Nothing Special   »   [go: up one dir, main page]

CN102325345B - A container logistics tracking and positioning method based on tag sensor network - Google Patents

A container logistics tracking and positioning method based on tag sensor network Download PDF

Info

Publication number
CN102325345B
CN102325345B CN2011101571872A CN201110157187A CN102325345B CN 102325345 B CN102325345 B CN 102325345B CN 2011101571872 A CN2011101571872 A CN 2011101571872A CN 201110157187 A CN201110157187 A CN 201110157187A CN 102325345 B CN102325345 B CN 102325345B
Authority
CN
China
Prior art keywords
node
container
area
data packet
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011101571872A
Other languages
Chinese (zh)
Other versions
CN102325345A (en
Inventor
黄海平
戴庭
王汝传
梁彪
孙力娟
沙超
赵强
肖甫
窦轶
徐佳
蒋凌云
谭志刚
郭剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Intellitrains Co ltd
Nanjing University of Posts and Telecommunications
Original Assignee
NANJING SAMPLE TECHNOLOGY GROUP Co Ltd
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING SAMPLE TECHNOLOGY GROUP Co Ltd, Nanjing Post and Telecommunication University filed Critical NANJING SAMPLE TECHNOLOGY GROUP Co Ltd
Priority to CN2011101571872A priority Critical patent/CN102325345B/en
Publication of CN102325345A publication Critical patent/CN102325345A/en
Application granted granted Critical
Publication of CN102325345B publication Critical patent/CN102325345B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The traditional RFID (Radio Frequency Identification)-based logistic management method cannot satisfy the requirements on arranging and positioning of containers, interior environment monitoring of the containers, cargo safety and the like. Specific to the problems of low RFID data transmission amount and limited RFID communication capacity, the invention provides a container logistic tracking and positioning method based on a tag sensor network, and the method can be used for expanding an RFID communication range and simultaneously learning interior environment information and location information of the containers in real time; by connecting RFID as well as a WSM (Watchguard System Manager) and a Wi-Fi (Wireless Fidelity) network, a novel W-KNN (Weighted k-Nearest Neighbor) positioning algorithm based on neighbor weight attributes is provided to realize logistic tracking and positioning; meanwhile, a specific technical scheme and step flows are designed and are obviously different from the traditional container positioning and tracking method. The container logistic tracking and positioning method has beneficial effects in the aspects of communication range, data transmission, accurate positioning and the like.

Description

一种基于标签传感网的集装箱物流跟踪与定位方法A container logistics tracking and positioning method based on tag sensor network

技术领域 technical field

本发明是RFSN(Radio Frequency Sensor Network,标签传感网)中集装箱物流跟踪与定位的一种新型方法,属于物联网、RFID(Radio Frequency Identification,无线射频识别)、WSN(Wireless Sensor Network,无线传感器网络)技术的交叉领域。The present invention is a new method for container logistics tracking and positioning in RFSN (Radio Frequency Sensor Network, label sensor network), which belongs to Internet of Things, RFID (Radio Frequency Identification, radio frequency identification), WSN (Wireless Sensor Network, wireless sensor Internet) technology intersection.

背景技术 Background technique

数字化物流管理需要实现对集装箱的快速识别、快速定位和集装箱信息的智能化监测,可以实时监测货物的储藏环境、位置信息,从而节约运营成本与损耗。Digital logistics management needs to realize the rapid identification and positioning of containers and the intelligent monitoring of container information. It can monitor the storage environment and location information of goods in real time, thereby saving operating costs and losses.

目前,RFID技术主要用于录入集装箱货物的信息,一般包括货物的种类、数量、装卸时间、以及装货地点和卸货目的地等信息;对于船舶上的集装箱安置,集装箱定位以及集装箱的内部环境监测,货物安全等方面不能满足要求。WSN系统能实现节点环境监测、定位,却不能全面的反应系统信息。将二者结合起来,实现优势互补,从而大大提高物流跟踪与定位的效率。At present, RFID technology is mainly used to enter the information of container goods, generally including the type, quantity, loading and unloading time of goods, as well as information such as loading location and unloading destination; for container placement on ships, container positioning and internal environment monitoring of containers , Cargo safety and other aspects cannot meet the requirements. The WSN system can realize node environment monitoring and positioning, but it cannot fully reflect system information. Combine the two to achieve complementary advantages, thereby greatly improving the efficiency of logistics tracking and positioning.

将WSN和RFID的技术结合,形成功能更强的无线网络,需要设计一个合适的网络体系结构。由于存在WSN和RFID通信频段不一致,通信协议不同,所传输的数据量小,标签传输内部信息而传感器搜集外部信息,标签节点能量、通信能力有限等限制条件,需要对WSN网络和RFID网络结合的方案和技术进行分析研究。Combining WSN and RFID technologies to form a wireless network with stronger functions requires designing an appropriate network architecture. Due to the inconsistency of WSN and RFID communication frequency bands, different communication protocols, the amount of transmitted data is small, the tag transmits internal information while the sensor collects external information, and the energy and communication capabilities of tag nodes are limited. It is necessary to combine WSN and RFID networks Plans and techniques for analysis and research.

在本方法中采用智能网关可以有效屏蔽物理上直接通信的困难,RFID网络内部的通信与WSN的通信相互独立,各个网络中可以运行各自的网络协议,当两种网络中的节点需要通信时,则通过网关节点,与某个节点进行通信。In this method, the intelligent gateway can effectively shield the difficulty of direct physical communication. The communication inside the RFID network and the WSN communication are independent of each other. Each network can run its own network protocol. When the nodes in the two networks need to communicate, Then communicate with a node through the gateway node.

传统三角定位方法存在维度冗余,如果直接计算距离将会造成较大的偏差。这种维度冗余主要产生于锚节点之间的相对位置关系。当两个锚节点的空间距离较近(如图5(a))时,对这两个锚节点的RSSI(Received Signal Strength Indication,接收信号强度指示)的观测值将具有很高的正相关性。考虑两个锚节点完全重合的极端情况,则从任意位置测量这两个锚节点的RSSI值都将相等,即它们的RSSI值是完全正相关的。当两个锚节点处于测试区域的两侧(如图5(b))时,对这两个锚节点的RSSI的观测值将具有很高的负相关性。如果两个锚节点处于相反方向的无穷远处,则这两个锚节点的RSSI的观测值将是完全负相关的。所以,针对这一问题,本发明基于标签传感网,提出了一种新型的W-KNN(Weighted k-NearestNeighbor,属性加权k近邻定位算法)定位算法。The traditional triangulation method has dimensional redundancy, and if the distance is directly calculated, it will cause a large deviation. This dimensional redundancy mainly arises from the relative positional relationship between anchor nodes. When the spatial distance between two anchor nodes is relatively close (as shown in Figure 5(a)), the observed values of RSSI (Received Signal Strength Indication, Received Signal Strength Indication) of the two anchor nodes will have a high positive correlation . Considering the extreme case where two anchor nodes are completely coincident, the RSSI values of the two anchor nodes measured from any position will be equal, that is, their RSSI values are completely positively correlated. When the two anchor nodes are on both sides of the test area (as shown in Figure 5(b)), the observed values of the RSSI of the two anchor nodes will have a high negative correlation. If two anchor nodes are at infinity in opposite directions, the observed values of the RSSI of the two anchor nodes will be completely negatively correlated. Therefore, in response to this problem, the present invention proposes a novel W-KNN (Weighted k-Nearest Neighbor, attribute weighted k-nearest neighbor positioning algorithm) positioning algorithm based on the tag sensor network.

发明内容 Contents of the invention

技术问题:本发明的目的主要是针对集装箱物流管理,提出一种新型的基于标签传感网(RFSN,Radio Frequency Sensor Networks)的跟踪与定位方法,其中定位算法采用了W-KNN算法。Technical problem: the purpose of the present invention is mainly aimed at container logistics management, proposes a kind of tracking and location method based on tag sensor network (RFSN, Radio Frequency Sensor Networks), wherein location algorithm adopts W-KNN algorithm.

技术方案:首先给出几个定义:Technical solution: First, several definitions are given:

基于Wi-Fi的RFSN网络:(Wi-Fi-RFSN,Wireless Fidelity Radio FrequencySensor Networks),利用Wi-Fi网络实现全部RFID读写器之间的相互通信,再通过Wi-Fi-WSN网关,实现RFID网络与WSN网络之间的通信。Wi-Fi-based RFSN network: (Wi-Fi-RFSN, Wireless Fidelity Radio FrequencySensor Networks), using the Wi-Fi network to achieve mutual communication between all RFID readers, and then through the Wi-Fi-WSN gateway to realize RFID Communication between the network and the WSN network.

Wi-Fi-WSN网关:包含无线网卡、WSN无线收发器、数据处理单元,用于连接Wi-Fi网络和WSN网络,实现两网相互通信的网络设备。Wi-Fi-WSN gateway: It includes a wireless network card, a WSN wireless transceiver, and a data processing unit, which are used to connect the Wi-Fi network and the WSN network, and realize the communication between the two networks.

Wi-Fi-RFID读写器:在传统的RFID读写器上增加了无线网卡功能模块,通过无线接入点(AP),实现了相互之间的通信,以下简称RFID读写器或读写器。Wi-Fi-RFID reader: add a wireless network card function module to the traditional RFID reader, and realize mutual communication through a wireless access point (AP), hereinafter referred to as RFID reader or reader device.

监控中心:负责实时地监控采集船上的所有AP、传感器节点、RFID读写器、RFID标签等信息,并向总控中心汇报。Monitoring Center: Responsible for real-time monitoring and collection of all APs, sensor nodes, RFID readers, RFID tags and other information on the ship, and report to the master control center.

W-KNN(Weighted k-Nearest Neighbor)定位算法:属性加权k近邻定位算法,是一种面向集装箱定位的分类算法。对测试区域内的所有锚节点计算相关系数,由相关系数计算每个锚节点(分布在整个船舶空间)的权值,最后使用加权距离平方和来表示两个节点之间的欧式距离。W-KNN (Weighted k-Nearest Neighbor) positioning algorithm: attribute-weighted k-nearest neighbor positioning algorithm, which is a classification algorithm for container positioning. Calculate the correlation coefficient for all anchor nodes in the test area, calculate the weight of each anchor node (distributed in the entire ship space) by the correlation coefficient, and finally use the sum of weighted distance squares to represent the Euclidean distance between two nodes.

定位节点:固定在船舶上,空间位置已知,以定位节点为参考点,根据W-KNN定位算法计算它与集装箱传感节点的相对距离后,得到传感节点的空间坐标值,完成定位。Positioning node: fixed on the ship, the spatial position is known, with the positioning node as the reference point, after calculating the relative distance between it and the container sensing node according to the W-KNN positioning algorithm, the spatial coordinate value of the sensing node is obtained, and the positioning is completed.

WSN分簇方法:WSN基站节点遍历邻居列表,选择能量值高、响应时间短的邻居节点为第一层簇头节点,建立第一层分簇;第一层簇头遍历邻居列表,选择能量值高、响应时间短的某几个邻居节点为中继节点;中继节点遍历邻居列表,选择能量值高、响应时间短的邻居节点为第二层簇头节点,建立第二层分簇;重复上述步骤,完成WSN全网分簇过程的建立。WSN clustering method: WSN base station nodes traverse the neighbor list, select the neighbor node with high energy value and short response time as the first layer cluster head node, and establish the first layer clustering; the first layer cluster head traverses the neighbor list, selects the energy value Some neighbor nodes with high energy value and short response time are relay nodes; the relay node traverses the neighbor list, selects the neighbor nodes with high energy value and short response time as the second layer cluster head nodes, and establishes the second layer clustering; repeat The above steps complete the establishment of the whole WSN network clustering process.

Wi-Fi-RFSN数据包格式:如图6所示,包含数据包首部和数据内容两部分;其中,数据包首部长96比特(12字节),包含8比特的消息类型,8比特的总长度,16比特的区域ID,16比特的消息归宿,16比特的消息本源,16比特的目的地址,16比特的源地址,以下所说的数据包均按照该格式。Wi-Fi-RFSN data packet format: as shown in Figure 6, it includes two parts: data packet header and data content; among them, the data packet header is 96 bits long (12 bytes), including 8-bit message type, 8-bit total Length, 16-bit area ID, 16-bit message destination, 16-bit message source, 16-bit destination address, 16-bit source address, the data packets mentioned below follow this format.

消息类型:本方法中共有9种不同的数据包消息,每种消息名称及其对应的字段值,如表1所示。Message type: There are 9 different data packet messages in this method, each message name and its corresponding field value, as shown in Table 1.

总长度:总长度指首部和数据内容之和的长度,单位为字节。总长度字段为8比特,因此数据包的最大长度为256字节。Total length: The total length refers to the length of the sum of the header and data content, and the unit is byte. The total length field is 8 bits, so the maximum length of the packet is 256 bytes.

区域ID:由于每个区域含有唯一一个定位节点,所以区域ID即可用该区域定位节点ID表示。Area ID: Since each area contains only one positioning node, the area ID can be represented by the area positioning node ID.

消息归宿:数据包的传送需要经过多跳路由转发,所以,需要注明消息归宿,即表示最终需要接收数据包的对象。Message destination: The transmission of data packets needs to be forwarded through multi-hop routes, so the message destination needs to be indicated, that is, the object that needs to receive the data packet in the end.

消息本源:表示最开始发送数据包的对象。Source of the message: indicates the object that originally sent the data packet.

目的地址:A、B两方直接通信,不需要经过中途路由转发,A发送一个数据包给B,则B的地址成为目的地址。Destination address: A and B communicate directly without going through intermediate routing and forwarding. When A sends a data packet to B, the address of B becomes the destination address.

源地址:A的地址成为源地址。Source address: A's address becomes the source address.

(注:目的地址和源地址可以是监控中心的ID、网关的ID、无线AP的ID、RFID读写器的ID、RFID标签的ID、WSN基站的ID、锚节点的ID、定位节点的ID、集装箱传感节点的ID等等。)(Note: The destination address and source address can be the ID of the monitoring center, the ID of the gateway, the ID of the wireless AP, the ID of the RFID reader, the ID of the RFID tag, the ID of the WSN base station, the ID of the anchor node, and the ID of the positioning node , the ID of the container sensor node, etc.)

本发明利用RFSN网络来实现集装箱内标签信息读取、传感器节点信息采集、集装箱定位等功能。在此之前,需要对RFSN进行初始化。The invention utilizes the RFSN network to realize functions such as reading label information in the container, collecting sensor node information, and positioning the container. Before that, RFSN needs to be initialized.

网络部署之前,每条船上有一个监控中心、一个Wi-Fi-WSN网关、多个AP、多个Wi-Fi-RFID读写器、一些排放整齐的集装箱。每个集装箱内都贴有一个标明身份的RFID标签、安装一个标明身份的传感器节点,两者身份标识一样。每个标签存储一个身份标识(ID号)、标识集装箱内货物种类、起运地、指运地、批次等信息。每个节点存储一个身份标识(ID号)、能量值、簇头节点(某个节点的ID号,表示该节点属于哪一个簇)、节点类型标识(标识为簇头、中继、普通三者之一)、所属区域。每个节点也含有一个邻居列表,记录邻居节点的ID号、能量值、簇头号和响应时间等信息。Before network deployment, each ship has a monitoring center, a Wi-Fi-WSN gateway, multiple APs, multiple Wi-Fi-RFID readers, and some neatly arranged containers. Each container is affixed with an ID-marked RFID tag and installed with an ID-marked sensor node, both of which have the same identity. Each label stores an identity (ID number), identifies the type of goods in the container, the place of departure, the place of shipment, batch and other information. Each node stores an identity (ID number), energy value, cluster head node (the ID number of a node, indicating which cluster the node belongs to), node type identification (identified as cluster head, relay, common three One), the area to which it belongs. Each node also contains a neighbor list, which records information such as the ID number, energy value, cluster head number and response time of the neighbor node.

配置完以上信息之后,网络开始部署。After the above information is configured, the network deployment starts.

方法流程Method flow

该广播跟踪与定位方法的完整过程将具体描述如下:The complete process of the broadcast tracking and positioning method will be specifically described as follows:

将无线射频识别RFID网络与无线传感器网络WSN通过无线相容认证Wi-Fi网络连接起来,并采用属性加权k近邻定位算法W-KNN实现集装箱的定位,其方法流程可描述如下:The radio frequency identification (RFID) network and the wireless sensor network (WSN) are connected through a wireless compatible certification Wi-Fi network, and the attribute weighted k-nearest neighbor positioning algorithm W-KNN is used to realize the positioning of the container. The method flow can be described as follows:

一、网络的初始化1. Network initialization

步骤1)布置安装监控中心、Wi-Fi-WSN网关、所有的集装箱、RFID标签、传感器节点、Wi-Fi无线接入点AP、Wi-Fi-RFID读写器和锚节点;Step 1) arrange and install monitoring center, Wi-Fi-WSN gateway, all containers, RFID tags, sensor nodes, Wi-Fi wireless access point AP, Wi-Fi-RFID reader-writer and anchor node;

步骤2)此时,所有AP自组成Wi-Fi无线网,所有的传感器节点根据Leach算法自组成WSN网络,基站存储一张功能节点身份标识ID表,存放锚节点和定位节点的ID号,为下面收集位置信息做准备;Step 2) At this point, all APs form a Wi-Fi wireless network, and all sensor nodes form a WSN network according to the Leach algorithm. The base station stores a functional node identity ID table, storing the ID numbers of anchor nodes and positioning nodes, as Prepare for collecting location information below;

步骤3)将整个测试空间按照定位节点的分布划分成m*n个测试区域,每个测试区域都有唯一定位节点,故可用区域定位节点ID代表区域ID,定位节点空间坐标已知,其中m表示层数,每层高度为一个集装箱的高度,n表示每层等分的测试区域数目;Step 3) Divide the entire test space into m*n test areas according to the distribution of positioning nodes, each test area has a unique positioning node, so the available area positioning node ID represents the area ID, and the spatial coordinates of the positioning nodes are known, where m Indicates the number of layers, the height of each layer is the height of a container, and n represents the number of test areas equally divided by each layer;

步骤4)所有的m*n个定位节点广播“区域定位”数据包,其中,消息类型为“区域定位”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为空,消息本源为空,目的地址为(0110101000000000)2=(j0)16,表示接收该数据包的对象为该区域内的所有集装箱传感节点,源地址为该定位节点ID;Step 4) All m*n positioning nodes broadcast the "area positioning" data packet, wherein the message type is "area positioning" and the total length is 12 bytes, indicating that the data packet only contains the header, the data content part is empty, and the area The ID is empty, the destination of the message is empty, the source of the message is empty, and the destination address is (0110101000000000) 2 = (j0) 16 , which means that the objects receiving the data packet are all container sensor nodes in this area, and the source address is the location Node ID;

步骤5)集装箱传感节点收到“区域定位”数据包后,将源地址,即该区域的定位节点ID保存,表示该集装箱传感节点属于该定位节点所在的区域;Step 5) After the container sensing node receives the "area positioning" data packet, it saves the source address, that is, the positioning node ID of the area, indicating that the container sensing node belongs to the area where the positioning node is located;

步骤6)对每个测试区域,进行一次数据训练,即在该区域内以定位节点为测试样本,该样本负责采集此测试区域内的所有锚节点的接收信号强度指示RSSI值,生成“RSSI值响应”数据包,其中,消息类型为“RSSI值响应”,总长度大于12字节,区域ID即为该区域定位节点ID,消息归宿为监控中心ID,消息本源为定位节点ID,数据内容为多组形如“锚节点ID,RSSI值”格式的数据,并把所有的RSSI值传输给该簇内的簇头节点,簇头节点再一步一步上传给基站节点,最后基站节点通过Wi-Fi-WSN网关传送给监控中心;Step 6) For each test area, a data training is carried out, that is, in this area, the positioning node is used as a test sample, and the sample is responsible for collecting the RSSI values of all anchor nodes in this test area to generate "RSSI value Response" data packet, in which the message type is "RSSI value response", the total length is greater than 12 bytes, the area ID is the ID of the positioning node in the area, the destination of the message is the ID of the monitoring center, the source of the message is the ID of the positioning node, and the data content is Multi-group data in the format of "anchor node ID, RSSI value", and transmit all RSSI values to the cluster head node in the cluster, and the cluster head node uploads it to the base station node step by step, and finally the base station node passes Wi-Fi - WSN gateway transmits to the monitoring center;

步骤7)监控中心收到m*n个区域内的多组“RSSI值响应”数据包Mrssi,以每个区域为单位利用W-KNN定位算法来计算相关系数矩阵R,共有m*n个,不妨设区域a内共有k个锚节点,a=1,2,...,m*n,则其对应的相关系数矩阵为

Figure BSA00000515732400051
Figure BSA00000515732400052
为区域a内锚节点i与锚节点j的相关系数,i=1,2,...,ka,j=1,2,...,ka,a=1,2,...,m*n,且 r ij a = Cov ( rssi i a , rssi j a ) D ( rssi i a ) * D ( rssi j a ) = E ( rssi i a * rssi j a ) - E ( rssi i a ) * E ( rssi j a ) E [ ( rssi j a ) 2 ] - [ E ( rssi j a ) ] 2 * E [ ( rssi i a ) 2 - [ E ( rssi j a ) ] 2 , 当i=j时,
Figure BSA00000515732400054
Step 7) The monitoring center receives multiple sets of "RSSI value response" data packets M rssi in m*n areas, and uses the W-KNN positioning algorithm to calculate the correlation coefficient matrix R in units of each area, and there are m*n in total , it may be assumed that there are k anchor nodes in the area a, a=1, 2,..., m*n, then the corresponding correlation coefficient matrix is
Figure BSA00000515732400051
Figure BSA00000515732400052
is the correlation coefficient between anchor node i and anchor node j in area a, i=1, 2,..., k a , j=1, 2,..., k a , a=1, 2,... , m*n, and r ij a = Cov ( rssi i a , rssi j a ) D. ( rssi i a ) * D. ( rssi j a ) = E. ( rssi i a * rssi j a ) - E. ( rssi i a ) * E. ( rssi j a ) E. [ ( rssi j a ) 2 ] - [ E. ( rssi j a ) ] 2 * E. [ ( rssi i a ) 2 - [ E. ( rssi j a ) ] 2 , When i=j,
Figure BSA00000515732400054

其中,

Figure BSA00000515732400055
Figure BSA00000515732400056
分别表示区域a内测试样本对锚节点i与锚节点j的RSSI的观测值,E(X)和D(X)分别表示随机变量X的数学期望和方差,Cov(X,Y)表示随机变量X和Y的协方差;若两个锚节点的可检测范围没有交集即它们从来没有被同时检测到过,或其中至少一个锚节点的RSSI的观测值的方差为0,则定义该锚节点对的相关系数为0;然后,计算区域a内锚节点i的权值为
Figure BSA00000515732400057
其中,
Figure BSA00000515732400058
Figure BSA00000515732400059
表示
Figure BSA000005157324000510
的转置,即
Figure BSA000005157324000511
并且将处理后的数据存储到后台数据库的“区域定位信息数据表”中;in,
Figure BSA00000515732400055
and
Figure BSA00000515732400056
Represent the observed values of the RSSI of the test sample in area a to anchor node i and anchor node j, E(X) and D(X) respectively represent the mathematical expectation and variance of the random variable X, Cov(X, Y) represent the random variable The covariance of X and Y; if the detectable range of two anchor nodes has no intersection, that is, they have never been detected at the same time, or the variance of the RSSI observation value of at least one anchor node is 0, then define the anchor node pair The correlation coefficient of is 0; then, calculate the weight of anchor node i in area a as
Figure BSA00000515732400057
in,
Figure BSA00000515732400058
Figure BSA00000515732400059
express
Figure BSA000005157324000510
the transposition of
Figure BSA000005157324000511
And store the processed data in the "area positioning information data table" of the background database;

二、信息采集过程2. Information collection process

步骤8)监控中心广播“信息采集”数据包,其中,消息类型为“信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为空,消息本源为监控中心ID,目的地址全0,表示接收该数据包的对象为Wi-Fi-RFSN全网内的所有接收装置,源地址为监控中心ID;Step 8) The monitoring center broadcasts the "information collection" data packet, wherein the message type is "information collection" and the total length is 12 bytes, indicating that the data packet only contains the header, the data content part is empty, the area ID is empty, and the message destination If it is empty, the source of the message is the ID of the monitoring center, and the destination address is all 0, indicating that the objects receiving the data packet are all receiving devices in the entire Wi-Fi-RFSN network, and the source address is the ID of the monitoring center;

步骤9)Wi-Fi-WSN网关收到“信息采集”数据包后,将数据包转换成WSN数据包格式和Wi-Fi数据包格式,分别发送给WSN基站和Wi-Fi的无线AP;Step 9) After the Wi-Fi-WSN gateway receives the "information collection" data packet, the data packet is converted into WSN data packet format and Wi-Fi data packet format, and sent to the wireless AP of WSN base station and Wi-Fi respectively;

2.1采集集装箱传感节点信息2.1 Collect container sensor node information

步骤10)WSN基站收到网关的“信息采集”消息后,在WSN全网内广播“传感信息采集”数据包,其中,消息类型为“传感信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,消息归宿和目的地址都为(0110101000000000)2=(j0)16,表示接收该数据包的对象为WSN全网内的所有集装箱传感节点,消息本源为监控中心ID,源地址为基站节点ID;Step 10) After the WSN base station receives the "information collection" message from the gateway, it broadcasts the "sensing information collection" data packet in the entire WSN network, wherein the message type is "sensing information collection", and the total length is 12 bytes. Indicates that the data packet only contains the header, the data content part is empty, and the destination and destination addresses of the message are both (0110101000000000) 2 = (j0) 16 , indicating that the objects receiving the data packet are all container sensor nodes in the entire WSN network, and the message The source is the monitoring center ID, and the source address is the base station node ID;

步骤11)所有的集装箱传感节点收到“传感信息采集”数据包后,采集集装箱的内部环境信息,生成“传感采集响应”数据包,其中,消息类型为“传感采集响应”,总长度大于12字节,区域ID为该集装箱传感节点所在区域的定位节点ID,消息归宿为监控中心ID,消息本源为该集装箱传感节点ID,目的地址为集装箱传感器节点所在分簇的簇头节点ID,源地址为该集装箱传感节点ID,数据内容为集装箱传感器节点采集的集装箱内部环境信息;Step 11) After all container sensing nodes receive the "sensing information collection" data packet, they collect the internal environment information of the container and generate a "sensing collection response" data packet, wherein the message type is "sensing collection response", The total length is greater than 12 bytes, the area ID is the location node ID of the area where the sensor node of the container is located, the destination of the message is the ID of the monitoring center, the source of the message is the ID of the sensor node of the container, and the destination address is the cluster where the sensor node of the container is located The head node ID, the source address is the container sensor node ID, and the data content is the internal environment information of the container collected by the container sensor node;

步骤12)集装箱传感节点将“传感采集响应”数据包发送给所在分簇的簇头节点,簇头节点通过中继节点将数据包传送给上层的簇头节点,直到发送给基站节点为止;Step 12) The container sensor node sends the "sensing collection response" data packet to the cluster head node in the cluster, and the cluster head node transmits the data packet to the upper cluster head node through the relay node until it is sent to the base station node ;

步骤13)基站节点将“传感采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为WSN基站ID,其余的消息不变;Step 13) The base station node sends the "sensing collection response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, the source address is the WSN base station ID, and the rest of the messages remain unchanged;

步骤14)Wi-Fi-WSN网关将“传感采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 14) The Wi-Fi-WSN gateway sends the "sensing collection response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the remaining messages remain unchanged;

步骤15)监控中心将收到的数据包存储到后台数据库的“传感器传感信息数据表”中;Step 15) the monitoring center stores the received data packet in the "sensor sensing information data table" of the background database;

2.2采集集装箱RFID标签信息2.2 Collect container RFID tag information

步骤16)Wi-Fi无线AP收到网关的“信息采集”消息后,在全网内即Wi-Fi信号覆盖区域内广播“标签信息采集”数据包,其中,消息类型为“标签信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为(0110001000000000)2=(b0)16,表示最终接收该数据包的对象为Wi-Fi全网内所有RFID标签,消息本源为监控中心ID,目的地址为(0111100100000000)2=(y0)16,表示接收该数据包的对象为Wi-Fi全网内所有读写器,源地址为发送该消息的无线AP的ID;Step 16) After the Wi-Fi wireless AP receives the "information collection" message from the gateway, it broadcasts the "label information collection" data packet in the entire network, that is, within the Wi-Fi signal coverage area, wherein the message type is "label information collection" , the total length is 12 bytes, which means that the data packet only contains the header, the data content part is empty, the area ID is empty, and the destination of the message is (0110001000000000) 2 = (b0) 16 , which means that the object that finally receives the data packet is Wi- For all RFID tags in the entire Fi network, the source of the message is the ID of the monitoring center, and the destination address is (0111100100000000) 2 = (y0) 16 , indicating that the object receiving the data packet is all readers in the entire Wi-Fi network, and the source address is The ID of the wireless AP that sent the message;

步骤17)Wi-Fi-RFID读写器收到无线AP的“标签信息采集”消息后,发送电磁波,RFID标签收到电磁波后,线圈产生感应电流,将标签内置的信息通过电磁波发射出去;Step 17) After the Wi-Fi-RFID reader receives the "tag information collection" message from the wireless AP, it sends electromagnetic waves. After the RFID tag receives the electromagnetic wave, the coil generates an induced current, and the information built in the tag is emitted through the electromagnetic wave;

步骤18)读写器收到标签的电磁波后,转化为适合在Wi-Fi网络中通信的数据包,即为“标签采集响应”数据包,其中,消息类型为“标签采集响应”,总长度大于12字节,区域ID为空,消息归宿为监控中心ID,消息本源为集装箱RFID标签ID,目的地址为能与读写器直接通信的无线AP,源地址为读取标签信息的Wi-Fi-RFID读写器的ID,消息内容为集装箱RFID标签的内置信息;Step 18) After the reader receives the electromagnetic wave of the tag, it converts it into a data packet suitable for communication in the Wi-Fi network, which is a "tag collection response" data packet, wherein the message type is "tag collection response", and the total length More than 12 bytes, the area ID is empty, the destination of the message is the ID of the monitoring center, the source of the message is the container RFID tag ID, the destination address is the wireless AP that can communicate directly with the reader, and the source address is the Wi-Fi that reads the tag information - The ID of the RFID reader, the content of the message is the built-in information of the RFID tag of the container;

步骤19)无线AP之间通信,最终将“标签采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为最靠近网关的AP的ID,其余的消息不变;Step 19) Communicate between wireless APs, and finally send the "label collection response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, and the source address is the ID of the AP closest to the gateway. The rest of the messages are not Change;

步骤20)Wi-Fi-WSN网关将“标签采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 20) The Wi-Fi-WSN gateway sends the "label collection response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the rest of the messages remain unchanged;

步骤21)监控中心将收到的数据包存储到后台数据库的“RFID标签信息数据表”中;Step 21) the monitoring center stores the received data packet in the "RFID tag information data table" of the background database;

2.3采集集装箱位置信息2.3 Collect container location information

步骤22)WSN基站收到网关的“信息采集”消息后,在WSN全网内广播“位置信息采集”数据包,其中,消息类型为“位置信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿和目的地址都为(0110110100000000)2=(m0)16,表示接收该数据包的对象为WSN全网内的所有锚节点,消息本源为监控中心ID,源地址为基站节点ID;Step 22) After the WSN base station receives the "information collection" message from the gateway, it broadcasts the "location information collection" data packet in the entire WSN network, wherein the message type is "location information collection", and the total length is 12 bytes, indicating that the data The packet only contains the header, the data content part is empty, the area ID is empty, and the message destination and destination address are both (0110110100000000) 2 = (m0) 16 , indicating that the objects receiving the data packet are all anchor nodes in the entire WSN network, The source of the message is the monitoring center ID, and the source address is the base station node ID;

步骤23)锚节点收到“位置信息采集”数据包后,广播该数据包;Step 23) After the anchor node receives the "location information collection" data packet, it broadcasts the data packet;

步骤24)定位节点和集装箱传感节点向所在分簇的簇头节点发送“位置采集响应”数据包,其中,消息类型为“位置采集响应”,总长度大于12字节,区域ID为该集装箱传感节点所在区域的定位节点ID,消息归宿为监控中心ID,消息本源和源地址都为该定位节点或集装箱传感节点ID,目的地址为该定位节点或集装箱传感器节点所在分簇的簇头节点ID,数据内容为接收到所在区域内所有锚节点的信号强度即RSSI值;Step 24) The positioning node and the container sensor node send a "position acquisition response" data packet to the cluster head node in the cluster where the message type is "position acquisition response", the total length is greater than 12 bytes, and the area ID is the container The ID of the positioning node in the area where the sensor node is located, the destination of the message is the ID of the monitoring center, the source and source address of the message are both the ID of the positioning node or the container sensor node, and the destination address is the cluster head of the cluster where the positioning node or container sensor node is located Node ID, the data content is the received signal strength of all anchor nodes in the area, that is, the RSSI value;

步骤25)簇头节点通过中继节点将数据包传送给上层的簇头节点,直到发送给基站节点为止;Step 25) the cluster head node transmits the data packet to the cluster head node of the upper layer through the relay node until it is sent to the base station node;

步骤26)基站节点将“位置采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为WSN基站ID,其余的消息不变;Step 26) The base station node sends the "position acquisition response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, the source address is the WSN base station ID, and the rest of the messages remain unchanged;

步骤27)Wi-Fi-WSN网关将“位置采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 27) The Wi-Fi-WSN gateway sends the "position acquisition response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the rest of the messages remain unchanged;

步骤28)监控中心将收到的数据包存储到后台数据库的“传感节点/定位节点位置信息数据表”中;Step 28) The monitoring center stores the received data packet in the "sensing node/positioning node position information data table" of the background database;

三、信息处理过程3. Information processing process

3.1位置信息计算3.1 Calculation of location information

步骤29)监控中心从后台数据库中找出“传感节点/定位节点位置信息数据表”,将表中的数据按照区域ID分为m*n组,每组利用W-KNN定位算法来计算定位节点与该区域内所有集装箱节点之间的距离d(e,f), d ( e , f ) = Σ i = 1 k a w i a ( rssi e , i a - rssi f , i a ) 2 , 其中e表示区域a内的定位节点,f表示区域a内集装箱传感节点且f=1,2,...,la;la表示区域a内集装箱节点数,ka表示区域a内的锚节点数,

Figure BSA00000515732400082
表示区域a内第i个锚节点的权值,
Figure BSA00000515732400083
分别表示区域a内定位节点e、节点f对第i个锚节点的RSSI观测值;已知区域a定位节点的坐标为(x,y,z),x表示横坐标,y表示纵坐标,z表示竖坐标,则集装箱传感节点f的空间坐标为(x,y+d(e,f),z);监控中心将计算处理后的的数据存储到后台数据库的“传感器坐标信息数据表”中;Step 29) The monitoring center finds the "sensing node/positioning node position information data table" from the background database, and divides the data in the table into m*n groups according to the area ID, and each group uses the W-KNN positioning algorithm to calculate the positioning The distance d(e, f) between the node and all container nodes in the area, d ( e , f ) = Σ i = 1 k a w i a ( rssi e , i a - rssi f , i a ) 2 , Among them, e represents the positioning node in area a, f represents the container sensor node in area a and f=1, 2, ..., l a ; l a represents the number of container nodes in area a, and k a represents the number of container nodes in area a number of anchor nodes,
Figure BSA00000515732400082
Indicates the weight of the i-th anchor node in area a,
Figure BSA00000515732400083
Respectively represent the RSSI observation values of the positioning node e and node f in the area a to the i-th anchor node; the coordinates of the positioning node in the known area a are (x, y, z), x represents the abscissa, y represents the ordinate, z Indicates the vertical coordinate, then the spatial coordinate of the container sensor node f is (x, y+d(e, f), z); the monitoring center stores the calculated and processed data in the "sensor coordinate information data table" of the background database middle;

3.2所有信息合成3.2 Synthesis of all information

步骤30)监控中心从后台数据库中找出“传感器传感信息数据表”、“RFID标签信息数据表”、“传感器坐标信息数据表”,按照“集装箱传感节点ID与集装箱RFID标签ID一一对应”的规则将三个表中的数据合并为一条“集装箱数据”信息,并存储到后台数据库的“集装箱信息数据表”中,其中,集装箱ID即为集装箱内传感节点的ID或者RFID标签的ID,集装箱消息内容包含三部分信息,即传感器传感信息、RFID标签信息和传感器位置坐标信息;Step 30) The monitoring center finds "sensor sensing information data table", "RFID tag information data table" and "sensor coordinate information data table" from the background database, according to "container sensor node ID and container RFID tag ID one by one The rule of "corresponding" combines the data in the three tables into a "container data" information, and stores it in the "container information data table" of the background database, where the container ID is the ID or RFID tag of the sensor node in the container The ID of the container message contains three parts of information, namely sensor sensing information, RFID tag information and sensor location coordinate information;

四、信息发送过程4. Information sending process

步骤31)监控中心通过GSM模块,向通信卫星发送“集装箱数据”消息;通信卫星再将其转发给地面的接收塔;接收塔再通过Internet或者GSM网向地面总控中心或者移动终端发送此实时跟踪定位消息。Step 31) The monitoring center sends the "container data" message to the communication satellite through the GSM module; the communication satellite forwards it to the receiving tower on the ground; Track location messages.

有益效果:本发明提出了基于标签传感网的集装箱物流跟踪与定位方法,该方法具有如下优点:Beneficial effects: the present invention proposes a container logistics tracking and positioning method based on a tag sensor network, which has the following advantages:

(1)通过利用标签传感网跟踪定位物流克服了RFID读写器通信距离短的问题,扩大了通信范围,并且结合传感器节点的应用,完善了采集信息的内容,能更全面地了解集装箱内的环境情况;(1) By using the tag sensor network to track and locate the logistics, the problem of the short communication distance of the RFID reader is overcome, the communication range is expanded, and combined with the application of the sensor node, the content of the collected information is improved, and the container can be more comprehensively understood environmental conditions;

(2)通过利用W-KNN定位算法结合传感器节点,能够实现对船舶上集装箱的定位,根据相关性对锚节点权值进行分配,在一定程度上提高了定位的精确性。(2) By using the W-KNN positioning algorithm combined with the sensor nodes, the positioning of the container on the ship can be realized, and the anchor node weights are allocated according to the correlation, which improves the positioning accuracy to a certain extent.

附图说明 Description of drawings

图1基于RFSN的集装箱物流跟踪与定位方法结构示意图,Fig. 1 Schematic diagram of the structure of the container logistics tracking and positioning method based on RFSN,

图2RFSN实例布局结构图,Figure 2 RFSN instance layout structure diagram,

图3RFSN网络拓扑图,Fig. 3 RFSN network topology diagram,

图4集装箱定位俯视图,Fig. 4 Container positioning top view,

图5锚节点相对位置关系图,Figure 5 The relative position relationship diagram of anchor nodes,

图6Wi-Fi-RFSN数据包格式图。Figure 6 Wi-Fi-RFSN packet format diagram.

具体实施方式 Detailed ways

以下将以附图为例,通过一个具体的例子来进一步详细说明本发明的技术方案和方法流程。The following will take the accompanying drawings as an example to further describe the technical solution and method flow of the present invention in detail through a specific example.

一、网络的初始化1. Network initialization

步骤1)布置安装监控中心、Wi-Fi-WSN网关、所有的集装箱(安装了RFID标签和传感器节点)、AP、Wi-Fi-RFID读写器、锚节点和定位节点,图2为布置安装后RFSN实例布局结构图;Step 1) Arrange and install the monitoring center, Wi-Fi-WSN gateway, all containers (with RFID tags and sensor nodes installed), AP, Wi-Fi-RFID readers, anchor nodes and positioning nodes, Figure 2 shows the layout and installation Post-RFSN instance layout structure diagram;

步骤2)此时,所有AP自组成Wi-Fi无线网,所有的传感器节点根据Leach算法自组成WSN网络,如图3的网络拓扑所示;图2中节点d1、d2为定位节点,节点m1、m2、m3为锚节点,则基站按照[定位节点,d1,d2]、[锚节点,m1,m2,m3]的格式存储一张记录定位节点和锚节点的功能节点ID表,为下面收集位置信息做准备;Step 2) At this point, all APs form a Wi-Fi wireless network, and all sensor nodes form a WSN network according to the Leach algorithm, as shown in the network topology of Figure 3; nodes d1 and d2 in Figure 2 are positioning nodes, and node m1 , m2, and m3 are anchor nodes, then the base station stores a functional node ID table that records the positioning nodes and anchor nodes in the format of [location node, d1, d2], [anchor node, m1, m2, m3], which is collected as follows Prepare location information;

步骤3)图2中将整条船的空间按照定位节点的分布划分成2*1个测试区域,其中,集装箱1、2、3在区域1内,集装箱4、5、6在区域2内;每个测试区域都有一个定位节点,区域1的定位节点为d1,区域2的定位节点为d2;Step 3) In Fig. 2, the space of the whole ship is divided into 2*1 test areas according to the distribution of positioning nodes, wherein, containers 1, 2, and 3 are in area 1, and containers 4, 5, and 6 are in area 2; Each test area has a positioning node, the positioning node of area 1 is d1, and the positioning node of area 2 is d2;

步骤4)图2中所有的定位节点(2*1个)广播“区域定位”数据包,格式如图6所示,以区域1内的定位节点d1为例,它广播数据包Mqd=[“区域定位”,12,null,null,null,j0,d1,null],其中,“区域定位”为消息类型,12表示总长度为12字节,三个null分别表示区域ID为空、消息归宿为空、消息本源为空,j0为目的地址(表示接收该数据包的对象为该区域内的所有集装箱传感节点),d1为源地址,最后一个null表示数据内容部分为空;Step 4) All positioning nodes (2*1) in Fig. 2 broadcast "area positioning" data packets, the format is as shown in Figure 6, taking the positioning node d1 in area 1 as an example, it broadcasts data packets M qd =[ "Area location", 12, null, null, null, j0, d1, null], where "Area location" is the message type, 12 indicates that the total length is 12 bytes, and three nulls indicate that the area ID is empty and the message The destination is empty, the source of the message is empty, j0 is the destination address (indicating that the object receiving the data packet is all the container sensor nodes in the area), d1 is the source address, and the last null indicates that the data content part is empty;

步骤5)图2中集装箱传感节点收到“区域定位”数据包Mqd后,以区域1内的集装箱传感节点j1、j2、j3为例,它们将源地址d1保存,表示该集装箱属于定位节点d1所在的区域;Step 5) After the container sensing node in Fig. 2 receives the "area positioning" data packet M qd , taking the container sensing nodes j1, j2, j3 in area 1 as an example, they save the source address d1, indicating that the container belongs to Locate the area where node d1 is located;

步骤6)对每个测试区域,进行一次数据训练,以图2中的区域1为例,以定位节点d1为测试样本,d1负责采集区域1内的所有锚节点(m1、m2、m3)的RSSI值,生成“RSSI值响应”数据包Mrssi=[“RSSI值响应”,>12,d1,jc,d1,c2,d1,(mi,5)],其中“RSSI值响应”为消息类型,>12表示总长度大于12字节,数据内容非空,三个d1分别为区域ID、消息本源、源地址,jc为消息归宿,c2为目的地址,(mi,5)为消息内容,mi的值可取m1、m2、m3(表示该区域的锚节点ID),5为所测的RSSI值;如图3,不妨设节点d1属于簇2,d1将所有的区域定位响应消息Mrssi传输给该簇内的簇头节点c2,簇头节点c2再传给中继节点z1,z1再传给上一层簇头节点c1,c1再上传给基站节点,最后基站节点通过Wi-Fi-WSN网关传送给监控中心;Step 6) For each test area, conduct a data training. Take area 1 in Figure 2 as an example, take the positioning node d1 as the test sample, and d1 is responsible for collecting all anchor nodes (m1, m2, m3) in area 1. RSSI value, generate "RSSI value response" packet M rssi = ["RSSI value response", >12, d1, jc, d1, c2, d1, (mi, 5)], wherein "RSSI value response" is the message type ,>12 means the total length is greater than 12 bytes, and the data content is not empty. The three d1 are the area ID, the source of the message, and the source address, jc is the destination of the message, c2 is the destination address, (mi, 5) is the content of the message, and mi The values of m1, m2, and m3 (representing the anchor node ID of the area), 5 is the measured RSSI value; as shown in Figure 3, it may be assumed that node d1 belongs to cluster 2, and d1 transmits all regional positioning response messages M rssi to The cluster head node c2 in the cluster, the cluster head node c2 is transmitted to the relay node z1, z1 is transmitted to the cluster head node c1 of the upper layer, and c1 is transmitted to the base station node, and finally the base station node passes through the Wi-Fi-WSN gateway sent to the monitoring center;

步骤7)图2中监控中心jc收到2*1个区域内的多组“RSSI值响应”数据包Mrssi,以每个区域为单位利用W-KNN定位算法来计算相关系数矩阵R(共有2*1个),以区域1为例,区域1内共有3个锚节点,则其对应的相关系数矩阵为 R 1 = r 11 1 r 12 1 r 13 1 r 21 1 r 22 1 r 23 1 r 31 1 r 32 1 r 3 1 ,

Figure BSA00000515732400102
为锚节点mi与锚节点mj的相关系数,且 r ij 1 = Cov ( rssi i 1 , rssi j 1 ) D ( rssi i 1 ) * D ( rssi j 1 ) = E ( rssi i 1 * rssi j 1 ) - E ( rssi i 1 ) * E ( rssi j 1 ) E [ ( rssi j 1 ) 2 ] - [ E ( rssi j 1 ) ] 2 * E [ ( rssi i 1 ) 2 - [ E ( rssi j 1 ) ] 2 , (i=1,2,3、j=1,2,3),其中,
Figure BSA00000515732400104
分别表示测试样本d1对锚节点mi与锚节点mj的RSSI的观测值,E(X)和D(X)分别表示随机变量X的数学期望和方差,Cov(X,Y)表示随机变量X和Y的协方差;不妨假设计算得到区域1的相关系数矩阵 R 1 = 1 1 2 1 3 1 2 1 1 1 3 1 4 1 ; 然后,计算区域1内所有锚节点的权值,节点m1的权值为 w 1 1 = 1 R 1 1 * ( R 1 1 ) T = 1 ( 1 · 1 2 · 1 2 ) * ( 1 · 1 2 · 1 2 ) T = 1 1 + 1 4 + 1 9 = 36 49 , 同理,得到 w 2 1 = 16 21 , w 3 1 = 144 169 ; 并且按照
Figure BSA00000515732400109
的格式,存储到后台数据库中,表示定位节点d1所在的区域内的锚节点m1的权值为
Figure BSA00000515732400111
该区域内的锚节点m2、锚节点m3情况类似,其余区域的情况也类似,此处不再赘述;Step 7) The monitoring center jc in Figure 2 receives multiple sets of "RSSI value response" data packets M rssi in 2*1 areas, and uses the W-KNN positioning algorithm to calculate the correlation coefficient matrix R (total 2*1), taking area 1 as an example, there are 3 anchor nodes in area 1, and the corresponding correlation coefficient matrix is R 1 = r 11 1 r 12 1 r 13 1 r twenty one 1 r twenty two 1 r twenty three 1 r 31 1 r 32 1 r 3 1 ,
Figure BSA00000515732400102
is the correlation coefficient between anchor node mi and anchor node mj, and r ij 1 = Cov ( rssi i 1 , rssi j 1 ) D. ( rssi i 1 ) * D. ( rssi j 1 ) = E. ( rssi i 1 * rssi j 1 ) - E. ( rssi i 1 ) * E. ( rssi j 1 ) E. [ ( rssi j 1 ) 2 ] - [ E. ( rssi j 1 ) ] 2 * E. [ ( rssi i 1 ) 2 - [ E. ( rssi j 1 ) ] 2 , (i=1, 2, 3, j=1, 2, 3), where,
Figure BSA00000515732400104
and Represent the observed values of the test sample d1 on the RSSI of the anchor node mi and the anchor node mj, E(X) and D(X) represent the mathematical expectation and variance of the random variable X, Cov(X, Y) represent the random variable X and The covariance of Y; let's assume that the correlation coefficient matrix of area 1 is calculated R 1 = 1 1 2 1 3 1 2 1 1 1 3 1 4 1 ; Then, calculate the weights of all anchor nodes in area 1, and the weight of node m1 is w 1 1 = 1 R 1 1 * ( R 1 1 ) T = 1 ( 1 &Center Dot; 1 2 &Center Dot; 1 2 ) * ( 1 &Center Dot; 1 2 · 1 2 ) T = 1 1 + 1 4 + 1 9 = 36 49 , In the same way, get w 2 1 = 16 twenty one , w 3 1 = 144 169 ; and follow
Figure BSA00000515732400109
The format is stored in the background database, indicating that the weight of the anchor node m1 in the area where the positioning node d1 is located is
Figure BSA00000515732400111
The situation of anchor nodes m2 and anchor nodes m3 in this area is similar, and the situation of other areas is also similar, so I won’t repeat them here;

二、信息采集过程2. Information collection process

步骤8)监控中心广播“信息采集”数据包Mxc=[“信息采集”,12,null,null,jc,00,jc],其中,“信息采集”为消息类型,12表示总长度为12字节(表示数据包只含首部,数据内容部分为空),两个null分别表示区域ID为空、消息归宿为空,两个jc分别为消息本源和源地址,00(十六进制数)即目的地址的16比特数全0(表示接收该数据包的对象为Wi-Fi-RFSN全网内的所有接收装置);Step 8) Monitoring center broadcasts "information collection" data packet M xc =["information collection", 12, null, null, jc, 00, jc], wherein, "information collection" is a message type, and 12 represents a total length of 12 byte (indicating that the data packet only contains the header, and the data content part is empty), two nulls respectively indicate that the area ID is empty and the destination of the message is empty, two jc are the source and source address of the message respectively, 00 (hexadecimal number ) that is, the 16-bit number of the destination address is all 0 (indicating that the object receiving the data packet is all receiving devices in the entire Wi-Fi-RFSN network);

步骤9)Wi-Fi-WSN网关收到“信息采集”数据包Mxc后,将数据包转换成WSN数据包格式Mxcs和Wi-Fi数据包格式Mxcf,分别发送给WSN基站和Wi-Fi的无线AP;Step 9) After the Wi-Fi-WSN gateway receives the "information collection" data packet M xc , the data packet is converted into the WSN data packet format M xcs and the Wi-Fi data packet format M xcf , and sent to the WSN base station and the Wi-Fi data packet format M xcf respectively. Fi's wireless AP;

2.1采集集装箱传感节点信息2.1 Collect container sensor node information

步骤10)WSN基站收到网关的“信息采集”数据包Mxcs后,在WSN全网内广播“传感信息采集”数据包Mcc=[“传感信息采集”,12,null,j0,jc,j0,jz],其中,“传感信息采集”为消息类型,12表示总长度为12字节(表示数据包只含首部,数据内容部分为空),null表示区域ID为空,两个j0分别表示消息归宿和目的地址(表示接收该数据包的对象为WSN全网内的所有集装箱传感节点),jc表示消息本源,jz表示源地址;Step 10) After the WSN base station receives the "information collection" data packet M xcs of the gateway, it broadcasts the "sensing information collection" data packet M cc in the entire WSN network = ["sensing information collection", 12, null, j0, jc, j0, jz], where "sensing information collection" is the message type, 12 indicates that the total length is 12 bytes (indicating that the data packet only contains the header, and the data content part is empty), null indicates that the area ID is empty, and two A j0 represents the destination and destination address of the message respectively (representing that the objects receiving the data packet are all container sensor nodes in the entire WSN network), jc represents the original source of the message, and jz represents the source address;

步骤11)所有的集装箱传感节点收到“传感信息采集”数据包Mcc后,采集集装箱的内部环境信息,生成“传感采集响应”数据包Mccx,以图3的集装箱传感节点j1为例,j1生成数据包Mccx=[“传感采集响应”,>12,d1,jc,j1,c2,j1,34℃],其中,“传感采集响应”为消息类型,>12表示总长度大于12字节,数据内容非空,d1为区域ID,jc为消息归宿,两个j1分别为消息本源和源地址,c2为目的地址,34℃(以此为例,说明集装箱传感器节点采集的集装箱内部环境信息)为消息内容;Step 11) After all the container sensor nodes receive the "sensing information collection" data packet M cc , they collect the internal environment information of the container, generate the "sensing collection response" data packet M ccx , and use the container sensor nodes in Fig. 3 Take j1 as an example, j1 generates a data packet M ccx = ["Sensing Collection Response", >12, d1, jc, j1, c2, j1, 34°C], where "Sensing Collection Response" is the message type, >12 Indicates that the total length is greater than 12 bytes, the data content is not empty, d1 is the area ID, jc is the destination of the message, two j1 are the source and source address of the message, c2 is the destination address, and 34°C (take this as an example to illustrate the container sensor The internal environment information of the container collected by the node) is the message content;

步骤12)集装箱传感节点j1将“传感采集响应”数据包Mccx发送给所在分簇的簇头节点c2,c2通过中继节点z1将数据包传送给上层的簇头节点c1,直到发送给基站节点jz为止;Step 12) The container sensor node j1 sends the "sensing collection response" data packet M ccx to the cluster head node c2 in the cluster where it is located, and c2 transmits the data packet to the upper cluster head node c1 through the relay node z1 until sending to the base station node jz;

步骤13)基站节点将“传感采集响应”数据包发送给Wi-Fi-WSN网关,Mccx=[“传感采集响应”,>12,d1,jc,j1,wg,jz,34℃],此时网关wg为目的地址,jz为源地址,其余的消息不变;Step 13) The base station node sends the "sensing collection response" data packet to the Wi-Fi-WSN gateway, M ccx = ["sensing collection response", >12, d1, jc, j1, wg, jz, 34°C] , at this time the gateway wg is the destination address, jz is the source address, and the rest of the messages remain unchanged;

步骤14)Wi-Fi-WSN网关将“传感采集响应”数据包发送给监控中心,Mccx=[“传感采集响应”,>12,d1,jc,j1,jc,wg,34℃],此时监控中心jc既为消息归宿又为目的地址,网关wg为源地址,其余的消息不变;Step 14) The Wi-Fi-WSN gateway sends the "sensing collection response" data packet to the monitoring center, M ccx = ["sensing collection response", >12, d1, jc, j1, jc, wg, 34°C] , at this time, the monitoring center jc is both the message destination and the destination address, the gateway wg is the source address, and the rest of the messages remain unchanged;

步骤15)监控中心jc按照[j1,34℃]的格式存储到后台数据库中,表示集装箱节点j1所在的集装箱内的温度为34℃;Step 15) The monitoring center jc stores it in the background database in the format of [j1, 34°C], indicating that the temperature inside the container where the container node j1 is located is 34°C;

2.2采集集装箱RFID标签信息2.2 Collect container RFID tag information

步骤16)Wi-Fi无线AP收到网关的“信息采集”消息Mxcf后,在Wi-Fi全网内广播“标签信息采集”数据包Mbc,以图3中的无线接入点a3为例,Mbc=[“标签信息采集”,12,null,b0,jc,y0,a3],其中,“标签信息采集”为消息类型,12表示总长度为12字节(表示数据包只含首部,数据内容部分为空),null表示区域ID为空,b0为消息归宿(表示最终接收该数据包的对象为Wi-Fi全网内所有RFID标签),监控中心jc为消息本源,y0为目的地址(表示接收该数据包的对象为Wi-Fi全网内所有读写器),a3为源地址:Step 16) After the Wi-Fi wireless AP receives the "information collection" message M xcf of the gateway, it broadcasts the "label information collection" data packet M bc in the entire Wi-Fi network, and takes the wireless access point a3 in Fig. 3 as Example, M bc =["tag information collection", 12, null, b0, jc, y0, a3], wherein, "tag information collection" is the message type, and 12 represents that the total length is 12 bytes (representing that the data packet only contains The first part, the data content part is empty), null means that the area ID is empty, b0 is the destination of the message (indicating that the object that finally receives the data packet is all RFID tags in the Wi-Fi network), the monitoring center jc is the source of the message, and y0 is Destination address (indicating that the objects receiving the data packet are all readers in the Wi-Fi network), a3 is the source address:

步骤17)以图3中读写器y1,标签b1为例,y1收到无线AP的“标签信息采集”消息Mbc后,发送电磁波,RFID标签b1收到电磁波后,线圈产生感应电流,将标签内置的信息通过电磁波发射出去;Step 17) Take reader y1 and tag b1 in Fig. 3 as an example, after y1 receives the "tag information collection" message M bc from the wireless AP, it sends an electromagnetic wave, and after the RFID tag b1 receives the electromagnetic wave, the coil generates an induced current, and the The information built into the tag is emitted through electromagnetic waves;

步骤18)读写器y1收到标签b1的电磁波后,转化为适合在Wi-Fi网络中通信的数据包,即为“标签采集响应”数据包Mbcx=[“标签采集响应”,>12,null,jc,b1,a1,y1,“起运地=北京,指运地=南京”],其中,“标签采集响应”为消息类型,>12表示总长度大于12字节,数据内容非空,null表示区域ID为空,监控中心jc为消息归宿,源RFID标签b1为消息本源,无线接入点(AP)a1为目的地址,发射Wi-Fi无线信号的Wi-Fi-RFID读写器y1为源地址,“起运地=北京,指运地=南京”(集装箱RFID标签的内置信息)为消息内容;Step 18) After the reader y1 receives the electromagnetic wave of the tag b1, it converts it into a data packet suitable for communication in the Wi-Fi network, which is the "tag collection response" data packet M bcx = ["tag collection response", >12 , null, jc, b1, a1, y1, "Place of origin=Beijing, place of destination=Nanjing"], where "Label Collection Response" is the message type, >12 means the total length is greater than 12 bytes, and the data content is not empty , null indicates that the area ID is empty, the monitoring center jc is the destination of the message, the source RFID tag b1 is the source of the message, the wireless access point (AP) a1 is the destination address, and the Wi-Fi-RFID reader that transmits Wi-Fi wireless signals y1 is the source address, "place of departure=Beijing, place of destination=Nanjing" (the built-in information of the container RFID tag) is the message content;

步骤19)无线AP之间通信,最终将“标签采集响应”数据包Mbcx发送给Wi-Fi-WSN网关wg,Mbcx=[“标签采集响应”,>12,null,jc,b1,wg,a3,“起运地=北京,指运地=南京”],此时网关wg为目的地址,最靠近网关的无线接入点a3为源地址,其余的消息不变;Step 19) Communicate between wireless APs, and finally send the "label collection response" data packet M bcx to the Wi-Fi-WSN gateway wg, M bcx = ["label collection response", >12, null, jc, b1, wg , a3, "place of departure=Beijing, place of destination=Nanjing"], the gateway wg is the destination address, the wireless access point a3 closest to the gateway is the source address, and the rest of the messages remain unchanged;

步骤20)Wi-Fi-WSN网关wg将“标签采集响应”数据包Mbcx发送给监控中心jc,Mbcx=[“标签采集响应”,>12,null,jc,b1,jc,wg,“起运地=北京,指运地=南京”],此时监控中心jc既为消息归宿又为目的地址,网关wg为源地址,其余的消息不变;Step 20) The Wi-Fi-WSN gateway wg sends the "label collection response" data packet M bcx to the monitoring center jc, M bcx = ["label collection response", >12, null, jc, b1, jc, wg, " Place of departure=Beijing, place of destination=Nanjing”], at this moment, the monitoring center jc is both the destination and the destination address of the message, the gateway wg is the source address, and the rest of the messages remain unchanged;

步骤21)监控中心jc按照[b1,“起运地=北京,指运地=南京”]的格式存储到后台数据库中,表示标签b1所在的集装箱的起运地为北京,指运地为南京;Step 21) The monitoring center jc stores in the background database according to the format of [b1, "place of departure=Beijing, place of destination=Nanjing"], indicating that the place of departure of the container where the label b1 is located is Beijing, and the place of shipment is Nanjing;

2.3采集集装箱位置信息2.3 Collect container location information

步骤22)WSN基站收到网关的“信息采集”Mxcs消息后,在WSN全网内广播“位置信息采集”数据包Mwc=[“位置信息采集”,12,null,m0,jc,m0,jz],其中,“位置信息采集”为消息类型,12表示总长度为12字节(表示数据包只含首部,数据内容部分为空),null表示区域ID为空,两个m0分别为消息归宿和目的地址(表示接收该数据包的对象为WSN全网内的所有锚节点),监控中心jc为消息本源,基站节点jz为源地址;Step 22) After the WSN base station receives the "information collection" M xcs message of the gateway, it broadcasts the "location information collection" data packet M wc =["location information collection", 12, null, m0, jc, m0 in the entire WSN network. , jz], wherein, "location information collection" is the message type, 12 indicates that the total length is 12 bytes (indicating that the data packet only contains the header, and the data content part is empty), null indicates that the area ID is empty, and the two m0 are respectively The destination and destination address of the message (indicating that the objects receiving the data packet are all anchor nodes in the entire WSN network), the monitoring center jc is the source of the message, and the base station node jz is the source address;

步骤23)锚节点收到“位置信息采集”数据包Mwc后,广播该数据包;Step 23) After the anchor node receives the "location information collection" data packet M wc , it broadcasts the data packet;

步骤24)图3中定位节点d1和集装箱传感节点j1向所在分簇的簇头节点c2发送“位置采集响应”数据包Mwcx=[“位置采集响应”,>12,d1,jc,d1(或j1),c2,d1(或j1),rssid1(或rssij1)],其中,“位置采集响应”为消息类型,>12表示总长度大于12字节,数据内容非空,d1为区域ID,监控中心jc为消息归宿,两个d1(或j1)分别为消息本源和源地址,所在分簇簇头节点c2为目的地址,rssid1(或rssij1)(表示接收到锚节点的信号强度)为数据内容;Step 24) In Fig. 3, the positioning node d1 and the container sensor node j1 send the "position collection response" data packet M wcx = ["position collection response", > 12, d1, jc, d1 to the cluster head node c2 of the cluster where they are located (or j1), c2, d1 (or j1), rssi d1 (or rssi j1 )], wherein, "Position Collection Response" is the message type, >12 means the total length is greater than 12 bytes, the data content is not empty, and d1 is The area ID, the monitoring center jc is the destination of the message, the two d1 (or j1) are the source and source address of the message respectively, the cluster head node c2 where it is located is the destination address, rssi d1 (or rssi j1 ) (represents the message received from the anchor node signal strength) is the data content;

步骤25)簇头节点c2通过中继节点z1将数据包传送给上层的簇头节点c1,直到发送给基站节点jz为止;Step 25) The cluster head node c2 transmits the data packet to the cluster head node c1 of the upper layer through the relay node z1 until it is sent to the base station node jz;

步骤26)基站节点jz将“位置采集响应”数据包Mwcx发送给Wi-Fi-WSN网关,Mwcx=[“位置采集响应”,>12,d1,jc,d1(或j1),wg,jz,rssid1(或rssij1)],此时网关wg为目的地址,WSN基站jz为源地址,其余的消息不变;Step 26) The base station node jz sends the "position acquisition response" data packet M wcx to the Wi-Fi-WSN gateway, M wcx = ["position acquisition response", >12, d1, jc, d1 (or j1), wg, jz, rssi d1 (or rssi j1 )], now the gateway wg is the destination address, the WSN base station jz is the source address, and the rest of the messages remain unchanged;

步骤27)Wi-Fi-WSN网关wg将“位置采集响应”数据包Mwcx发送给监控中心jc,Mwcx=[“位置采集响应”,>12,d1,jc,d1(或j1),jc,wg,rssid1(或rssij1)],此时监控中心jc为目的地址,网关wg为源地址,其余的消息不变;Step 27) The Wi-Fi-WSN gateway wg sends the "position acquisition response" data packet M wcx to the monitoring center jc, M wcx = ["position acquisition response", >12, d1, jc, d1 (or j1), jc , wg, rssi d1 (or rssi j1 )], the monitoring center jc is the destination address, the gateway wg is the source address, and the rest of the messages remain unchanged;

步骤28)监控中心jc按照[d1(或j1),d1,rssid1(或rssij1)]的格式存储到后台数据库中,表示在定位节点d1所在的区域内,定位节点d1(或者集装箱传感节点j1)所接收到的锚节点信号强度(即RSSI值);Step 28) The monitoring center jc is stored in the background database according to the format of [d1 (or j1), d1, rssi d1 (or rssi j1 )], indicating that in the area where the positioning node d1 is located, the positioning node d1 (or container sensing Node j1) received anchor node signal strength (ie RSSI value);

三、信息处理过程3. Information processing process

3.1位置信息计算3.1 Calculation of location information

步骤29)监控中心从后台数据库中找出形如表2中(d)所示的表,将表中的数据,按照区域ID分为2*1组,每组利用W-KNN定位算法来计算定位节点与该区域内所有集装箱节点之间的距离d(e,f),如图4所示,以区域1为例说明, d ( e , f ) = Σ i = 1 3 w i 1 ( rssi e , i 1 - rssi f , i 1 ) 2 , 其中e表示区域1内的定位节点,f表示区域1内集装箱传感节点且f=1,2,3,表示区域1内第i个锚节点的权值,

Figure BSA00000515732400144
分别表示区域1内定位节点e、集装箱传感节点f对第i个锚节点的RSSI观测值;不妨设区域1内的定位节点d1对3个锚节点的RSSI值分别为2,3,4,集装箱节点j1对3个锚节点的RSSI值分别为3,3,4,则d1与j1之间的距离为 d ( d 1 , j 1 ) = Σ i = 1 3 w i 1 ( rssi e , i 1 - rssi f , i 1 ) 2 = 36 49 * ( 3 - 2 ) 2 + 16 21 * ( 3 - 3 ) 2 + 144 169 * ( 4 - 4 ) 2 = 6 7 ; 已知区域1中定位节点d1的坐标为(5,4,3),x表示横坐标,y表示纵坐标,z表示竖坐标,则集装箱传感节点f的空间坐标为
Figure BSA00000515732400147
监控中心jc按照的格式存储到后台数据库中,表示集装箱传感节点j1的空间坐标为
Figure BSA00000515732400149
区域1内的集装箱节点j2、集装箱节点j3情况类似,其余区域的情况也类似,此处不再赘述;Step 29) The monitoring center finds the table shown in (d) in Table 2 from the background database, and divides the data in the table into 2*1 groups according to the area ID, and each group uses the W-KNN positioning algorithm to calculate The distance d(e, f) between the positioning node and all container nodes in the area, as shown in Figure 4, taking area 1 as an example, d ( e , f ) = Σ i = 1 3 w i 1 ( rssi e , i 1 - rssi f , i 1 ) 2 , Where e represents the positioning node in area 1, f represents the container sensor node in area 1 and f=1, 2, 3, Indicates the weight of the i-th anchor node in area 1,
Figure BSA00000515732400144
respectively represent the RSSI observation values of the positioning node e and the container sensor node f in the area 1 to the i-th anchor node; let the RSSI values of the positioning node d1 in the area 1 to the three anchor nodes be 2, 3, 4, The RSSI values of the container node j1 to the three anchor nodes are 3, 3, and 4 respectively, so the distance between d1 and j1 is d ( d 1 , j 1 ) = Σ i = 1 3 w i 1 ( rssi e , i 1 - rssi f , i 1 ) 2 = 36 49 * ( 3 - 2 ) 2 + 16 twenty one * ( 3 - 3 ) 2 + 144 169 * ( 4 - 4 ) 2 = 6 7 ; Given that the coordinates of the positioning node d1 in area 1 are (5, 4, 3), x represents the abscissa, y represents the ordinate, and z represents the vertical coordinate, then the spatial coordinates of the container sensor node f are
Figure BSA00000515732400147
The monitoring center jc follows The format is stored in the background database, indicating that the spatial coordinates of the container sensor node j1 are
Figure BSA00000515732400149
The situation of container node j2 and container node j3 in area 1 is similar, and the situation of other areas is also similar, so I won’t repeat them here;

3.2所有信息合成3.2 Synthesis of all information

步骤30)监控中心jc从后台数据库中找出形如表2中(b)、(c)、(e)的表,按照“集装箱传感节点ID与集装箱RFID标签ID一一对应”的规则将三个表中的数据合并为一条“集装箱数据”信息

Figure BSA000005157324001410
Figure BSA000005157324001411
其中,j1/b1(集装箱内传感节点/RFID标签ID)表示集装箱ID,是集装箱消息内容,包含三部分信息,即传感器传感信息、RFID标签信息和传感器位置坐标信息;Step 30) The monitoring center jc finds the tables of the form (b), (c), and (e) in Table 2 from the backstage database, and will The data in the three tables is merged into one "container data" message
Figure BSA000005157324001410
Figure BSA000005157324001411
Among them, j1/b1 (sensing node/RFID tag ID in the container) represents the container ID, It is the container message content, including three parts of information, namely sensor sensing information, RFID tag information and sensor location coordinate information;

四、信息发送过程4. Information sending process

步骤31)监控中心jc通过GSM模块,向通信卫星发送“集装箱数据”Mgd;通信卫星再将其转发给地面的接收塔;接收塔再通过Internet或者GSM网向地面总控中心或者移动终端发送此实时跟踪定位消息。Step 31) the monitoring center jc sends "container data" Mgd to the communication satellite through the GSM module; the communication satellite forwards it to the receiving tower on the ground; This real-time tracking positioning message.

以下表1是消息类型与对应的字段值表:The following table 1 is a table of message types and corresponding field values:

  序号 serial number   消息名称 message name   消息字段值 message field value   1 1   区域定位 Regional positioning   00000001 00000001   2 2   RSSI值响应 RSSI value response   00000010 00000010   3 3   信息采集 Information Collection   00000011 00000011   4 4   传感信息采集 Sensor information collection   00000100 00000100   5 5   传感采集响应 Sensing collection response   00000101 00000101   6 6   标签信息采集 Label information collection   00000110 00000110   7 7   标签采集响应 Label Collection Response   00000111 00000111   8 8   位置信息采集 Location Information Collection   00001000 00001000   9 9   位置采集响应 Location collection response   00001001 00001001

以下表2是数据库存储数据格式表:The following table 2 is the database storage data format table:

  序号 serial number   区域定位节点ID Regional positioning node ID   锚节点ID Anchor Node ID   锚节点权值 Anchor node weight   1 1   2 2

(a)区域定位信息数据表(a) Regional positioning information data table

  序号 serial number   集装箱传感节点ID container sensor node ID   传感消息内容 Sensing message content   1 1   2 2

(b)传感器传感信息数据表(b) Sensor Sensing Information Data Sheet

  序号 serial number   集装箱RFID标签ID container RFID tag ID   标签消息内容 Label message content   1 1   2 2

(c)RFID标签信息数据表(c) RFID tag information data sheet

Figure BSA00000515732400151
Figure BSA00000515732400151

(d)传感节点/定位节点位置信息数据表(d) Sensor node/positioning node position information data table

  序号 serial number   集装箱传感节点ID container sensor node ID   空间坐标 Spatial coordinates   1 1   2 2

(e)传感器坐标信息数据表(e) Sensor coordinate information data table

  序号 serial number   集装箱ID Container ID   集装箱消息内容 container message content   1 1   2 2

(f)集装箱信息数据表(f) Container Information Data Sheet

Claims (1)

1.一种基于标签传感网的集装箱物流跟踪与定位方法,其特征在于将无线射频识别RFID网络与无线传感器网络WSN通过无线相容认证Wi-Fi网络连接起来,并采用属性加权k近邻定位算法W-KNN实现集装箱的定位,其方法流程可描述如下:1. A container logistics tracking and location method based on a label sensor network, characterized in that a radio frequency identification RFID network and a wireless sensor network WSN are connected through a wireless compatible authentication Wi-Fi network, and attribute weighted k nearest neighbors are used to locate Algorithm W-KNN realizes container positioning, and its method flow can be described as follows: 一、网络的初始化1. Network initialization 步骤1)布置安装监控中心、Wi-Fi-WSN网关、所有的集装箱、RFID标签、传感器节点、Wi-Fi无线接入点AP、Wi-Fi-RFID读写器和锚节点;Step 1) Arrange and install the monitoring center, Wi-Fi-WSN gateway, all containers, RFID tags, sensor nodes, Wi-Fi wireless access point AP, Wi-Fi-RFID reader and anchor node; 步骤2)此时,所有AP自组成Wi-Fi无线网,所有的传感器节点根据Leach算法自组成WSN网络,基站存储一张功能节点身份标识ID表,存放锚节点和定位节点的ID号,为下面收集位置信息做准备;Step 2) At this point, all APs form a Wi-Fi wireless network, and all sensor nodes form a WSN network according to the Leach algorithm. The base station stores a functional node ID table, storing the ID numbers of anchor nodes and positioning nodes, as Prepare for collecting location information below; 步骤3)将整个测试空间按照定位节点的分布划分成m*n个测试区域,每个测试区域都有唯一定位节点,故可用区域定位节点ID代表区域ID,定位节点空间坐标已知,其中m表示层数,每层高度为一个集装箱的高度,n表示每层等分的测试区域数目;Step 3) Divide the entire test space into m*n test areas according to the distribution of positioning nodes, each test area has a unique positioning node, so the available area positioning node ID represents the area ID, and the spatial coordinates of the positioning nodes are known, where m Indicates the number of layers, the height of each layer is the height of a container, and n represents the number of test areas equally divided by each layer; 步骤4)所有的m*n个定位节点广播“区域定位”数据包,其中,消息类型为“区域定位”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为空,消息本源为空,目的地址为(0110101000000000)2=(j0)16,表示接收该数据包的对象为该区域内的所有集装箱传感节点,源地址为该定位节点ID;Step 4) All m*n positioning nodes broadcast "area positioning" data packets, in which the message type is "area positioning" and the total length is 12 bytes, indicating that the data packet only contains the header, the data content part is empty, and the area The ID is empty, the destination of the message is empty, the source of the message is empty, and the destination address is (0110101000000000) 2 = (j0) 16 , which means that the objects receiving the data packet are all container sensor nodes in this area, and the source address is the location Node ID; 步骤5)集装箱传感节点收到“区域定位”数据包后,将源地址,即该区域的定位节点ID保存,表示该集装箱传感节点属于该定位节点所在的区域;Step 5) After the container sensor node receives the "area positioning" data packet, it saves the source address, that is, the location node ID of the area, indicating that the container sensor node belongs to the area where the location node is located; 步骤6)对每个测试区域,进行一次数据训练,即在该区域内以定位节点为测试样本,该样本负责采集此测试区域内的所有锚节点的接收信号强度指示RSSI值,生成“RSSI值响应”数据包,其中,消息类型为“RSSI值响应”,总长度大于12字节,区域ID即为该区域定位节点ID,消息归宿为监控中心ID,消息本源为定位节点ID,数据内容为多组形如“锚节点ID,RSSI值”格式的数据,并把所有的RSSI值传输给簇内的簇头节点,簇头节点再一步一步上传给基站节点,最后基站节点通过Wi-Fi-WSN网关传送给监控中心;Step 6) For each test area, a data training is performed, that is, the positioning node is used as a test sample in this area, and the sample is responsible for collecting the received signal strength indication RSSI value of all anchor nodes in this test area to generate "RSSI value Response" data packet, in which the message type is "RSSI value response", the total length is greater than 12 bytes, the area ID is the ID of the positioning node in the area, the destination of the message is the ID of the monitoring center, the source of the message is the ID of the positioning node, and the data content is Multi-set data in the format of "anchor node ID, RSSI value", and transmit all RSSI values to the cluster head node in the cluster, and the cluster head node uploads it to the base station node step by step, and finally the base station node passes Wi-Fi- The WSN gateway sends it to the monitoring center; 步骤7)监控中心收到m*n个区域内的多组“RSSI值响应”数据包Mrssi,以每个区域为单位利用W-KNN定位算法来计算相关系数矩阵R,共有m*n个,不妨设区域a内共有ka个锚节点,a=1,2,…,m*n,则其对应的相关系数矩阵为
Figure FDA00003521855100011
Figure FDA00003521855100012
为区域a内锚节点i与锚节点j的相关系数,i=1,2,…,ka,j=1,2,…,ka,a=1,2,…,m*n,且 r ij a = Cov ( rssi i a , rssi j a ) D ( rssi i a ) * D ( rssi j a ) = E ( rssi i a * rssi j a ) - E ( rssi i a ) * E ( rssi j a ) E [ ( rssi i a ) 2 ] - [ E ( rssi i a ) ] 2 * E [ ( rssi j a ) 2 ] - [ E ( rssi j a ) ] 2 , 当i=j时,
Figure FDA00003521855100022
其中,
Figure FDA00003521855100023
Figure FDA00003521855100024
分别表示区域a内测试样本对锚节点i与锚节点j的RSSI的观测值,E(X)和D(X)分别表示随机变量X的数学期望和方差,Cov(X,Y)表示随机变量X和Y的协方差;若两个锚节点的可检测范围没有交集即它们从来没有被同时检测到过,或其中至少一个锚节点的RSSI的观测值的方差为0,则定义该锚节点对的相关系数为0;然后,计算区域a内锚节点i的权值为 w i a = 1 R i a * ( R i a ) T , 其中, R i a = ( r i 1 a , r i 2 a , . . . , r ik a a ) ,
Figure FDA00003521855100027
表示
Figure FDA00003521855100028
的转置,即
Figure FDA00003521855100029
并且将处理后的数据存储到后台数据库的“区域定位信息数据表”中;
Step 7) The monitoring center receives multiple sets of "RSSI value response" data packets M rssi in m*n areas, and uses the W-KNN positioning algorithm to calculate the correlation coefficient matrix R in units of each area, and there are m*n in total , it may be assumed that there are k a anchor nodes in area a, a=1,2,...,m*n, then the corresponding correlation coefficient matrix is
Figure FDA00003521855100011
Figure FDA00003521855100012
is the correlation coefficient between anchor node i and anchor node j in area a, i=1,2,...,k a , j=1,2,...,k a , a=1,2,...,m*n, and r ij a = Cov ( rssi i a , rssi j a ) D. ( rssi i a ) * D. ( rssi j a ) = E. ( rssi i a * rssi j a ) - E. ( rssi i a ) * E. ( rssi j a ) E. [ ( rssi i a ) 2 ] - [ E. ( rssi i a ) ] 2 * E. [ ( rssi j a ) 2 ] - [ E. ( rssi j a ) ] 2 , When i=j,
Figure FDA00003521855100022
in,
Figure FDA00003521855100023
and
Figure FDA00003521855100024
respectively represent the observed values of the RSSI of the test sample in area a to anchor node i and anchor node j, E(X) and D(X) respectively represent the mathematical expectation and variance of the random variable X, and Cov(X,Y) represent the random variable The covariance of X and Y; if the detectable range of two anchor nodes has no intersection, that is, they have never been detected at the same time, or the variance of the RSSI observation value of at least one anchor node is 0, then define the anchor node pair The correlation coefficient of is 0; then, calculate the weight of anchor node i in area a as w i a = 1 R i a * ( R i a ) T , in, R i a = ( r i 1 a , r i 2 a , . . . , r ik a a ) ,
Figure FDA00003521855100027
express
Figure FDA00003521855100028
the transposition of
Figure FDA00003521855100029
And store the processed data in the "area positioning information data table" of the background database;
二、信息采集过程2. Information collection process 步骤8)监控中心广播“信息采集”数据包,其中,消息类型为“信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为空,消息本源为监控中心ID,目的地址全0,表示接收该数据包的对象为Wi-Fi-RFSN全网内的所有接收装置,源地址为监控中心ID;Step 8) The monitoring center broadcasts the "information collection" data packet, in which the message type is "information collection" and the total length is 12 bytes, indicating that the data packet only contains the header, the data content part is empty, the area ID is empty, and the destination of the message If it is empty, the source of the message is the ID of the monitoring center, and the destination address is all 0, indicating that the objects receiving the data packet are all receiving devices in the entire Wi-Fi-RFSN network, and the source address is the ID of the monitoring center; 步骤9)Wi-Fi-WSN网关收到“信息采集”数据包后,将数据包转换成WSN数据包格式和Wi-Fi数据包格式,分别发送给WSN基站和Wi-Fi的无线AP;Step 9) After the Wi-Fi-WSN gateway receives the "information collection" data packet, it converts the data packet into WSN data packet format and Wi-Fi data packet format, and sends them to the WSN base station and Wi-Fi wireless AP respectively; 2.1采集集装箱传感节点信息2.1 Collect container sensor node information 步骤10)WSN基站收到网关的“信息采集”消息后,在WSN全网内广播“传感信息采集”数据包,其中,消息类型为“传感信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,消息归宿和目的地址都为(0110101000000000)2=(j0)16,表示接收该数据包的对象为WSN全网内的所有集装箱传感节点,消息本源为监控中心ID,源地址为基站节点ID;Step 10) After receiving the "information collection" message from the gateway, the WSN base station broadcasts the "sensing information collection" data packet in the entire WSN network. The message type is "sensing information collection" and the total length is 12 bytes. Indicates that the data packet only contains the header, the data content part is empty, and the destination and destination addresses of the message are both (0110101000000000) 2 =(j0) 16 , indicating that the objects receiving the data packet are all container sensor nodes in the entire WSN network, and the message The source is the monitoring center ID, and the source address is the base station node ID; 步骤11)所有的集装箱传感节点收到“传感信息采集”数据包后,采集集装箱的内部环境信息,生成“传感采集响应”数据包,其中,消息类型为“传感采集响应”,总长度大于12字节,区域ID为该集装箱传感节点所在区域的定位节点ID,消息归宿为监控中心ID,消息本源为该集装箱传感节点ID,目的地址为集装箱传感器节点所在分簇的簇头节点ID,源地址为该集装箱传感节点ID,数据内容为集装箱传感器节点采集的集装箱内部环境信息;Step 11) After receiving the "sensing information collection" data packet, all container sensor nodes collect the internal environment information of the container and generate a "sensing collection response" data packet, wherein the message type is "sensing collection response", The total length is greater than 12 bytes, the area ID is the location node ID of the area where the sensor node of the container is located, the destination of the message is the ID of the monitoring center, the source of the message is the ID of the sensor node of the container, and the destination address is the cluster where the sensor node of the container is located The head node ID, the source address is the container sensor node ID, and the data content is the internal environment information of the container collected by the container sensor node; 步骤12)集装箱传感节点将“传感采集响应”数据包发送给所在分簇的簇头节点,簇头节点通过中继节点将数据包传送给上层的簇头节点,直到发送给基站节点为止;Step 12) The container sensor node sends the "sensing collection response" data packet to the cluster head node in the cluster, and the cluster head node transmits the data packet to the upper cluster head node through the relay node until it is sent to the base station node ; 步骤13)基站节点将“传感采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为WSN基站ID,其余的消息不变;Step 13) The base station node sends the "sensing collection response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, the source address is the WSN base station ID, and the rest of the messages remain unchanged; 步骤14)Wi-Fi-WSN网关将“传感采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 14) The Wi-Fi-WSN gateway sends the "sensing collection response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the rest of the messages remain unchanged; 步骤15)监控中心将收到的数据包存储到后台数据库的“传感器传感信息数据表”中;Step 15) The monitoring center stores the received data packets in the "sensor sensing information data table" of the background database; 2.2采集集装箱RFID标签信息2.2 Collect container RFID tag information 步骤16)Wi-Fi无线AP收到网关的“信息采集”消息后,在全网内即Wi-Fi信号覆盖区域内广播“标签信息采集”数据包,其中,消息类型为“标签信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿为(0110001000000000)2=(b0)16,表示最终接收该数据包的对象为Wi-Fi全网内所有RFID标签,消息本源为监控中心ID,目的地址为(0111100100000000)2=(y0)16,表示接收该数据包的对象为Wi-Fi全网内所有读写器,源地址为发送该消息的无线AP的ID;Step 16) After receiving the "information collection" message from the gateway, the Wi-Fi wireless AP broadcasts the "label information collection" data packet in the entire network, that is, within the Wi-Fi signal coverage area, where the message type is "label information collection" , the total length is 12 bytes, indicating that the data packet only contains the header, the data content part is empty, the area ID is empty, and the destination of the message is (0110001000000000) 2 = (b0) 16 , indicating that the object that finally receives the data packet is Wi- For all RFID tags in the entire Fi network, the source of the message is the ID of the monitoring center, and the destination address is (0111100100000000) 2 =(y0) 16 , which means that the object receiving the data packet is all readers in the entire Wi-Fi network, and the source address is The ID of the wireless AP that sent the message; 步骤17)Wi-Fi-RFID读写器收到无线AP的“标签信息采集”消息后,发送电磁波,RFID标签收到电磁波后,线圈产生感应电流,将标签内置的信息通过电磁波发射出去;Step 17) After the Wi-Fi-RFID reader receives the "tag information collection" message from the wireless AP, it sends electromagnetic waves. After the RFID tag receives the electromagnetic wave, the coil generates an induced current, and the information built in the tag is emitted through the electromagnetic wave; 步骤18)读写器收到标签的电磁波后,转化为适合在Wi-Fi网络中通信的数据包,即为“标签采集响应”数据包,其中,消息类型为“标签采集响应”,总长度大于12字节,区域ID为空,消息归宿为监控中心ID,消息本源为集装箱RFID标签ID,目的地址为能与读写器直接通信的无线AP,源地址为读取标签信息的Wi-Fi-RFID读写器的ID,消息内容为集装箱RFID标签的内置信息;Step 18) After the reader receives the electromagnetic wave of the tag, it converts it into a data packet suitable for communication in the Wi-Fi network, which is the "tag collection response" data packet, where the message type is "tag collection response", and the total length More than 12 bytes, the area ID is empty, the destination of the message is the ID of the monitoring center, the source of the message is the container RFID tag ID, the destination address is the wireless AP that can communicate directly with the reader, and the source address is the Wi-Fi that reads the tag information - The ID of the RFID reader, the content of the message is the built-in information of the RFID tag of the container; 步骤19)无线AP之间通信,最终将“标签采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为最靠近网关的AP的ID,其余的消息不变;Step 19) Communicate between wireless APs, and finally send the "label collection response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, the source address is the ID of the AP closest to the gateway, and the rest of the messages are not Change; 步骤20)Wi-Fi-WSN网关将“标签采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 20) The Wi-Fi-WSN gateway sends the "label collection response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the rest of the messages remain unchanged; 步骤21)监控中心将收到的数据包存储到后台数据库的“RFID标签信息数据表”中;Step 21) The monitoring center stores the received data packets in the "RFID tag information data table" of the background database; 2.3采集集装箱位置信息2.3 Collect container location information 步骤22)WSN基站收到网关的“信息采集”消息后,在WSN全网内广播“位置信息采集”数据包,其中,消息类型为“位置信息采集”,总长度为12字节,表示数据包只含首部,数据内容部分为空,区域ID为空,消息归宿和目的地址都为(0110110100000000)2=(m0)16,表示接收该数据包的对象为WSN全网内的所有锚节点,消息本源为监控中心ID,源地址为基站节点ID;Step 22) After receiving the "information collection" message from the gateway, the WSN base station broadcasts the "location information collection" data packet in the entire WSN network. The message type is "location information collection" and the total length is 12 bytes, indicating the data The packet only contains the header, the data content part is empty, the area ID is empty, and the message destination and destination address are both (0110110100000000) 2 = (m0) 16 , which means that the objects receiving the data packet are all anchor nodes in the entire WSN network, The source of the message is the monitoring center ID, and the source address is the base station node ID; 步骤23)锚节点收到“位置信息采集”数据包后,广播该数据包;Step 23) After the anchor node receives the "location information collection" data packet, it broadcasts the data packet; 步骤24)定位节点和集装箱传感节点向所在分簇的簇头节点发送“位置采集响应”数据包,其中,消息类型为“位置采集响应”,总长度大于12字节,区域ID为该集装箱传感节点所在区域的定位节点ID,消息归宿为监控中心ID,消息本源和源地址都为该定位节点或集装箱传感节点ID,目的地址为该定位节点或集装箱传感器节点所在分簇的簇头节点ID,数据内容为接收到所在区域内所有锚节点的信号强度即RSSI值;Step 24) The positioning node and the container sensor node send a "position acquisition response" data packet to the cluster head node in the cluster where the message type is "position acquisition response", the total length is greater than 12 bytes, and the area ID is the container The ID of the positioning node in the area where the sensor node is located, the destination of the message is the ID of the monitoring center, the source and source address of the message are both the ID of the positioning node or the container sensor node, and the destination address is the cluster head of the cluster where the positioning node or container sensor node is located Node ID, the data content is the received signal strength of all anchor nodes in the area, that is, the RSSI value; 步骤25)簇头节点通过中继节点将数据包传送给上层的簇头节点,直到发送给基站节点为止;Step 25) The cluster head node transmits the data packet to the upper cluster head node through the relay node until it is sent to the base station node; 步骤26)基站节点将“位置采集响应”数据包发送给Wi-Fi-WSN网关,此时目的地址为网关ID,源地址为WSN基站ID,其余的消息不变;Step 26) The base station node sends the "location collection response" data packet to the Wi-Fi-WSN gateway. At this time, the destination address is the gateway ID, the source address is the WSN base station ID, and the rest of the messages remain unchanged; 步骤27)Wi-Fi-WSN网关将“位置采集响应”数据包发送给监控中心,此时目的地址为监控中心ID,源地址为网关ID,其余的消息不变;Step 27) The Wi-Fi-WSN gateway sends the "location collection response" data packet to the monitoring center. At this time, the destination address is the monitoring center ID, the source address is the gateway ID, and the rest of the messages remain unchanged; 步骤28)监控中心将收到的数据包存储到后台数据库的“传感节点/定位节点位置信息数据表”中;Step 28) The monitoring center stores the received data packets in the "sensing node/positioning node position information data table" of the background database; 三、信息处理过程3. Information processing process 3.1位置信息计算3.1 Calculation of location information 步骤29)监控中心从后台数据库中找出“传感节点/定位节点位置信息数据表”,将表中的数据按照区域ID分为m*n组,每组利用W-KNN定位算法来计算定位节点与该区域内所有集装箱节点之间的距离d(e,f),
Figure FDA00003521855100041
其中e表示区域a内的定位节点,f表示区域a内集装箱传感节点且f=1,2,…,la;la表示区域a内集装箱节点数,ka表示区域a内的锚节点数,
Figure FDA00003521855100042
表示区域a内第i个锚节点的权值,分别表示区域a内定位节点e、节点f对第i个锚节点的RSSI观测值;已知区域a定位节点的坐标为(x,y,z),x表示横坐标,y表示纵坐标,z表示竖坐标,则集装箱传感节点f的空间坐标为(x,y+d(e,f),z);监控中心将计算处理后的的数据存储到后台数据库的“传感器坐标信息数据表”中;
Step 29) The monitoring center finds the "sensing node/positioning node position information data table" from the background database, and divides the data in the table into m*n groups according to the area ID, and each group uses the W-KNN positioning algorithm to calculate the positioning The distance d(e, f) between the node and all container nodes in the area,
Figure FDA00003521855100041
Where e represents the positioning node in area a, f represents the container sensor node in area a and f=1, 2,..., l a ; l a represents the number of container nodes in area a, k a represents the anchor node in area a number,
Figure FDA00003521855100042
Indicates the weight of the i-th anchor node in area a, Respectively represent the RSSI observation values of the positioning node e and node f in the area a to the i-th anchor node; the coordinates of the positioning node in the known area a are (x, y, z), x represents the abscissa, y represents the ordinate, and z Indicates the vertical coordinate, then the spatial coordinate of the container sensor node f is (x, y+d(e, f), z); the monitoring center stores the calculated and processed data in the "sensor coordinate information data table" of the background database middle;
3.2所有信息合成3.2 Synthesis of all information 步骤30)监控中心从后台数据库中找出“传感器传感信息数据表”、“RFID标签信息数据表”、“传感器坐标信息数据表”,按照“集装箱传感节点ID与集装箱RFID标签ID一一对应”的规则将三个表中的数据合并为一条“集装箱数据”信息,并存储到后台数据库的“集装箱信息数据表”中,其中,集装箱ID即为集装箱内传感节点的ID或者RFID标签的ID,集装箱消息内容包含三部分信息,即传感器传感信息、RFID标签信息和传感器位置坐标信息;Step 30) The monitoring center finds the "sensor sensing information data table", "RFID tag information data table", and "sensor coordinate information data table" from the background database, and according to the "container sensor node ID and container RFID tag ID one by one The rule of "corresponding" combines the data in the three tables into a "container data" information, and stores it in the "container information data table" of the background database, where the container ID is the ID or RFID tag of the sensor node in the container The ID of the container message contains three parts of information, namely sensor sensing information, RFID tag information and sensor location coordinate information; 四、信息发送过程4. Information sending process 步骤31)监控中心通过GSM模块,向通信卫星发送“集装箱数据”消息;通信卫星再将其转发给地面的接收塔;接收塔再通过Internet或者GSM网向地面总控中心或者移动终端发送此实时跟踪定位消息。Step 31) The monitoring center sends the "container data" message to the communication satellite through the GSM module; the communication satellite then forwards it to the receiving tower on the ground; Track location messages.
CN2011101571872A 2011-06-13 2011-06-13 A container logistics tracking and positioning method based on tag sensor network Active CN102325345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101571872A CN102325345B (en) 2011-06-13 2011-06-13 A container logistics tracking and positioning method based on tag sensor network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101571872A CN102325345B (en) 2011-06-13 2011-06-13 A container logistics tracking and positioning method based on tag sensor network

Publications (2)

Publication Number Publication Date
CN102325345A CN102325345A (en) 2012-01-18
CN102325345B true CN102325345B (en) 2013-11-27

Family

ID=45452999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101571872A Active CN102325345B (en) 2011-06-13 2011-06-13 A container logistics tracking and positioning method based on tag sensor network

Country Status (1)

Country Link
CN (1) CN102325345B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517402B (en) * 2012-06-25 2018-04-13 北京大学深圳研究生院 A kind of wireless sensing network terminal registration of object-oriented formalized description and control method
CN102867199B (en) * 2012-08-28 2016-04-13 暨南大学 A kind of logistics container multi parameter intallingent monitoring system and monitoring method
CN103049774B (en) * 2012-12-14 2015-07-22 华中科技大学 Method for realizing automatic location of moving objects in mould processing process
CN103604434A (en) * 2013-01-07 2014-02-26 江苏大学 WSN base positioning system and method of trailer for drop and pull transportation
CN103577949A (en) * 2013-01-08 2014-02-12 江苏大学 Drop and pull transport towing tractor and trailer scheduling system and method based on WSN
CN103577950A (en) * 2013-01-08 2014-02-12 江苏大学 System and method for matching drop and pull transport truck tractor and trailer based on WSN
WO2014172883A1 (en) * 2013-04-25 2014-10-30 Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited A system and method for monitoring an object in an environment
CN103347309B (en) * 2013-06-08 2016-04-20 大连海事大学 Based on boat-carrying dangerous material condition monitoring system and the method for wireless sensor network
US9234757B2 (en) 2013-11-29 2016-01-12 Fedex Corporate Services, Inc. Determining node location using a variable power characteristic of a node in a wireless node network
CN104717664B (en) * 2013-12-13 2019-08-23 方正国际软件(北京)有限公司 The cloth arranging method of required hotspot device in a kind of wifi indoor positioning
CN103745325A (en) * 2013-12-19 2014-04-23 柳州职业技术学院 Internet of things logistics communication system based on data fusion
CN103929481B (en) * 2014-04-11 2017-06-16 东南大学 For the WSID label apparatus and its operation method of container management and control
CN103944980B (en) * 2014-04-11 2017-04-05 东南大学 For the WSID information Perception system and methods of container network of things management and control
US10453023B2 (en) * 2014-05-28 2019-10-22 Fedex Corporate Services, Inc. Methods and node apparatus for adaptive node communication within a wireless node network
CN105303338A (en) * 2014-06-04 2016-02-03 新立迅软件服务(青岛)有限公司 Internet of things technology-based container logistics tracking global network exchange service platform
CN104656076A (en) * 2015-02-13 2015-05-27 武汉大学 Ship remote self-positioning method and system based on reference ship information guidance
CN104899686A (en) * 2015-05-27 2015-09-09 国网山东省电力公司经济技术研究院 Drawing tracking system and method for same
US9661458B2 (en) 2015-08-03 2017-05-23 The Boeing Company Method for associating wireless sensors to physical locations
CN108351398A (en) * 2015-08-10 2018-07-31 霍尼韦尔国际公司 For the dynamic anchor point network of first respondent's situation
CN106921543B (en) * 2015-12-28 2020-04-03 美的集团股份有限公司 Home gateway, intelligent home system and Wifi signal relaying method
WO2017189198A1 (en) 2016-04-29 2017-11-02 Honeywell International Inc. Self-healing mesh network based location tracking and information exchange using drones as mobile access point
CN109104494B (en) * 2018-09-07 2020-01-03 孙思涵 DNA-based children missing or losing positioning method and system under wireless sensor network
CN111290315B (en) * 2020-02-20 2021-03-23 航天行云科技有限公司 Dual-mode Internet of things control system and method
CN113271347B (en) * 2021-04-29 2021-12-14 广东海洋大学 Distributed storage method and system for acquiring complex marine environment data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042640A2 (en) * 2007-09-24 2009-04-02 Savi Technology, Inc. Method and apparatus for tracking and monitoring containers
CN101426291A (en) * 2007-10-29 2009-05-06 吉林市曼博科技有限公司 General base station based on wireless sensor network
CN101923779A (en) * 2010-07-20 2010-12-22 四川九洲电器集团有限责任公司 Sensor network-based intelligent public traffic scheduling and monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042640A2 (en) * 2007-09-24 2009-04-02 Savi Technology, Inc. Method and apparatus for tracking and monitoring containers
CN101855932A (en) * 2007-09-24 2010-10-06 Savi技术公司 Be used for following the tracks of method and apparatus with monitoring container
CN101426291A (en) * 2007-10-29 2009-05-06 吉林市曼博科技有限公司 General base station based on wireless sensor network
CN101923779A (en) * 2010-07-20 2010-12-22 四川九洲电器集团有限责任公司 Sensor network-based intelligent public traffic scheduling and monitoring system

Also Published As

Publication number Publication date
CN102325345A (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN102325345B (en) A container logistics tracking and positioning method based on tag sensor network
CN104185275A (en) Indoor positioning method based on WLAN
CN104300646B (en) A kind of multiband Intelligent charging spot system supporting car to network
CN104135749B (en) Wireless sensor network mobile beacon paths planning method based on network density sub-clustering
CN100520852C (en) Intellective traffic information system based on mobile mesh network
CN104468808A (en) Emergency logistics management system and method for obtaining goods state information
CN106125045A (en) A kind of ADAPTIVE MIXED indoor orientation method based on Wi Fi
US20190261433A1 (en) Software architecture for iot device collector
CN106792549A (en) Indoor locating system based on WiFi fingerprints and its stop pick-up navigation system
US20200213822A1 (en) Real-time location system, device and methods
CN111461251A (en) Indoor positioning method of WiFi fingerprint based on random forest and self-encoder
CN101695152A (en) Indoor positioning method and system thereof
CN104754683A (en) Wireless sensor network data acquisition method based on multi-hop routing and mobile elements
CN113596989A (en) Indoor positioning method and system for intelligent workshop
CN107911791A (en) A kind of site staff's alignment system and method based on iBeacon
Mukhtar et al. Machine learning-enabled localization in 5g using lidar and rss data
CN203827384U (en) Wireless Mesh network emergency meteorological observation system in double-subnet mode
CN106292611A (en) A kind of wisdom agricultural control system based on cloud computing
CN108668218A (en) A kind of method of locating terminal and device
Zhang et al. Random forests‐enabled context detections for long‐term evolution network forrailway
CN113347561B (en) Multi-dimensional scaling node localization method based on improved particle swarm
CN101720056A (en) Method for tracking a plurality of equipment-free objects based on multi-channel and support vector regression
Dorle et al. Vehicle classification and communication using zigbee protocol
CN109257701B (en) A SX1280-based wide-area IoT node location method and system
CN102869127B (en) WLAN (wireless local area network) based antenna switching system and switching method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20120118

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: Nanjing Post & Telecommunication Univ.

Contract record no.: 2016320000219

Denomination of invention: Container logistic tracking and positioning method based on tag sensor network

Granted publication date: 20131127

License type: Common License

Record date: 20161121

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Jiangsu Nanyou IOT Technology Park Ltd.

Assignor: Nanjing Post & Telecommunication Univ.

Contract record no.: 2016320000219

Date of cancellation: 20180116

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210416

Address after: 210003, No. 66, new exemplary Road, Nanjing, Jiangsu

Patentee after: NANJING University OF POSTS AND TELECOMMUNICATIONS

Patentee after: JIANGSU INTELLITRAINS Co.,Ltd.

Address before: 210003, No. 66, new exemplary Road, Nanjing, Jiangsu

Patentee before: NANJING University OF POSTS AND TELECOMMUNICATIONS

Patentee before: NANJING SAMPLE TECHNOLOGY GROUP Co.,Ltd.