and the data storage capacity can be improved through vertical expansion , and the concurrent processing capability can also be improved through horizontal expansion.
Description
技术领域 technical field
本发明涉及数据处理,特别涉及一种基于JDBC的数据分布式处理方法,属于数据存储与检索领域。The invention relates to data processing, in particular to a JDBC-based data distributed processing method, which belongs to the field of data storage and retrieval.
背景技术 Background technique
当应用系统处理的数据规模不断增大时,满足这些海量数据的存储与处理要求一般有两种方式,一种是采用性能更高的小型机、大型机设备,另一种是采用普通机器组成的集群。因为集群有着出众的性价比,目前已经在很大程度上代替了大型机,Web服务器和应用服务器上的应用就是很好的体现。JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口组成。JDBC提供了一种基准,据此可以构建更高级的工具和接口,与数据库建立连接、发送操作数据库的语句并处理结果。JVM是(Java Virtual Machine,Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。When the scale of data processed by the application system continues to increase, there are generally two ways to meet the storage and processing requirements of these massive data. One is to use minicomputers and mainframes with higher performance, and the other is to use ordinary machines. of clusters. Because the cluster has an outstanding cost performance, it has largely replaced the mainframe, and the application on the Web server and application server is a good example. JDBC (Java Data Base Connectivity, java database connection) is a Java API for executing SQL statements, which can provide unified access to various relational databases. It consists of a set of classes and interfaces written in the Java language. JDBC provides a baseline against which higher-level tools and interfaces can be built to connect to a database, send statements that manipulate the database, and process the results. JVM is the abbreviation of (Java Virtual Machine, Java Virtual Machine). JVM is a specification for computing equipment. It is a fictitious computer that is realized by simulating various computer functions on an actual computer. The Java virtual machine includes a set of bytecode instructions, a set of registers, a stack, a garbage collection heap, and a storage method field. The JVM shields the information related to the specific operating system platform, so that the Java program only needs to generate the object code (byte code) that runs on the Java virtual machine, and it can run on various platforms without modification.
在数据存储与处理中,虽然集群提供了高性能和强容错能力,但是这方面的工具就少得多,并且主要是面向大企业的解决方案。商务解决方案如Oracle Real Application Clusters,已经开始从事应用共享存储系统;IBM的DB2 Integrated Cluster环境中应用了网络共享存储;而在开源阵营的数据库集群方面,MySQL复制技术应用主从机制来实现。这些技术明显的缺陷是为了实现集群的特性,必须扩展数据库引擎,所以应用程序要用一些额外的API,API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件的以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。并且这些不同技术的不同实现方式之间很难相互协作。In data storage and processing, although clusters provide high performance and strong fault tolerance, there are far fewer tools in this area, and they are mainly solutions for large enterprises. Business solutions such as Oracle Real Application Clusters have begun to apply shared storage systems; IBM's DB2 Integrated Cluster environment uses network shared storage; and in terms of database clusters in the open source camp, MySQL replication technology is implemented using a master-slave mechanism. The obvious defect of these technologies is that in order to realize the characteristics of the cluster, the database engine must be extended, so the application program needs to use some additional APIs. API (Application Programming Interface, application programming interface) is some predefined functions, the purpose is to provide The ability for a developer to access a set of routines based on a piece of software or hardware without having access to the source code, or understanding the details of the inner workings. And it is difficult for different implementations of these different technologies to cooperate with each other.
发明内容 Contents of the invention
本发明的目的是提出一种基于JDBC的数据分布式处理方法,它能把一系列不同类型的实体数据库转换成一个统一的虚拟数据库,各个实体数据库的表结构相同,客户端或Web应用程序通过加载虚拟数据库JDBC驱动,可以按照JDBC规范向虚拟数据库发送SQL请求,实现对各个实体数据库的数据检索、插入、更新和删除等操作。The purpose of the present invention is to propose a data distributed processing method based on JDBC, which can convert a series of different types of entity databases into a unified virtual database. Load the JDBC driver of the virtual database, and send SQL requests to the virtual database according to the JDBC specification to realize data retrieval, insertion, update, and deletion operations on each entity database.
为了解决上述技术问题,本发明的技术方案包括:In order to solve the problems of the technologies described above, the technical solutions of the present invention include:
一种基于JDBC的数据分布式处理方法,具体步骤如下:A JDBC-based data distributed processing method, the specific steps are as follows:
1)在基于Java规范开发的客户端或Web应用程序的类加载路径中设置虚拟数据库JDBC驱动包文件位置,使所述应用程序能加载该驱动包,和虚拟数据库建立连接,并按照JDBC规范向虚拟数据库发送SQL调用请求;1) set the virtual database JDBC driver package file position in the class loading path of the client or web application developed based on the Java specification, so that the application program can load the driver package, set up a connection with the virtual database, and send the JDBC driver package according to the JDBC specification The virtual database sends a SQL call request;
2)虚拟数据库是一种基于Java规范开发的服务器端应用程序,使用配置管理工具进行参数设置,以便通过JDBC驱动层中厂商提供的驱动分别与各实体数据库建立连接,将数据缓存和/或存储于分布式系统的多个数据库中;2) The virtual database is a server-side application developed based on the Java specification. It uses configuration management tools to set parameters, so as to establish connections with each entity database through the drivers provided by the manufacturer in the JDBC driver layer, and cache and/or store data. in multiple databases in a distributed system;
3)所述虚拟数据库的数据分布式处理器接收数据SQL调用请求,并进行语句分析,然后分发执行,查询和/或更新实体数据库中的数据,实现数据的分布式处理。3) The data distributed processor of the virtual database receives the data SQL call request, and analyzes the statement, and then distributes and executes, queries and/or updates the data in the entity database, and realizes the distributed processing of the data.
如应用的数据量大,超过了单节点处理能力,则把数据分散存储于多节点集群中;如应用的数据量小,则把数据多重备份在多个节点集群中。If the data volume of the application is large and exceeds the processing capacity of a single node, the data will be stored in a multi-node cluster; if the data volume of the application is small, the data will be backed up in multiple node clusters.
所述数据分布式处理器包括:SQL调用接口、SQL语句分析器、SQL语句执行器、调度分发器、数据缓存、连接池、数据访问插件管理器、Oracle数据访问、MySQL数据访问、用户安全、日志维护、配置管理等模块。The data distributed processor includes: SQL call interface, SQL statement analyzer, SQL statement executor, scheduling distributor, data cache, connection pool, data access plug-in manager, Oracle data access, MySQL data access, user security, Modules such as log maintenance and configuration management.
所述JDBC驱动层包括:Oracle驱动、MYsql驱动层以及其他厂商提供的符合JDBC规范驱动。The JDBC driver layer includes: an Oracle driver, a MYsql driver layer, and drivers provided by other manufacturers that meet the JDBC specification.
所述数据库包括Oracle数据库、MySQL数据库以及其他厂商数据库。The databases include Oracle databases, MySQL databases and other vendor databases.
所述虚拟数据库JDBC驱动包:是一个符合JDBC规范的驱动程序,能够在JVM中运行,使用户能与虚拟数据库管理系统进行通讯,用户的SQL语句被送往虚拟数据库中,而其结果将被送回给用户。Described virtual database JDBC driving package: be a driver program conforming to JDBC specification, can run in JVM, make user and virtual database management system carry out communication, user's SQL sentence is sent in the virtual database, and its result will be sent back to the user.
本发明主要用于在特定环境下,如应用的数据量大,超过了单节点处理能力,可采用本方法按垂直扩展方式,把数据分散存储于多节点集群中,通过分布式处理来满足需求;如应用的数据量小,但用户的并发请求多,可采用本方法按横向扩展方式,把数据多重备份在多个节点集群中,通过对请求进行负载均衡来提高并发响应能力。The present invention is mainly used in a specific environment, if the amount of applied data is large and exceeds the processing capacity of a single node, this method can be used to store data in a multi-node cluster in a vertical expansion manner, and meet the requirements through distributed processing ; If the amount of data in the application is small, but the user has many concurrent requests, this method can be used in a horizontal expansion mode to back up the data multiple times in multiple node clusters, and improve the concurrent response capability by load balancing the requests.
本发明的有益效果:Beneficial effects of the present invention:
1.应用简单,只需要在原有应用程序的类加载路径中加入虚拟数据库驱动包,对虚拟数据库进行简单配置,即可提高原有程序的数据处理能力,适应不同数据量的数据处理。1. The application is simple. You only need to add a virtual database driver package to the class loading path of the original application program, and simply configure the virtual database to improve the data processing capability of the original program and adapt to data processing of different data volumes.
2.扩展性强,可通过垂直扩展方式提高数据存储能力,也可通过横向扩展方式提高并发处理能力。2. Strong scalability, the data storage capacity can be improved through vertical expansion, and the concurrent processing capacity can also be improved through horizontal expansion.
附图说明 Description of drawings
图1是本发明所述的数据分布式处理方法实施示意图;Fig. 1 is the implementation schematic diagram of the data distributed processing method described in the present invention;
图2是本发明所述的数据分布式处理方法流程图;Fig. 2 is a flow chart of the data distributed processing method according to the present invention;
具体实施方式 Detailed ways
下面结合附图,对本发明的较佳实施例做进一步详细说明。The preferred embodiments of the present invention will be described in further detail below in conjunction with the accompanying drawings.
如图1所示,在基于Java规范开发的客户端或Web应用程序的类加载路径中设置虚拟数据库JDBC驱动包文件位置,使所述应用程序能加载该驱动包,和虚拟数据库建立连接,按照JDBC规范发送SQL检索、插入、更新和删除等操作调用请求给虚拟数据库;虚拟数据库是一种基于Java规范开发的服务器端应用程序,使用配置管理工具进行参数设置,以便通过JDBC驱动层中厂商提供的驱动分别与各实体数据库建立连接,将数据缓存和/或存储于分布式系统的多个数据库中;虚拟数据库接收到应用程序的SQL调用请求后,通过数据分布式处理器进行语句分析,然后分发执行,以实现数据的分布式处理,数据分布式处理器包括SQL调用接口、SQL语句分析器、SQL语句执行器、调度分发器、数据缓存、连接池、数据访问插件管理器、Oracle数据访问、MySQL数据访问、用户安全、日志维护、配置管理等模块。As shown in Figure 1, the virtual database JDBC driver package file position is set in the class loading path of the client or Web application developed based on the Java specification, so that the application program can load the driver package and establish a connection with the virtual database, according to The JDBC specification sends SQL search, insert, update, delete and other operation call requests to the virtual database; the virtual database is a server-side application developed based on the Java specification, and uses configuration management tools to set parameters so that it can be provided by the manufacturer in the JDBC driver layer. The driver establishes connections with each entity database respectively, and caches and/or stores the data in multiple databases of the distributed system; after the virtual database receives the SQL call request from the application program, it analyzes the statement through the data distributed processor, and then Distribute execution to realize distributed processing of data. Data distributed processor includes SQL call interface, SQL statement analyzer, SQL statement executor, scheduling distributor, data cache, connection pool, data access plug-in manager, Oracle data access , MySQL data access, user security, log maintenance, configuration management and other modules.
实体数据库可以是Oracle数据库、MySQL数据库、SQL Server数据库,也可以是其他厂商数据库,只要开发对应的数据访问插件,然后部署在数据分布式处理器中。The entity database can be an Oracle database, a MySQL database, a SQL Server database, or a database from other manufacturers, as long as the corresponding data access plug-in is developed, and then deployed in the data distributed processor.
如图2所示,本发明提出一种基于JDBC的数据分布式处理方法,以Web应用程序为例,其处理流程如下:As shown in Figure 2, the present invention proposes a kind of data distributed processing method based on JDBC, taking Web application program as example, its processing flow is as follows:
(1)在Web应用程序中,按照JDBC规范封装SQL检索、插入、更新和删除等操作调用请求;(1) In the web application program, according to the JDBC specification, encapsulate the SQL search, insert, update and delete operation call requests;
(2)通过虚拟数据库JDBC驱动包,Web应用程序和虚拟数据库建立连接,通过此连接将步骤1)中封装好的SQL调用请求发送给虚拟数据库。(2) Through the JDBC driver package of the virtual database, the Web application program establishes a connection with the virtual database, and sends the SQL calling request encapsulated in step 1) to the virtual database through this connection.
(3)虚拟数据库通过连接池模块管理和Web应用程序建立的所有连接,并通过用户安全和日志维护模块对Web应用程序的SQL操作进行授权与审计。(3) The virtual database manages all connections established with the Web application through the connection pool module, and authorizes and audits the SQL operations of the Web application through the user security and log maintenance module.
(4)对于接收到的SQL调用请求,通过SQL调用接口,转换成虚拟数据库支持的SQL调用语句。(4) For the received SQL call request, convert it into a SQL call statement supported by the virtual database through the SQL call interface.
(5)SQL语句分析器根据虚拟数据库的参数配置,判断本次SQL调用请求涉及哪些表,需要哪些数据访问插件参与,以及结果集的处理方式,并组装成各数据访问插件能够识别的执行命令,然后把执行命令发送给SQL语句执行器。根据业务应用的具体情况,虚拟数据库的参数配置不同:对于存在大量数据的表,参数配置可将数据分散存储于多个实际的数据库;对于小数据量的表,可进行冗余存储,进而通过多重备份来增加系统的可靠性和并发性能。SQL语句分析器可以根据不同的业务应用情况设置结果集处理方式,对于分散存储模式,采用多库结果集归并处理方式;对于多重备份模式,采用负载均衡,选择最佳的数据库执行并返回结果。(5) According to the parameter configuration of the virtual database, the SQL statement analyzer determines which tables are involved in this SQL call request, which data access plug-ins are required to participate, and the processing method of the result set, and assembles them into execution commands that can be recognized by each data access plug-in , and then send the execution command to the SQL statement executor. According to the specific situation of the business application, the parameter configuration of the virtual database is different: for a table with a large amount of data, the parameter configuration can store the data in multiple actual databases; for a table with a small amount of data, redundant storage can be performed, and then through Multiple backups to increase system reliability and concurrent performance. The SQL statement analyzer can set the result set processing method according to different business application situations. For the decentralized storage mode, the multi-database result set merge processing method is adopted; for the multiple backup mode, load balancing is adopted to select the best database to execute and return the result.
(6)SQL语句执行器接收到执行命令后,首先判断是否可以使用缓存并且缓存数据有效,如是则直接调用数据缓存模块将结果返回给Web应用程序,否则将执行命令送给调度分发器执行,根据执行命令设置的结果集处理方式,对调度分发器返回的结果集进行处理,然后将结果返回给Web应用程序,并调用数据缓存模块更新缓存。(6) After the SQL statement executor receives the execution command, it first judges whether the cache can be used and the cached data is valid. If so, it will directly call the data cache module to return the result to the Web application, otherwise it will send the execution command to the dispatcher for execution. According to the result set processing method set by the execution command, process the result set returned by the dispatcher, then return the result to the web application, and call the data cache module to update the cache.
(7)调度分发器对接收的执行命令,根据命令类别从数据访问插件管理器中获取对应的数据访问插件,然后调用数据访问插件相应接口执行命令,并将结果返回给SQL语句执行器进行处理。如果涉及多个实体数据库,每个都会被调度执行。(7) The scheduling dispatcher obtains the corresponding data access plug-in from the data access plug-in manager according to the command type for the received execution command, then calls the corresponding interface of the data access plug-in to execute the command, and returns the result to the SQL statement executor for processing . If multiple entity databases are involved, each will be scheduled for execution.
(8)数据访问插件封装实体数据库的访问接口,一般通过JDBC驱动的方式和实体数据库建立连接,将SQL调用请求发送给实体数据库管理系统执行并收集返回结果。不同厂商的数据库有各自的数据访问插件,如Oracle数据访问插件、MySQL数据访问插件、SQL Server数据访问插件等,所有的数据访问插件都需要通过虚拟数据库配置管理工具在数据访问插件管理器中注册。(8) The data access plug-in encapsulates the access interface of the entity database, generally establishes a connection with the entity database through a JDBC driver, sends the SQL call request to the entity database management system for execution and collects the returned results. Databases from different vendors have their own data access plug-ins, such as Oracle data access plug-ins, MySQL data access plug-ins, SQL Server data access plug-ins, etc. All data access plug-ins need to be registered in the data access plug-in manager through the virtual database configuration management tool .
(9)数据分布式处理器所提供用户安全、日志维护、配置管理模块属于基础模块,为其他模块提供配置、授权与审计服务,以增加系统的安全性、可靠性。(9) The user security, log maintenance, and configuration management modules provided by the data distributed processor are basic modules that provide configuration, authorization, and audit services for other modules to increase system security and reliability.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110359435.1A CN102385628B (en) | 2011-11-14 | 2011-11-14 | Java data base connectivity (JDBC)-based data distributed processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110359435.1A CN102385628B (en) | 2011-11-14 | 2011-11-14 | Java data base connectivity (JDBC)-based data distributed processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102385628A CN102385628A (en) | 2012-03-21 |
CN102385628B true CN102385628B (en) | 2015-05-13 |
Family
ID=45825044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110359435.1A Expired - Fee Related CN102385628B (en) | 2011-11-14 | 2011-11-14 | Java data base connectivity (JDBC)-based data distributed processing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102385628B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103678354B (en) * | 2012-09-11 | 2017-05-03 | 中国移动通信集团公司 | Local relation type database node scheduling method and device based on cloud computing platform |
CN103885995B (en) * | 2012-12-21 | 2017-05-03 | 中国移动通信集团河北有限公司 | List-based database monitoring method and list-based database monitoring device |
CN103336782B (en) * | 2013-05-30 | 2016-09-21 | 莱诺斯科技(北京)股份有限公司 | A kind of relationship type distributed data base system |
CN104363165A (en) * | 2014-11-14 | 2015-02-18 | 华东电网有限公司 | Information interactive system under internal and external network isolation environment and data integrating method |
CN106066890B (en) * | 2016-06-16 | 2020-02-18 | 上海天玑科技股份有限公司 | Distributed high-performance database all-in-one machine system |
CN107402941A (en) * | 2016-07-22 | 2017-11-28 | 延边众生云计算科技有限公司 | Conventional data Fabric Interface and its implementation |
CN106874109A (en) * | 2016-12-29 | 2017-06-20 | 朗新科技股份有限公司 | A kind of distributed job distribution processing method and system |
CN107463511B (en) * | 2017-01-23 | 2020-06-26 | 北京思特奇信息技术股份有限公司 | Data internationalization realization method and device based on multi-level cache |
CN110147508A (en) * | 2017-10-26 | 2019-08-20 | 北京京东尚科信息技术有限公司 | A kind of method and apparatus of system current limliting |
CN108762112A (en) * | 2018-06-12 | 2018-11-06 | 哈尔滨理工大学 | A kind of industrial robot emulation and real-time control system based on virtual reality |
CN109828983B (en) * | 2018-12-15 | 2024-05-07 | 平安科技(深圳)有限公司 | PG database processing method, device, electronic equipment and storage medium |
CN112688976A (en) * | 2019-10-17 | 2021-04-20 | 广州迈安信息科技有限公司 | Data processing transmission service system adopting JDBC/HTTP standard |
CN111367983B (en) * | 2020-03-10 | 2023-08-15 | 中国联合网络通信集团有限公司 | Database access method, system, device and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101093502A (en) * | 2007-06-19 | 2007-12-26 | 深圳市迈科龙电子有限公司 | Security structure of database, and method of use |
CN101833620A (en) * | 2010-04-28 | 2010-09-15 | 国网电力科学研究院 | A database protection method based on self-defined security JDBC driver |
CN101840352A (en) * | 2010-04-29 | 2010-09-22 | 中兴通讯股份有限公司 | Method and device for monitoring database connection pool |
US20110093435A1 (en) * | 2009-10-21 | 2011-04-21 | Delphix Corp. | Virtual Database System |
CN102065097A (en) * | 2010-12-27 | 2011-05-18 | 北京像素软件科技股份有限公司 | Synchronous operation method of clients and servers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101187937A (en) * | 2007-10-30 | 2008-05-28 | 北京航空航天大学 | Heterogeneous Database Access and Integration Method for Schema Reuse in Grid Environment |
CN101853274A (en) * | 2010-05-10 | 2010-10-06 | 浪潮电子信息产业股份有限公司 | Method for realizing interconnection of heterogeneous databases |
-
2011
- 2011-11-14 CN CN201110359435.1A patent/CN102385628B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101093502A (en) * | 2007-06-19 | 2007-12-26 | 深圳市迈科龙电子有限公司 | Security structure of database, and method of use |
US20110093435A1 (en) * | 2009-10-21 | 2011-04-21 | Delphix Corp. | Virtual Database System |
CN101833620A (en) * | 2010-04-28 | 2010-09-15 | 国网电力科学研究院 | A database protection method based on self-defined security JDBC driver |
CN101840352A (en) * | 2010-04-29 | 2010-09-22 | 中兴通讯股份有限公司 | Method and device for monitoring database connection pool |
CN102065097A (en) * | 2010-12-27 | 2011-05-18 | 北京像素软件科技股份有限公司 | Synchronous operation method of clients and servers |
Also Published As
Publication number | Publication date |
---|---|
CN102385628A (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102385628B (en) | Java data base connectivity (JDBC)-based data distributed processing method | |
CN112099918B (en) | Live migration of clusters in containerized environments | |
US8121978B2 (en) | Database system providing improved methods for data replication | |
CN107809467B (en) | Method for deleting container mirror image data in cloud environment | |
CN103218175B (en) | The cloud storage platform access control system of many tenants | |
US20070288526A1 (en) | Method and apparatus for processing a database replica | |
US20070294319A1 (en) | Method and apparatus for processing a database replica | |
US9632944B2 (en) | Enhanced transactional cache | |
CN104484472B (en) | A kind of data-base cluster and implementation method of a variety of heterogeneous data sources of mixing | |
Fritchie | Chain replication in theory and in practice | |
CA3137857A1 (en) | Multi-language fusion query method and multi-model database system | |
CN110955655B (en) | Dynamic CMDB database model storage method and system | |
WO2023082537A1 (en) | Network operating system design method based on mimetic database | |
CN103870357A (en) | Method and system for carrying out data replication | |
JP2017534986A (en) | Online scheme and data conversion | |
US7752225B2 (en) | Replication and mapping mechanism for recreating memory durations | |
US9442862B2 (en) | Polymorph table with shared columns | |
CN110119308B (en) | System for managing large-scale container applications | |
Hance et al. | Sharding the state machine: Automated modular reasoning for complex concurrent systems | |
US10534640B2 (en) | System and method for providing a native job control language execution engine in a rehosting platform | |
CN115083538B (en) | Medicine data processing system, operation method and data processing method | |
Abouzour et al. | Bringing cloud-native storage to SAP IQ | |
US20200012456A1 (en) | Stale block resynchronization in nvm based systems | |
Delaney et al. | Microsoft SQL Server 2008 Internals | |
Coelho et al. | Loom: A closed-box disaggregated database system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150513 |