CN102330774A - Air spring with stiffness adjusted by filler and pressure and step-pressure buffer - Google Patents
Air spring with stiffness adjusted by filler and pressure and step-pressure buffer Download PDFInfo
- Publication number
- CN102330774A CN102330774A CN201110199067A CN201110199067A CN102330774A CN 102330774 A CN102330774 A CN 102330774A CN 201110199067 A CN201110199067 A CN 201110199067A CN 201110199067 A CN201110199067 A CN 201110199067A CN 102330774 A CN102330774 A CN 102330774A
- Authority
- CN
- China
- Prior art keywords
- air
- spring
- pressure
- rigidity
- pneumatic spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
The invention relates to an air spring with stiffness adjusted by filler and pressure and step-pressure buffer. The air spring is of the utmost importance to enhance the smoothness and the comfort of a vehicle, protect roads and freight and limit overfreight. For the type-matching of the static stiffness of the air spring, people neglect that the static stiffness adjustment is needed because difference exists between stiffness of a selectable standard series airbag and required stiffness of a particular vehicle. Difficulty in the dynamic stiffness adjustment of the air spring is frequently resulted from the mismatch of the static stiffness for the airbag. In a passive type air suspension system, the mismatch of the static stiffness of the airbag is the important reason which results in severe lateral motion in vehicle operation. The traditional dynamic stiffness adjustment is realized by connecting a primary air chamber with a secondary air chamber, and adjusting a throttling port on a passage between the primary air chamber and the secondary air chamber to change the pressure difference when air flows between the primary air chamber and the secondary air chamber. The stiffness adjustment system does not change the volume of the air chambers in an adjustment process, thus the difficulty for adjust the stiffness is big. Aiming at the problems, the invention develops the novel air spring. The air spring provided by the invention has the advantages of adjustability for static/dynamic stiffness, simple structure, low cost and convenience and practicality.
Description
One. technical field:
The present invention relates to a kind of vehicle air suspension and use pneumatic spring; This quiet rigidity filling adjusting and dynamic stiffness self adaption pressure reduction and volume combination are regulated the pneumatic spring that adds the step pressure buffer and especially are adapted to the carrying big bus; The city bus big bus; Also be adapted to shipping truck and rail traffic vehicles, and special vehicle and limousine.
One, background technique:
In order to improve ride of vehicle, improve the travelling comfort of taking, alleviate the damage of vehicle to road and goods, developed country has adopted pneumatic spring widely in the suspension system of its carrier vehicle.China recent years is also being widelyd popularize and mandatory employing pneumatic spring.In the pneumatic spring technology of constantly development, in order further to improve the rigidity control characteristic of pneumatic spring, more be applicable to the variation of car load in order to it, people have carried out deep exploration.In the rigidity of pneumatic spring was regulated, people had ignored owing to optional standard series air bag rigidity and the static stiffness that concrete vehicle requires the difference of rigidity to need are regulated.And often because the difficulty that the static stiffness of air bag does not match and caused its dynamic rate to regulate.In the passive type airsuspension system then the static stiffness of air bag not match be to cause the serious major reason of side-sway in the vehicle operating.In the active air suspension system; At present the technology of comparative maturity is that air chamber with pneumatic spring is divided into major and minor air chamber; Pressure reduction when realizing gas flow between the major-minor air chamber through the aperture of controlling the throttle valve on the connecting passage between major and minor air chamber changes, and reaches the rigidity that changes pneumatic spring.The control signal of this rigidity regulating system is by the multiple sensor collection, and deliver and send control command after microprocessor is handled, by the aperture that actuator regulates throttle valve, the rigidity that the pressure reduction when regulating gas flow between the major-minor air chamber is regulated pneumatic spring.Its main deficiency at first is: the signal of system is comparatively numerous and diverse to carrying out from collecting treatment, and its cost is too high, can only be applied on the luxurious vehicle of only a few.Secondly, the response time lag is big.The control of rigidity segmented is generally adopted in control in the rigidity of the airsuspension system air spring of semi-active suspension, with the rigidity of pneumatic spring be divided into soft, hard two retainings or soft, in, hard three retainings.The air spring rigidity control of this rigidity regulating system is to select control through the driver's operation solenoid valve, and the restriction aperture is large, medium and small between corresponding respectively connection major-minor air chamber.The adjusting of this rigidity is not continuous.The rigidity of pneumatic spring is artificial the selection.
Two, summary of the invention:
The object of the invention will be developed a kind of low cost exactly, and the quiet rigidity of pneumatic spring simple and reliable, responding fast is filled adjusting and dynamic stiffness self adaption pressure reduction and volume combination and regulated the pneumatic spring that adds the step pressure buffer.
Solution of the present invention is: this pneumatic spring is combined by air bag 1, upper mounting plate 2, accessory air-space 3, throttling valve core 4, spring 5, lower installation board 6, screw plug 7, two one-way valves 8 and packing 9.Accessory air-space 3 is fixed on the inner plane of lower installation board 6; Throttling valve core 4 is contained in the middle endoporus of accessory air-space 3, and its upper end heads on the middle endoporus top board of accessory air-space 3, and the location is supported by spring 5 in the lower end; The bottom of spring 5 has an aperture and atmosphere by screw plug 7 location in the middle of the screw plug 7; Two one-way valves 8 are installed in respectively on the outer side wall of two sub-air chamber of accessory air-space 3, and are communicated with by the spring chamber of the aperture on the sidewall with one-way valve 8; The quiet rigidity of pneumatic spring is regulated: when pneumatic spring is assembled; Before upper mounting plate 2 is installed; In air bag 1, insert the packing 9 of confirming volume via calculating, packing 9 is the bulk granular thing, also larger-size solid or the very big flowable mass of viscosity.The packing of inserting 9 has occupied the volume in the air bag 1, has reduced the gas actual volume in the air bag 1, has improved the quiet rigidity of pneumatic spring; Otherwise, take out the partially filled thing of having inserted 9 by upper mounting plate 2, just reduced the quiet rigidity of pneumatic spring; The dynamic stiffness of pneumatic spring is regulated: the air pressure in the air bag 1 directly acts on the upper-end surface of throttling valve core 4; Its lower end is by spring 5 axially support; When vehicle is in unloaded and setting height; Air-spring bellows 1 inner air pressure multiply by the thrust that sectional area produced of throttling valve core 4 and the spring force balance of spring 5, and the restriction of throttling valve core 4 is communicated with the throttle orifice of two independent air chambers of accessory air-space 3 and is in maximum open, and the dynamic stiffness of pneumatic spring is minimum; When the load and the dynamic load increase of vehicle, air bag 1 inner air pressure rises, and acts on the thrust that is produced on the upper-end surface of throttling valve core 4 and increases; The spring force that promotion throttling valve core 4 overcomes spring 5 moves down; Reach new balance, throttling valve core 4 moves down the restriction on the connecting passage that has turned down 3 of air bag 1 and accessory air-spaces, in the switching stroke section of this restriction; Through improving the gas flow pressure reduction of 3 of air bag 1 and accessory air-spaces, realized the rigidity of continuous adjusting pneumatic spring; Pressure in air bag 1 continues to improve, and promotes throttling valve core 4 and continues to move down, and will close accessory air-space 3 uppermost first sub-air chamber; Only having stayed second sub-air chamber links to each other with air bag 1; In the continuous rigidity adjustment of pneumatic spring, the volume that has reduced pneumatic spring on the physical significance has been realized the air spring rigidity combination adjusting that pressure reduction and volume are combined; The rigidity of pneumatic spring is increased, adapt to corresponding load.When the load of vehicle further increases, then automatically second sub-air chamber of accessory air-space 3 is repeated the adjustment process of above-mentioned first sub-air chamber.When vehicle turns round, because action of inertia leans on air bag 1 inner air pressure of the pneumatic spring in the bend outside to rise; Equally; Restriction on the connecting passage that meeting pass ballonet 1 and accessory air-space are 3 increases the dynamic stiffness of pneumatic spring, thereby has stoped the further inclination of vehicle body; When the vehicle jack rabbit start or when bringing to a halt; If the rigidity of pneumatic spring does not increase thereupon; Same because action of inertia can make vehicle body produce the layback and the phenomenon that leans forward, the present invention has when vehicle body generation layback equally and leans forward when taking place; Improve the function of the dynamic stiffness of back, preceding pneumatic spring, suppress the aggravation of this phenomenon effectively.When wheel is run into the road surface projection, impact for step of wheel, the air pressure that will inevitably cause in the air bag 1 produces step.The pressure reduction that each sub-air chamber's internal air pressure of this step pressure and accessory air-space 3 forms can be opened one-way valve 8; Each sub-air chamber of rapid communicated air bags 1 and accessory air-space 3; Increased the available gas volume in the air bag 1, reduced the rigidity of pneumatic spring, reduced of the impact of road surface projection vehicle body; Improve occupant's the travelling comfort and the smoothness of vehicle.
Control signal of the present invention is directly taken from the gas pressure in the air bag 1, and control signal and regulating command are integrated, and effect rapidly, does not reliably have the response time lag, and the dynamic stiffness regulating power of pneumatic spring greatly improves; After having guaranteed the low vibration frequency characteristic of pneumatic spring, through the load-deflection curve that sub-air chamber that not isometric sub-air chamber and number do not wait can improve pneumatic spring effectively is set.Because control signal and regulating command are integrated, need not to have again the acquisition processing system and the actuator of signal, need not ECU and control software, cost greatly descends; Owing to control command of the present invention is the pressure of gas in the air bag 1, the dynamic stiffness of pneumatic spring is regulated with the variation in pressure of gas in the air bag 1 automatically, regulates smooth and easy continuous.The adjusting load-deflection curve of pneumatic spring is more reasonable and controlled.
The present invention also can be designed to the one-level restriction pattern of throttle valve the two-step serial restriction pattern of one-level fixed restriction and one-level variable restrictor: promptly at the circular groove that the throttle orifice equal diameters on the inner hole wall in the middle of an axial length and the sub-air chamber 3 is set on the cylindrical of throttling valve core 4; This circular groove is communicated with by the endoporus of radial hole with throttling valve core 4; Through reducing the diameter of the radially throttle orifice on the throttling valve core 4, it is designed to the one-level fixed throttle port; And the restriction on the inner hole wall is exactly original settable orifice in the middle of circular groove on throttling valve core 4 cylindricals and the sub-air chamber 3; The orifice size of different just this restrictions is a little big a little.The pressure drop that this polyphone throttling pattern has been shared the one-level restriction by the two-step throttle mouth helps reducing the susceptibility of restriction to variation in pressure, improves the occupant and gets travelling comfort; Help reducing the processing and the installation precision of throttle valve, save cost.
Four, description of drawings:
Accompanying drawing 1 is a structure principle chart of the present invention.
Five, embodiment:
Embodiment of the present invention is: the quiet rigidity of pneumatic spring is regulated: when pneumatic spring is assembled; Before upper mounting plate 2 is installed; In air bag 1, insert the packing 9 of confirming volume via calculating; The packing of inserting 9 has occupied the volume in the air bag 1, has reduced the gas actual volume in the air bag 1, has improved the quiet rigidity of pneumatic spring; Otherwise, take out the partially filled thing of having inserted 9 by upper mounting plate 2, just reduced the quiet rigidity of pneumatic spring; The dynamic stiffness of pneumatic spring is regulated: the air pressure in the air bag 1 directly acts on the upper-end surface of throttling valve core 4; Its lower end is by spring 5 axially support; When vehicle is in unloaded and setting height; Air pressure in the air-spring bellows 1 multiply by the thrust that sectional area produced of throttling valve core 4 and the spring force balance of spring 5, the restriction of throttling valve core 4 and accessory air-space 3 two independently air chamber be communicated with and be in maximum open, the dynamic stiffness of pneumatic spring is a minimum; When the load and the dynamic load increase of vehicle, air bag 1 inner air pressure rises, and acts on the thrust that is produced on the upper-end surface of throttling valve core 4 and increases; The spring force that promotion throttling valve core 4 overcomes spring 5 moves down; Reach new balance, throttling valve core 4 moves down the restriction on the connecting passage that has turned down 3 of air bag 1 and accessory air-spaces, in the switching stroke section of this restriction; Through improving the gas flow pressure reduction of 3 of air bag 1 and accessory air-spaces, realized the dynamic stiffness of continuous adjusting pneumatic spring; Pressure in air bag 1 continues to improve, and promotes throttling valve core 4 and continues to move down, and will close accessory air-space 3 uppermost first sub-air chamber; Only having stayed second sub-air chamber links to each other with air bag 1; In the continuous rigidity adjustment of pneumatic spring, the volume that has reduced pneumatic spring on the physical significance has been realized the air spring rigidity combination adjusting that pressure reduction and volume are combined; The dynamic stiffness of pneumatic spring is increased, adapt to corresponding dynamic load.When the load of vehicle further increases, then automatically second sub-air chamber of accessory air-space 3 is repeated the adjustment process of above-mentioned first sub-air chamber.When vehicle turns round, because action of inertia leans on air bag 1 inner air pressure of the pneumatic spring in the bend outside to rise; Equally; Restriction on the connecting passage that meeting pass ballonet 1 and accessory air-space are 3 increases the dynamic stiffness of pneumatic spring, thereby has stoped the further inclination of vehicle body; When the vehicle jack rabbit start or when bringing to a halt; If the dynamic stiffness of pneumatic spring does not increase thereupon; Same because action of inertia can make vehicle body produce the layback and the phenomenon that leans forward, the present invention has when vehicle body generation layback equally and leans forward when taking place; Improve the function of the dynamic stiffness of back, preceding pneumatic spring, suppress the aggravation of this phenomenon effectively.
When wheel is run into the road surface projection, impact for step of wheel, the air pressure that will inevitably cause in the air bag 1 produces step.The pressure reduction that each sub-air chamber's internal air pressure of this step pressure and accessory air-space 3 forms can be opened one-way valve 8; Each sub-air chamber of rapid communicated air bags 1 and accessory air-space 3; Increased the available gas volume in the air bag 1; Reduce the rigidity of pneumatic spring, reduce of the impact of road surface projection, improve occupant's the travelling comfort and the smoothness of vehicle vehicle body.
Claims (6)
1. filling and pressure transfer rigidity to add the pneumatic spring of step pressure buffer, by air bag (1), and upper mounting plate (2), accessory air-space (3), throttling valve core (4), spring (5), lower installation board (6), screw plug (7), two one-way valves 8 and packing (9) combine; It is characterized in that: accessory air-space (3) is fixed on the inner plane of lower installation board (6); Throttling valve core (4) is contained in the middle endoporus of accessory air-space (3); Its upper end heads on the middle endoporus top board of accessory air-space (3); The location is supported by spring (5) in the lower end, and the bottom of spring (5) has an aperture and atmosphere by screw plug (7) location in the middle of the screw plug (7); Two one-way valves (8) are installed in respectively on the sidewall of two sub-air chamber of accessory air-space (3), and are communicated with by the spring chamber of the aperture on the sidewall with one-way valve (8); The quiet rigidity of pneumatic spring is regulated: when pneumatic spring is assembled; Before upper mounting plate (2) is installed; In air bag (1), insert the packing (9) of confirming volume via calculating; The packing of inserting (9) has occupied the volume in the air bag (1), has reduced the gas actual volume in the air bag (1), has improved the quiet rigidity of pneumatic spring; Otherwise, take out the partially filled thing of having inserted (9) by upper mounting plate (2), just reduced the quiet rigidity of pneumatic spring; The dynamic stiffness of pneumatic spring is regulated: when vehicle is in unloaded and setting height; Air bag (1) inner air pressure multiply by the thrust that sectional area produced of throttling valve core (4) and the spring force balance of spring (5); The restriction of throttling valve core (4) is communicated with the throttle orifice of two independent air chambers of accessory air-space (3) and is in maximum open, and the dynamic stiffness of pneumatic spring is minimum; Load and dynamic load increase when vehicle; Air bag (1) inner air pressure rises; Act on the thrust that is produced on the upper-end surface of throttling valve core (4) and increase, the spring force that promotion throttling valve core (4) overcomes spring (5) moves down, and reaches new balance; Throttling valve core (4) moves down the restriction on the connecting passage that has turned down between air bag (1) and accessory air-space (3); In the switching stroke section of this restriction,, realized the rigidity of continuous adjusting pneumatic spring through improving the gas flow pressure reduction between air bag (1) and accessory air-space (3); Pressure in air bag (1) continues to improve; Promoting throttling valve core (4) continues to move down; Will close uppermost first sub-air chamber of accessory air-space (3), only stay second sub-air chamber and linked to each other, realize the air spring rigidity combination adjusting that pressure reduction and volume are combined with air bag (1); The rigidity of pneumatic spring is increased, adapt to corresponding load; When the load of vehicle further increases, then automatically second sub-air chamber of accessory air-space (3) is repeated the adjustment process of above-mentioned first sub-air chamber; When wheel is run into the road surface projection; The air pressure that must cause in the air bag (1) produces step; The pressure reduction that each sub-air chamber's internal air pressure of this step pressure and accessory air-space (3) forms can be opened one-way valve (8), and each sub-air chamber of communicated air bags (1) and accessory air-space (3) has increased the available gas volume in the air bag (1) rapidly; Reduce the rigidity of pneumatic spring, reduce of the impact of road surface projection vehicle body.
2. a kind of filling according to claim 1 and pressure transfer rigidity to add the pneumatic spring of step pressure buffer, it is characterized in that: the volume of the independent sub-air chamber of accessory air-space (3) can change according to the different demands of different automobile types to its air spring rigidity change curve with number.
3. a kind of filling according to claim 1 and pressure transfer rigidity to add the pneumatic spring of step pressure buffer, and it is characterized in that: packing is larger-size solid matter or bulk granular thing.
4. a kind of filling according to claim 1 and pressure transfer rigidity to add the pneumatic spring of step pressure buffer, and it is characterized in that: packing is the very big flowable mass of viscosity.
5. a kind of filling according to claim 1 and pressure transfer rigidity to add the pneumatic spring of step pressure buffer, and it is characterized in that: the one-level restriction pattern of throttle valve is designed to the two-step serial restriction pattern of one-level fixed restriction and one-level variable restrictor.
6. a kind of filling according to claim 1 and pressure transfer rigidity to add the pneumatic spring of step pressure buffer; It is characterized in that: with accessory air-space (3); Throttling valve core (4); Spring (5), screw plug (7) are fixed on the upper mounting plate (2), and one-way valve (8) still is installed on original position of accessory air-space (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110199067A CN102330774A (en) | 2011-07-17 | 2011-07-17 | Air spring with stiffness adjusted by filler and pressure and step-pressure buffer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110199067A CN102330774A (en) | 2011-07-17 | 2011-07-17 | Air spring with stiffness adjusted by filler and pressure and step-pressure buffer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102330774A true CN102330774A (en) | 2012-01-25 |
Family
ID=45482667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110199067A Pending CN102330774A (en) | 2011-07-17 | 2011-07-17 | Air spring with stiffness adjusted by filler and pressure and step-pressure buffer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102330774A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108528163A (en) * | 2018-06-19 | 2018-09-14 | 四川立地车辆底盘科技有限公司 | Automotive suspension double-capsule variation rigidity gas spring |
CN108547901A (en) * | 2018-06-19 | 2018-09-18 | 四川立地车辆底盘科技有限公司 | The method of suspension gas spring tune rigidity |
CN108638778A (en) * | 2018-06-19 | 2018-10-12 | 四川立地车辆底盘科技有限公司 | Built-in list capsule suspension gas spring |
CN108790661A (en) * | 2018-06-19 | 2018-11-13 | 四川立地车辆底盘科技有限公司 | Built-in capsule suspension gas spring |
CN109269719A (en) * | 2018-10-25 | 2019-01-25 | 北京航天发射技术研究所 | A kind of gas flow field pressure testing system working band experimental rig and method |
CN113757301A (en) * | 2021-09-27 | 2021-12-07 | 上海保隆汽车科技(安徽)有限公司 | Upper air chamber structure of air spring |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504717A1 (en) * | 1991-03-16 | 1992-09-23 | Continental Aktiengesellschaft | Air spring with an elastomeric air spring bellows |
US5382006A (en) * | 1993-09-29 | 1995-01-17 | The Goodyear Tire & Rubber Company | Airspring piston and airspring assembly |
CN101623994A (en) * | 2008-07-08 | 2010-01-13 | 贺勍 | Novel air spring rigidity adaptive continuous adjustment system |
WO2010006167A2 (en) * | 2008-07-09 | 2010-01-14 | Firestone Industrial Products Company, Llc | Gas spring and gas damper assembly and method |
CN102032309A (en) * | 2010-11-19 | 2011-04-27 | 江苏大学 | volume variable additional air chamber of air spring |
CN202251608U (en) * | 2011-07-17 | 2012-05-30 | 贺劼 | Air spring with filling, pressure regulated stiffness and phase step pressure buffer |
-
2011
- 2011-07-17 CN CN201110199067A patent/CN102330774A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504717A1 (en) * | 1991-03-16 | 1992-09-23 | Continental Aktiengesellschaft | Air spring with an elastomeric air spring bellows |
US5382006A (en) * | 1993-09-29 | 1995-01-17 | The Goodyear Tire & Rubber Company | Airspring piston and airspring assembly |
CN101623994A (en) * | 2008-07-08 | 2010-01-13 | 贺勍 | Novel air spring rigidity adaptive continuous adjustment system |
WO2010006167A2 (en) * | 2008-07-09 | 2010-01-14 | Firestone Industrial Products Company, Llc | Gas spring and gas damper assembly and method |
CN102032309A (en) * | 2010-11-19 | 2011-04-27 | 江苏大学 | volume variable additional air chamber of air spring |
CN202251608U (en) * | 2011-07-17 | 2012-05-30 | 贺劼 | Air spring with filling, pressure regulated stiffness and phase step pressure buffer |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108528163A (en) * | 2018-06-19 | 2018-09-14 | 四川立地车辆底盘科技有限公司 | Automotive suspension double-capsule variation rigidity gas spring |
CN108547901A (en) * | 2018-06-19 | 2018-09-18 | 四川立地车辆底盘科技有限公司 | The method of suspension gas spring tune rigidity |
CN108638778A (en) * | 2018-06-19 | 2018-10-12 | 四川立地车辆底盘科技有限公司 | Built-in list capsule suspension gas spring |
CN108790661A (en) * | 2018-06-19 | 2018-11-13 | 四川立地车辆底盘科技有限公司 | Built-in capsule suspension gas spring |
CN108528163B (en) * | 2018-06-19 | 2019-12-13 | 四川立地车辆底盘科技有限公司 | Automobile suspension double-capsule variable-stiffness gas spring |
CN108790661B (en) * | 2018-06-19 | 2019-12-13 | 四川立地车辆底盘科技有限公司 | Built-in capsule suspension gas spring |
CN108638778B (en) * | 2018-06-19 | 2020-01-10 | 四川立地车辆底盘科技有限公司 | Built-in single capsule suspension gas spring |
CN109269719A (en) * | 2018-10-25 | 2019-01-25 | 北京航天发射技术研究所 | A kind of gas flow field pressure testing system working band experimental rig and method |
CN109269719B (en) * | 2018-10-25 | 2020-11-10 | 北京航天发射技术研究所 | Gas flow field pressure test system working frequency band test device and method |
CN113757301A (en) * | 2021-09-27 | 2021-12-07 | 上海保隆汽车科技(安徽)有限公司 | Upper air chamber structure of air spring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202158128U (en) | Air spring with rigidity adjusted by volume and pressure and having phase step pressure buffering | |
CN102330774A (en) | Air spring with stiffness adjusted by filler and pressure and step-pressure buffer | |
CN101623994A (en) | Novel air spring rigidity adaptive continuous adjustment system | |
CN101628533A (en) | Damper for air suspension and self-adaptive damping adjustment method thereof | |
CN101725658A (en) | Dead load, dynamic pulse and stretching speed self-adaptive resistance variation method and damper | |
CN202251608U (en) | Air spring with filling, pressure regulated stiffness and phase step pressure buffer | |
CN202251606U (en) | Pressurizing, pressure-limiting and impact-reducing air spring for charging and pressure adjusting static and dynamic stiffness | |
CN102774250A (en) | Adaptive differential pressure and volumetric combined adjustment system for rigidity of air spring | |
CN102330776A (en) | Air spring with function of regulating rigidity according to volume and pressure and buffering step pressure | |
CN102384203A (en) | Air spring for regulating static and dynamic stiffness by charging liquid and pressure as well as limiting pressure and reducing impact | |
CN202641299U (en) | Air spring capable of adjusting static and dynamic stiffness through capacity occupancy and pressure difference | |
CN102287471A (en) | Dynamic stiffness adjusting air spring capable of adapting to pressure-volume combination | |
CN102401059A (en) | Air spring with static stiffness adjusted by filling and dynamic stiffness adjusted by self-adaption | |
CN102330775A (en) | Air spring with function of regulating dynamic rigidity according to adaptive pressure and buffering step pressure | |
CN102401071A (en) | Air spring with static stiffness adjusted according to volume and dynamic stiffness adjusted along with displacement | |
CN202641300U (en) | Air spring with static stiffness adjusted by filler and dynamic stiffness adjusted through pressure difference | |
CN202170951U (en) | Air spring with volume and displacement adjustable static/dynamic stiffness and limited pressure buffering | |
CN102392867A (en) | Air spring adjusting static stiffness and dynamic stiffness through volume and displacement and having pressure-limiting and impact-reducing functions | |
CN202251607U (en) | Air spring capable of adjusting dynamic stiffness by self-adaptive pressure and step pressure buffering | |
CN202301701U (en) | Air spring with static stiffness adjusted by filling liquid and dynamic stiffness adjusted by diaphragm throttling hole | |
CN102401074A (en) | Air spring for adjusting dynamic stiffness along with displacement of air bag | |
CN202326876U (en) | Air spring for adjusting dynamic stiffness by combining self-adaptive pressure and volume | |
CN102330784A (en) | Air spring for static and dynamic rigidity adjustment by filling liquid and displacement and pressure limit impact reduction | |
CN202176654U (en) | Air spring for charging liquid, displacement adjusting static and dynamic stiffness and limiting pressure and absorbing shock | |
CN102401070A (en) | Air spring with static stiffness adjusted through volume and dynamic stiffness adjusted adaptively |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120125 |