CN102260501A - Method for preparing red nano-fluorescent material - Google Patents
Method for preparing red nano-fluorescent material Download PDFInfo
- Publication number
- CN102260501A CN102260501A CN2011101368981A CN201110136898A CN102260501A CN 102260501 A CN102260501 A CN 102260501A CN 2011101368981 A CN2011101368981 A CN 2011101368981A CN 201110136898 A CN201110136898 A CN 201110136898A CN 102260501 A CN102260501 A CN 102260501A
- Authority
- CN
- China
- Prior art keywords
- solution
- niobate
- room temperature
- water
- fluorescent material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000000243 solution Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011259 mixed solution Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 239000000706 filtrate Substances 0.000 claims abstract description 7
- 239000002244 precipitate Substances 0.000 claims abstract description 7
- 229910000906 Bronze Inorganic materials 0.000 claims abstract description 6
- 239000010974 bronze Substances 0.000 claims abstract description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 239000010937 tungsten Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims abstract description 3
- 230000008018 melting Effects 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 238000005201 scrubbing Methods 0.000 claims 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000004020 luminiscence type Methods 0.000 abstract description 2
- 238000003760 magnetic stirring Methods 0.000 abstract 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- -1 rare earth ions Chemical class 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002821 niobium Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical group Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- WTHXTWHYLIZJBH-UHFFFAOYSA-N acetic acid;azane Chemical compound N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTHXTWHYLIZJBH-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种红色纳米荧光材料的制备方法,该材料以四方钨青铜型铌酸盐为基质,Eu3+掺杂而制得。制备方法为将Nb2O5与KOH混合,在360~400℃熔融条件下保持10~60分钟。将混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用乙醇和水的混合液洗涤得到可溶性铌酸盐前驱物,再将其溶于水,加入Gd(NO3)3、Eu(NO3)3及乙二胺四乙酸混合溶液,在室温下磁力搅拌后滴加KOH溶液,pH值控制在7~1。将溶液放入反应釜,140~200℃下反应6~48h后,冷却至室温。将得到的沉淀洗涤、过滤、干燥、焙烧即可。本制备方法工艺简单,原料价廉易得,反应过程能耗低且环保高效,制备的荧光材料在595~630nm内有很强的发光,可用于固态光源、照明、激光二极管、光能转换器及显示设备等领域。
The invention discloses a preparation method of a red nano fluorescent material. The material is prepared by using tetragonal tungsten bronze niobate as a matrix and doped with Eu 3+ . The preparation method is to mix Nb 2 O 5 and KOH, and keep it under the melting condition of 360-400°C for 10-60 minutes. The mixture was cooled to room temperature, dissolved in water and filtered, the filtrate was concentrated and crystallized, and then washed with a mixture of ethanol and water to obtain a soluble niobate precursor, which was then dissolved in water, and Gd(NO 3 ) 3 , Eu( NO 3 ) 3 and ethylenediaminetetraacetic acid mixed solution, after magnetic stirring at room temperature, KOH solution was added dropwise, and the pH value was controlled at 7-1. Put the solution into a reaction kettle, react at 140-200°C for 6-48 hours, and then cool to room temperature. The obtained precipitate can be washed, filtered, dried and roasted. The preparation method has simple process, cheap and easy-to-obtain raw materials, low energy consumption in the reaction process, and high environmental protection and high efficiency. The prepared fluorescent material has strong luminescence in the range of 595-630 nm, and can be used for solid-state light sources, lighting, laser diodes, and light energy converters. and display devices.
Description
技术领域 technical field
本发明涉及一种红色荧光材料的制备方法,具体指一种可用于固态光源的红色稀土掺杂纳米荧光材料的的制备方法。The invention relates to a preparation method of a red fluorescent material, in particular to a preparation method of a red rare earth-doped nano fluorescent material which can be used for a solid-state light source.
背景技术 Background technique
当前,多数国家用于照明灯的能耗约占发电量的20%。所以,研究机构正大力研发下一代高效节能固态光源作为本世纪照明的后备军。商业化的固体白光光源是一种多颜色的混合光,普遍采用红、绿、蓝三种基色荧光粉的办法混合制得。因而高效三基色荧光粉的开发对于固态光源技术的发展至关重要。目前基于GaN固态光源的红色荧光粉是Eu2+掺杂的氮硅酸盐,这类红色荧光粉发光主要集中在深红区域,流明效率较低。故红色荧光粉低的流明效率和差的色彩还原性成为固态光源技术发展的瓶颈。Currently, lighting consumes approximately 20% of electricity generation in most countries. Therefore, research institutions are vigorously developing the next generation of high-efficiency and energy-saving solid-state light sources as the reserve army for lighting in this century. The commercialized solid white light source is a multi-color mixed light, which is generally prepared by mixing three primary color phosphors of red, green and blue. Therefore, the development of high-efficiency trichromatic phosphors is crucial to the development of solid-state light source technology. At present, the red phosphor powder based on GaN solid-state light source is Eu 2+ doped nitrogen silicate. This kind of red phosphor emits light mainly in the deep red region, and its lumen efficiency is low. Therefore, the low lumen efficiency and poor color reproduction of red phosphor become the bottleneck of the development of solid-state light source technology.
与Eu2+掺杂的红色荧光粉比较,大多数Eu3+掺杂的纳米红色荧光粉发光峰位集中在610nm左右,其发光色彩还原性好,色纯度和流明效率高。另外,Eu3+掺杂的纳米红色荧光粉还具有物理化学稳定性高、荧光寿命长等特点。因此Eu3+掺杂的纳米红色荧光粉有望替代Eu2+掺杂的氮硅酸盐。然而在近紫外或蓝光激发下,Eu3+掺杂纳米材料的量子效率普遍不高,因此有必要开发新型高量子效率Eu3+掺杂的纳米红色荧光粉。Compared with Eu 2+ -doped red phosphors, most Eu 3+ -doped nano-red phosphors have a luminous peak at around 610nm, and their luminous color reproduction is good, with high color purity and lumen efficiency. In addition, the Eu 3+ doped nano-red phosphor also has the characteristics of high physical and chemical stability and long fluorescence lifetime. Therefore, Eu 3+ doped nano red phosphor is expected to replace Eu 2+ doped nitrogen silicate. However, under near-ultraviolet or blue light excitation, the quantum efficiency of Eu 3+ doped nanomaterials is generally not high, so it is necessary to develop new high quantum efficiency Eu 3+ doped nano red phosphors.
钨青铜型铌酸盐具有四方对称结构,折射率高且物理化学稳定性好,是一种典型的荧光基质材料。由于其具有独特的晶体结构,故可以对其进行三价金属离子(包括稀土离子和过渡族离子)的替代和掺杂,使其具有不同颜色的发光。可以预测,此类材料将在照明、激光、光能转换器及显示设备等诸多领域有广泛的应用前景。Tungsten bronze niobate has a tetragonal symmetrical structure, high refractive index and good physical and chemical stability, and is a typical fluorescent host material. Because of its unique crystal structure, it can be replaced and doped with trivalent metal ions (including rare earth ions and transition group ions) to make it emit light of different colors. It can be predicted that such materials will have broad application prospects in many fields such as lighting, lasers, light energy converters and display devices.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种红色纳米荧光材料的制备方法,这种制备方法是以四方钨青铜型铌酸盐为基质,三价Eu3+掺杂而制得红色高效纳米荧光材料。该方法以五氧化二铌为原料,低温合成,工艺简单,原料易得,在近紫外光激发下表现出高的量子效率和色纯度,有望在固态光源、照明、激光、光能转换器及显示设备等领域得到重要的应用。The technical problem to be solved by the present invention is to provide a preparation method of red nano-fluorescent material. This preparation method uses tetragonal tungsten bronze niobate as the substrate and is doped with trivalent Eu 3+ to obtain red high-efficiency nano-fluorescent material. . The method uses niobium pentoxide as raw material, low-temperature synthesis, simple process, easy-to-obtain raw materials, high quantum efficiency and color purity under near-ultraviolet light excitation, and is expected to be used in solid-state light sources, lighting, lasers, light energy converters and Display equipment and other fields have obtained important applications.
本发明要解决的技术问题由如下方案来实现:1、一种红色纳米荧光材料的制备方法,其特征是:所述荧光材料是以四方钨青铜型铌酸盐为基质,三价Eu3+掺杂而制得,制备方法为以下步骤:The technical problem to be solved in the present invention is realized by following scheme: 1, a kind of preparation method of red nano fluorescent material, it is characterized in that: described fluorescent material is to be matrix with tetragonal tungsten bronze type niobate, trivalent Eu 3+ Doped and prepared, the preparation method is the following steps:
1)将Nb2O5与KOH按质量比w(Nb2O5)∶w(KOH)=1∶2~4混合,在管式炉中360~400℃熔融条件下保持10~60分钟;1) Mix Nb 2 O 5 and KOH according to the mass ratio w(Nb 2 O 5 ):w(KOH)=1:2~4, and keep it in a tube furnace under the melting condition of 360~400°C for 10~60 minutes;
2)将上述混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用体积比为1∶1的乙醇和水的混合液洗涤得到可溶性铌酸盐前驱物;2) cooling the above mixture to room temperature, dissolving in water and filtering, concentrating and crystallizing the filtrate, and washing with a mixture of ethanol and water with a volume ratio of 1:1 to obtain a soluble niobate precursor;
3)取Gd2O3和Eu2O3加入稀HNO3,按照物质的量比n(Gd)∶n(Eu)=19~3∶1得到Gd(NO3)3、Eu(NO3)3混合溶液A;3) Take Gd 2 O 3 and Eu 2 O 3 and add dilute HNO 3 to get Gd(NO 3 ) 3 , Eu(NO 3 ) according to the ratio of substances n(Gd):n(Eu)=19~3:1 3 mixed solution A;
4)取乙二胺四乙酸加入去离子水中,加入比例为n(乙二胺四乙酸)∶V(H2O)=0.0005~0.002mol∶50ml,再按照物质的量比为n(乙二胺四乙酸)∶(n(Gd)+n(Eu))=0.5~2∶1加入混合液A中,得到Gd(NO3)3、Eu(NO3)3及乙二胺四乙酸混合溶液B;4) Take ethylenediaminetetraacetic acid and add it to deionized water, the addition ratio is n(ethylenediaminetetraacetic acid):V(H 2 O)=0.0005~0.002mol:50ml, and then according to the amount of substances, the ratio is n(ethylenediaminetetraacetic acid) Ammonium tetraacetic acid): (n(Gd)+n(Eu))=0.5~2:1 is added to the mixed solution A to obtain a mixed solution of Gd(NO 3 ) 3 , Eu(NO 3 ) 3 and ethylenediamine tetraacetic acid B;
5)取上述铌酸盐前驱物溶于去离子水,加入比例为n(铌酸盐)∶V(H2O)=0.001~0.003mol∶50ml,再按照物质的量比为n(铌酸盐)∶n(混合液B)=1~3∶1加入混合液B中,在室温下磁力搅拌10~60分钟成为混合液C;5) Take the above-mentioned niobate precursor and dissolve it in deionized water, and add the ratio of n(niobate):V(H 2 O)=0.001~0.003mol:50ml, and then make n(niobate Salt):n(mixed solution B)=1~3:1 was added to mixed solution B, and magnetically stirred at room temperature for 10~60 minutes to become mixed solution C;
6)在混合液C中逐滴滴加KOH溶液,控制溶液的pH值在7~14;6) Add KOH solution dropwise to the mixed solution C, and control the pH value of the solution at 7-14;
7)将上述溶液放入反应釜,140~200℃下反应6~48h后,冷却至室温;7) Put the above solution into the reactor, react at 140-200°C for 6-48 hours, then cool to room temperature;
8)将反应所得沉淀用去离子水反复洗涤3~5次,在60~100℃下干燥2~6小时,并在500~1000℃下焙烧即成。8) The precipitate obtained by the reaction is repeatedly washed with deionized water for 3 to 5 times, dried at 60 to 100°C for 2 to 6 hours, and calcined at 500 to 1000°C.
上述Nb2O5与KOH混合物制备的前驱物,可由铌的盐类代替,此时不需要焙烧,可将其溶于相关溶剂制成溶液。铌的盐类包括氯化铌、乙醇铌等,相关溶剂指醇类,如甲醇、乙醇等。The precursor prepared by the above-mentioned mixture of Nb 2 O 5 and KOH can be replaced by niobium salts. At this time, roasting is not required, and it can be dissolved in a relevant solvent to form a solution. Niobium salts include niobium chloride, niobium ethoxide, etc., and related solvents refer to alcohols, such as methanol, ethanol, etc.
本制备方法制得的红色荧光纳米材料K2GdNb5O15具有高分散性,在595~630nm处有很强的发光,量子效率为80.9%。The red fluorescent nanometer material K 2 GdNb 5 O 15 prepared by the preparation method has high dispersion, strong luminescence at 595-630 nm, and quantum efficiency of 80.9%.
本发明具有以下优点:The present invention has the following advantages:
1、实现了三价Eu3+有效掺杂进入铌酸盐晶格中,得到以四方钨青铜型铌酸盐为基质、Eu3+掺杂离子为发光中心的具有高量子效率和高色纯度的红色纳米荧光材料。1. Realized the effective doping of trivalent Eu 3+ into the niobate lattice, and obtained tetragonal tungsten bronze niobate as the matrix and Eu 3+ doped ions as the luminescence center with high quantum efficiency and high color purity. red nano fluorescent material.
2、制备工艺简单,操作易行,原料价廉易得,适合工业化生产;反应过程能耗低,属于绿色环保、高效益产业。2. The preparation process is simple, the operation is easy, the raw materials are cheap and easy to obtain, and it is suitable for industrial production; the reaction process has low energy consumption, and belongs to the industry of green environmental protection and high efficiency.
3、发光材料用于固态光源、照明、激光二极管、光能转换器及显示设备等领域。3. Luminescent materials are used in fields such as solid-state light sources, lighting, laser diodes, light energy converters, and display devices.
附图说明 Description of drawings
图1为本方法制得红色纳米荧光材料K2GdNb5O15的XRD图Figure 1 is the XRD pattern of the red nano fluorescent material K 2 GdNb 5 O 15 prepared by this method
(a-未焙烧样品;b-焙烧1000℃样品)(a-unroasted sample; b-roasted 1000°C sample)
图2为本方法制得红色纳米荧光材料K2GdNb5O15的荧光光谱图Fig. 2 is the fluorescence spectrum diagram of the red nano-fluorescent material K2GdNb5O15 prepared by this method
(a,b-未焙烧样品的激发谱和发射谱;c,d-焙烧1000℃样品的激发谱和发射谱)(a, b-excitation and emission spectra of uncalcined samples; c, d-excitation and emission spectra of samples calcined at 1000℃)
具体实施方式 Detailed ways
下面通过实施例对本发明作进一步说明。Below by embodiment the present invention will be further described.
实施例1:称取13.3gNb2O5和26gKOH放入坩埚,在400℃下焙烧30分钟;将上述混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用乙醇和水的混合液(体积比1∶1)洗涤得到可溶性铌酸盐前驱物,并称取1.82g的铌酸盐前驱物溶于水;将0.168g的Gd2O3和0.009g的Eu2O3溶于HNO3溶液,之后加入0.12g的乙二胺四乙酸;之后将此混合溶液加入到铌酸盐溶液中,在室温下磁力搅拌10分钟;逐滴滴加KOH溶液,调节溶液的pH值为13;再将上述溶液移入聚四氟乙烯内衬的反应釜中,200℃下保温24h后冷却至室温;取出反应釜将得到的沉淀洗涤、过滤并干燥。Example 1: Weigh 13.3g Nb 2 O 5 and 26g KOH into a crucible, bake at 400°C for 30 minutes; cool the above mixture to room temperature, dissolve it in water and filter, concentrate the filtrate to crystallize, and then use a mixture of ethanol and water (volume ratio 1:1) to obtain a soluble niobate precursor, and weighed 1.82g of niobate precursor dissolved in water; 0.168g of Gd 2 O 3 and 0.009g of Eu 2 O 3 dissolved in HNO 3 solution, then add 0.12g of ethylenediaminetetraacetic acid; then add this mixed solution into the niobate solution, and stir magnetically at room temperature for 10 minutes; add KOH solution drop by drop, and adjust the pH value of the solution to 13; The above solution was then transferred into a polytetrafluoroethylene-lined reactor, kept at 200°C for 24 hours, and then cooled to room temperature; the precipitate obtained was taken out of the reactor, washed, filtered and dried.
所得样品的XRD图(测试条件为:电压40kV,电流40mA,扫描速度1°/min)表明:样品结晶不完全,晶粒尺寸较小(<2nm)(见图1a)。The XRD pattern of the obtained sample (test conditions: voltage 40kV, current 40mA, scan speed 1°/min) shows that the crystallization of the sample is not complete, and the grain size is small (<2nm) (see Figure 1a).
所得样品的荧光光谱图(测试条件为:λex=394nm,λem=614nm,狭缝宽0.5nm,步长1nm,积分时间0.3s)表明:该荧光材料在300~460nm区有很强的吸收,在595~630nm处有很强的荧光(见图2a和2b),内量子效率可达73.5%。The fluorescence spectrogram of the obtained sample (test conditions: λ ex = 394nm, λ em = 614nm, slit width 0.5nm, step length 1nm, integration time 0.3s) shows that: the fluorescent material has a strong intensity in the 300-460nm region. Absorption, strong fluorescence at 595-630nm (see Figure 2a and 2b), the internal quantum efficiency can reach 73.5%.
实施例2:称取13.3gNb2O5和26gKOH放入坩埚,在400℃下焙烧30分钟;将上述混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用乙醇和水的混合液(体积比1∶1)洗涤得到可溶性铌酸盐前驱物,并称取1.82g的铌酸盐前驱物溶于水;将0.168g的Gd2O3和0.009g的Eu2O3溶于HNO3溶液,之后加入0.12g的乙二胺四乙酸;之后将此混合溶液加入到铌酸盐溶液中,在室温下磁力搅拌10分钟;逐滴滴加KOH溶液,调节溶液的pH值为13;再将上述溶液移入聚四氟乙烯内衬的反应釜中,200℃下保温24h后冷却至室温;取出反应釜将得到的沉淀洗涤、过滤并干燥;之后在焙烧炉中1000℃下焙烧2h。Example 2: Weigh 13.3g Nb 2 O 5 and 26g KOH into a crucible, bake at 400°C for 30 minutes; cool the above mixture to room temperature, dissolve it in water and filter, concentrate the filtrate to crystallize, and then use a mixture of ethanol and water (Volume ratio 1:1) to obtain a soluble niobate precursor, and weigh 1.82g of niobate precursor dissolved in water; 0.168g of Gd 2 O 3 and 0.009g of Eu 2 O 3 dissolved in HNO 3 solution, then add 0.12 g of ethylenediaminetetraacetic acid; then add this mixed solution into the niobate solution, and stir magnetically at room temperature for 10 minutes; add KOH solution drop by drop, and adjust the pH value of the solution to 13; Then the above solution was moved into a polytetrafluoroethylene-lined reactor, kept at 200°C for 24 hours and then cooled to room temperature; the precipitate obtained was taken out of the reactor, washed, filtered and dried; then roasted in a roaster at 1000°C for 2 hours.
所得样品的XRD图(测试条件为:电压40kV,电流40mA,扫描速度1°/min)表明:样品显示K2GdNb5O15的特征峰(见图1b)。The XRD pattern of the obtained sample (test conditions: voltage 40kV, current 40mA, scan speed 1°/min) shows that the sample shows the characteristic peak of K 2 GdNb 5 O 15 (see Figure 1b).
所得样品的荧光光谱图(测试条件为:λex=394nm,λem=614nm,狭缝宽0.5nm,步长1nm,积分时间0.3s)表明:该荧光材料同样在300~460nm区有很强的吸收,在595~630nm处有很强的荧光。相比于未焙烧样品,此样品的荧光峰强有所增强(见图2c和2d),内量子效率也增大,可达80.9%。The fluorescence spectrogram of the obtained sample (test conditions: λ ex = 394nm, λ em = 614nm, slit width 0.5nm, step length 1nm, integration time 0.3s) shows that this fluorescent material also has a strong emission in the 300-460nm region. Absorption, strong fluorescence at 595-630nm. Compared with the unbaked sample, the fluorescence peak intensity of this sample is enhanced (see Figure 2c and 2d), and the internal quantum efficiency is also increased, up to 80.9%.
实施例3:称取13.3gNb2O5和26gKOH放入坩埚,在400℃下焙烧30分钟;将上述混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用乙醇和水的混合液(体积比1∶1)洗涤得到可溶性铌酸盐前驱物,并称取1.82g的铌酸盐前驱物溶于水;将0.168g的Gd2O3和0.009g的Eu2O3溶于HNO3溶液,之后加入0.12g的乙二胺四乙酸;之后将此混合溶液加入到铌酸盐溶液中,在室温下磁力搅拌10分钟;逐滴滴加KOH溶液,调节溶液的pH值为9;再将上述溶液移入聚四氟乙烯反应釜中,140℃下保温48h后冷却至室温;取出反应釜将得到的沉淀洗涤、过滤并干燥。Example 3: Weigh 13.3g Nb 2 O 5 and 26g KOH into a crucible, bake at 400°C for 30 minutes; cool the above mixture to room temperature, dissolve it in water and filter, concentrate the filtrate to crystallize, and then use a mixture of ethanol and water (Volume ratio 1:1) to obtain a soluble niobate precursor, and weigh 1.82g of niobate precursor dissolved in water; 0.168g of Gd 2 O 3 and 0.009g of Eu 2 O 3 dissolved in HNO 3 solution, then add 0.12g of ethylenediaminetetraacetic acid; then add this mixed solution into the niobate solution, and stir magnetically at room temperature for 10 minutes; add KOH solution drop by drop, and adjust the pH value of the solution to 9; The above solution was then transferred into a polytetrafluoroethylene reactor, kept at 140°C for 48 hours, and then cooled to room temperature; the precipitate obtained was taken out of the reactor, washed, filtered and dried.
实施例4:称取13.3gNb2O5和26gKOH放入坩埚,在400℃下焙烧30分钟;将上述混合物冷却至室温,溶于水过滤,将滤液浓缩结晶,再用乙醇和水的混合液(体积比1∶1)洗涤得到可溶性铌酸盐前驱物,并称取1.82g的铌酸盐前驱物溶于水;将0.168g的Gd2O3和0.009g的Eu2O3溶于HNO3溶液,之后加入0.6g的乙二胺四乙酸;之后将此混合溶液加入到铌酸盐溶液中,在室温下磁力搅拌10分钟;逐滴滴加KOH溶液,调节溶液的pH值为13;再将上述溶液移入聚四氟乙烯反应釜中,200℃下保温24h后冷却至室温;取出反应釜将得到的沉淀洗涤、过滤并干燥。Example 4: Weigh 13.3g Nb 2 O 5 and 26g KOH into a crucible, bake at 400°C for 30 minutes; cool the above mixture to room temperature, dissolve it in water and filter, concentrate the filtrate to crystallize, and then use a mixture of ethanol and water (Volume ratio 1:1) to obtain a soluble niobate precursor, and weigh 1.82g of niobate precursor dissolved in water; 0.168g of Gd 2 O 3 and 0.009g of Eu 2 O 3 dissolved in HNO 3 solution, then add 0.6g of ethylenediaminetetraacetic acid; then add this mixed solution into the niobate solution, and stir magnetically at room temperature for 10 minutes; add KOH solution drop by drop, and adjust the pH value of the solution to 13; The above solution was then transferred into a polytetrafluoroethylene reactor, kept at 200° C. for 24 hours, and then cooled to room temperature; the precipitate obtained was taken out of the reactor, washed, filtered and dried.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101368981A CN102260501B (en) | 2011-05-17 | 2011-05-17 | Method for preparing red nano-fluorescent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101368981A CN102260501B (en) | 2011-05-17 | 2011-05-17 | Method for preparing red nano-fluorescent material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102260501A true CN102260501A (en) | 2011-11-30 |
CN102260501B CN102260501B (en) | 2013-12-04 |
Family
ID=45007351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101368981A Expired - Fee Related CN102260501B (en) | 2011-05-17 | 2011-05-17 | Method for preparing red nano-fluorescent material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102260501B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103964505A (en) * | 2014-04-30 | 2014-08-06 | 南昌大学 | Method for preparing nano structure of columbite-type metal niobate |
CN105712403A (en) * | 2016-04-15 | 2016-06-29 | 合肥国轩高科动力能源有限公司 | Preparation method of nano niobium pentoxide powder for lithium ion battery cathode material |
CN106395903A (en) * | 2016-08-31 | 2017-02-15 | 周口师范学院 | Method for synthesis of hexaniobate and alkali metal salt using household microwave oven |
CN107188564A (en) * | 2017-07-14 | 2017-09-22 | 陕西师范大学 | A kind of Eu of high dielectric property3+Luminous ferroelectric ceramic material of the sodium calcium strontium niobate that adulterates and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1597097A (en) * | 2004-08-30 | 2005-03-23 | 南京大学 | Preparation method of high specific surface tantalate and niobate photo catalyst |
CN1635048A (en) * | 2003-12-30 | 2005-07-06 | 北京方正稀土科技研究所有限公司 | Rare earth red fluorescent powder and method for making same |
CN1637115A (en) * | 2004-12-14 | 2005-07-13 | 陕西师范大学 | Prepn of red phosphor |
CN101041465A (en) * | 2007-04-23 | 2007-09-26 | 山东大学 | Method for preparation of niobic acid zinc nano material |
CN101092563A (en) * | 2007-08-13 | 2007-12-26 | 李�瑞 | Phosphor powder in use for light emitting diode (LED), and preparation method |
CN101362084A (en) * | 2008-09-18 | 2009-02-11 | 武汉理工大学 | Visible-light response nano Bi3NbO7 photocatalyst preparation method and use thereof |
CN102002362A (en) * | 2010-09-14 | 2011-04-06 | 南昌大学 | Fluorescent powder for white light LED, preparation method and application thereof |
-
2011
- 2011-05-17 CN CN2011101368981A patent/CN102260501B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1635048A (en) * | 2003-12-30 | 2005-07-06 | 北京方正稀土科技研究所有限公司 | Rare earth red fluorescent powder and method for making same |
CN1597097A (en) * | 2004-08-30 | 2005-03-23 | 南京大学 | Preparation method of high specific surface tantalate and niobate photo catalyst |
CN1637115A (en) * | 2004-12-14 | 2005-07-13 | 陕西师范大学 | Prepn of red phosphor |
CN101041465A (en) * | 2007-04-23 | 2007-09-26 | 山东大学 | Method for preparation of niobic acid zinc nano material |
CN101092563A (en) * | 2007-08-13 | 2007-12-26 | 李�瑞 | Phosphor powder in use for light emitting diode (LED), and preparation method |
CN101362084A (en) * | 2008-09-18 | 2009-02-11 | 武汉理工大学 | Visible-light response nano Bi3NbO7 photocatalyst preparation method and use thereof |
CN102002362A (en) * | 2010-09-14 | 2011-04-06 | 南昌大学 | Fluorescent powder for white light LED, preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
> 20100531 孙阳艺,等 铕掺杂无机红色荧光材料的研究进展 75-78 1 第29卷, 第5期 * |
孙阳艺,等: "铕掺杂无机红色荧光材料的研究进展", <<电子元件与材料>> * |
张凯,等: "白光LED用荧光粉的研究进展", 《材料导报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103964505A (en) * | 2014-04-30 | 2014-08-06 | 南昌大学 | Method for preparing nano structure of columbite-type metal niobate |
CN103964505B (en) * | 2014-04-30 | 2016-01-27 | 南昌大学 | A kind of preparation method of columbite type metal niobate nanostructure |
CN105712403A (en) * | 2016-04-15 | 2016-06-29 | 合肥国轩高科动力能源有限公司 | Preparation method of nano niobium pentoxide powder for lithium ion battery cathode material |
CN106395903A (en) * | 2016-08-31 | 2017-02-15 | 周口师范学院 | Method for synthesis of hexaniobate and alkali metal salt using household microwave oven |
CN107188564A (en) * | 2017-07-14 | 2017-09-22 | 陕西师范大学 | A kind of Eu of high dielectric property3+Luminous ferroelectric ceramic material of the sodium calcium strontium niobate that adulterates and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102260501B (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106753359B (en) | A kind of blue light excitation Mn4+The oxyfluoride red fluorescence powder and preparation method of doping | |
CN108003872B (en) | Fluoride red phosphor for white light LED excited by blue light and method for its preparation and modification | |
CN102260501B (en) | Method for preparing red nano-fluorescent material | |
CN102627970B (en) | A rare earth orthoniobate luminescent material and preparation method thereof | |
CN102191060B (en) | Vanadate phosphor and preparation method thereof | |
Jinglei et al. | Synthesis of LiEu1-xBix (MoO4) 2 red phosphors by sol-gel method and their luminescent properties | |
CN109021973B (en) | A kind of double perovskite molybdate red phosphor and preparation method thereof | |
CN105670628B (en) | Up-conversion phosphor that a kind of feux rouges greatly improves and monochromaticjty is excellent and preparation method thereof | |
CN114672309B (en) | Manganese ion-activated red phosphor and preparation method thereof | |
CN104893724B (en) | A kind of efficient yellow fluorescent powder of new garnet-base | |
CN102382643A (en) | Preparation method of chemical solution of terbium-doped tungsten molybdate green fluorescent microcrystalline | |
CN102504819B (en) | A kind of preparation method of YVO4-based up-conversion luminescent microspheres | |
CN104830334B (en) | A kind of preparation method and applications of dysprosium doped blue colour fluorescent powder | |
CN103224794A (en) | Near ultraviolet excitation type red phosphor and preparation method thereof | |
CN102660286B (en) | Vanadate up-conversion light-emitting material activated by erbium ions Er<3+> and preparation method thereof | |
Lu et al. | Harnessing solid-state ion exchange for the environmentally benign synthesis of high-efficiency Mn 4+-doped phosphors | |
CN100503775C (en) | Preparation of a CaSiO3:Eu3+ nano-spherical red phosphor | |
CN104818017B (en) | Molybdate-based red fluorescent powder for white light LED and preparation method thereof | |
CN103361049A (en) | Tungstate LED (light-emitting diode) fluorescent powder and preparation method thereof | |
CN103320131A (en) | Phosphate based red phosphor, preparation method and application thereof | |
CN107936970A (en) | A kind of additive Mn fluorine scandium sodium matrix NaScF4:Yb3+,Er3+Up-conversion luminescent material and preparation method thereof | |
CN101519590B (en) | A blue fluorescent powder based on Y2O2S and its preparation method | |
JP2012519738A (en) | Oxide light emitting material activated by trivalent thulium and method for producing the same | |
CN111471460B (en) | High-color-purity high-thermal-stability red fluorescent material and preparation method thereof | |
CN107722986A (en) | A kind of blue light activated Mn4+Adulterate fluoscandate red light material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131204 Termination date: 20150517 |
|
EXPY | Termination of patent right or utility model |