Nothing Special   »   [go: up one dir, main page]

CN102195672A - OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access) - Google Patents

OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access) Download PDF

Info

Publication number
CN102195672A
CN102195672A CN2011101483477A CN201110148347A CN102195672A CN 102195672 A CN102195672 A CN 102195672A CN 2011101483477 A CN2011101483477 A CN 2011101483477A CN 201110148347 A CN201110148347 A CN 201110148347A CN 102195672 A CN102195672 A CN 102195672A
Authority
CN
China
Prior art keywords
mrow
msub
munder
msup
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101483477A
Other languages
Chinese (zh)
Other versions
CN102195672B (en
Inventor
陈芳炯
林瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201110148347.7A priority Critical patent/CN102195672B/en
Publication of CN102195672A publication Critical patent/CN102195672A/en
Application granted granted Critical
Publication of CN102195672B publication Critical patent/CN102195672B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The invention provides an OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access), which comprises the following steps of: distinguishing different cell base station transmitters by configurations of different interleavers; and classifying all the base stations except a T-BS (Target cell Base Station) into an S-BS (Strong interference Base Station) and a W-BS (Weak interference Base Station) according to strength of interference signals by a mobile user receiver, wherein a signal of the W-BS is processed as a gaussian noise, a signal of the T-BS and a signal of the S-BS are detected in iteration, therefore interference outside the T-BS can be suppressed and estimate data of the T-BS can be obtained. The OFDM system inter-cell interference elimination method based on IDMA, provided by the invention, has the advantage of excellent interference suppression performance gained from iteration.

Description

OFDM system inter-cell interference elimination method based on IDMA
Technical Field
The invention relates to a technology for suppressing inter-cell interference of a mobile communication system, in particular to an OFDM system inter-cell interference elimination method based on IDMA.
Background
Inter-cell interference is an inherent problem of cellular mobile communication systems. The Orthogonal Frequency Division Multiplexing (OFDM) technology reduces the interference in a cell to be low, and the interference between cells becomes the main interference which influences the performance of a system. At present, some researches on the inter-cell interference suppression technology of the OFDM system are carried out at home and abroad, the domestic researches on the inter-cell interference suppression technology are concentrated on interference coordination, and the researches on the interference cancellation technology are relatively few. The invention focuses on an IDMA-based interference elimination method.
An IDMA (Interleave-Division Multiple Access) is a Multiple Access communication mode, which adopts low-code rate coding and uses different interleavers to distinguish different users, thus not only saving special spread spectrum sequence, but also greatly reducing complexity of multi-user detection by an iterative signal detection method, thereby improving system performance. At present, the domestic patents related to the IDMA technology are few, and no patent for eliminating the inter-cell interference by applying the IDMA technology is involved.
In the cellular network model of the OFDM system shown in fig. 1, among signals of cell base stations that can be received by a mobile subscriber, the signal strength of a cell base station close to the mobile subscriber is high, and the signal strength of a cell base station far from the mobile subscriber is low. Therefore, when using IDMA to eliminate inter-cell interference, the problem of different interference signal strengths should be considered, and the conventional IDMA multi-user detection method is improved to achieve better inter-cell interference elimination effect.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provides an IDMA-based OFDM system inter-cell interference elimination method.
An OFDM system inter-cell interference elimination method based on IDMA, the OFDM system includes base transceiver station of the cell and mobile subscriber receiver, this method distinguishes different base transceiver stations of cell by disposing different interweavers; the mobile user receiver adopts IDMA multi-user detection method to eliminate the interference between cells.
In the method for eliminating interference between cells of the OFDM system based on IDMA, the signal processing step of the cell base station transmitter includes:
(2.1) the coding unit C codes and spreads the transmission data;
(2.2) the interleaver pi performs interleaving processing on the data processed by the coding unit; different cell base stations use different interleaving patterns;
(2.3) the inverse fourier transform unit IFFT performs inverse fourier transform processing on the interleaved data, generates an OFDM signal, and transmits it through an antenna.
In the method for eliminating interference between cells in the OFDM system based on IDMA, the signal processing step of the mobile subscriber receiver includes:
(3.1) a Fourier transform unit (FFT) for carrying out Fourier transform processing on the OFDM signal received by the antenna;
(3.2) the channel estimator CHE, which performs channel estimation by using the pilot frequency information of the received signal after FFT to obtain a channel coefficient;
(3.3) the basic signal estimator ESE initializing the prior probability likelihood ratio information to 0;
(3.4) the basic signal estimator ESE takes the received signal after FFT processing, the channel coefficient generated by the channel estimator and the prior probability likelihood ratio information as input, operates the detection algorithm of the ESE, carries out multi-user detection and outputs multi-channel log likelihood ratio information;
(3.5) Each deinterleaver π-1Deinterleaving each path of log-likelihood ratio information output by the ESE, wherein each deinterleaver corresponds to an interleaver of each cell base station;
(3.6) each decoder DEC decodes the deinterleaved information of each path to generate log-likelihood ratio information; meanwhile, a decoder corresponding to the target cell base station outputs the sending data of the target cell base station;
(3.7) each interleaver pi, interleaving log-likelihood ratio information generated by each DEC; each interleaver is the same as the interleaver of each cell base station; interleaving the generated prior probability likelihood ratio information to input into a basic signal estimator;
and (3.8) repeating the steps (3.4) to (3.7) for iteration, wherein the more the iteration times, the better the interference elimination effect.
In the method for eliminating interference between cells of the OFDM system based on IDMA, the method for detecting multiple users includes: the mobile user receiver classifies all base stations except the T-BS of the target cell into a strong interference base station S-BS and a weak interference base station W-BS according to the strength of interference signals, processes the signals of the W-BS as Gaussian noise, and carries out iterative detection on the signals of the T-BS and the S-BS, thereby suppressing the interference outside the T-BS and obtaining the estimation data of the T-BS.
In the method for eliminating interference between cells of the OFDM system based on IDMA, the detection algorithm of the ESE treats the signal of the W-BS as gaussian noise, and performs iterative detection on the signals of the T-BS and the S-BS, and the detection algorithm is expressed by a mathematical formula:
e ESE = ( x k ( j ) )
<math><mrow><mo>=</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munder><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>-</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munderover><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mi>p</mi><mo>)</mo></mrow></mrow><mi>p</mi></munderover><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>J</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>J</mi></munderover><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></munderover><msub><mi>h</mi><mi>k</mi></msub><mi>E</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup></mrow></math>
wherein,
E ( x k ( j ) ) = tanh ( e DEC ( x k ( j ) ) 2 )
{eESE(xk(j) k ∈ (1,... p) } denotes x about the ESE outputk(j) Log likelihood ratio information of (1), xk(j) Data indicating the jth bit of the kth cell base station, p is the number of T-BS and S-BS, J is the number of bits of the current frame, r (J) is the received signal after FFT, { hkK ∈ (1,... p) } is a channel coefficient generated by a channel estimator, eDEC(xk(j) K ∈ (1,... p) } is initialized to 0 and updated in iteration, and is prior probability log-likelihood ratio information generated by an iteration loop, and ζ isk(j) Is the superposition of channel noise and all W-BS interference signals, with an approximate mean of 0 and a variance of Var (ζ)k(j) Gaussian distribution) that by default employs BPSK modulation.
Compared with the prior art, the invention has the following advantages and technical effects: by adopting the IDMA multi-user detection method, better interference suppression performance can be obtained through iteration, and the more the iteration times, the better interference elimination effect is.
Drawings
FIG. 1 is a cellular network model of an OFDM system;
FIG. 2 is an IDMA-based OFDM system model;
fig. 3 is a structure of a coding unit of a cell base station transmitter.
Detailed description of the invention
The following further describes the implementation of the present invention with reference to the drawings, but the implementation of the present invention is not limited thereto.
The OFDM system inter-cell interference elimination method based on IDMA is to configure different interleavers to distinguish different cell base station transmitters; the mobile user receiver classifies all base stations except the T-BS of the target cell into a strong interference base station S-BS and a weak interference base station W-BS according to the strength of interference signals, processes the signals of the W-BS as Gaussian noise, and carries out iterative detection on the signals of the T-BS and the S-BS, thereby suppressing the interference outside the T-BS and obtaining the estimation data of the T-BS.
The OFDM system model based on IDMA is shown in fig. 2. There are two main parts: a cell base station transmitter and a mobile user receiver.
The cell site transmitter includes three important components: the device comprises a coding unit, an interleaver and an inverse Fourier transform unit. The signal processing step of the cell base station transmitter comprises the following steps:
1) a coding unit C for coding and spreading the transmission data, wherein the structural diagram of the coding unit is shown in fig. 3, and the coding unit mainly comprises an error correction code module and a spreading module;
2) the interleaver pi is used for interleaving the data processed by the coding unit, and different cell base stations are distinguished by using different interleaving patterns;
3) an inverse fourier transform unit IFFT performs inverse fourier transform processing on the interleaved data, generates an OFDM signal, and transmits the OFDM signal via an antenna.
The mobile subscriber receiver comprises six important components: fourier transform unit, channel estimator, basic signal estimator, de-interleaver and interleaver, and decoder. The signal processing steps of the mobile subscriber receiver include:
1) a Fourier transform unit FFT which performs Fourier transform processing on the OFDM signal received by the antenna;
2) a channel estimator CHE for performing channel estimation by using the pilot information of the received signal after FFT to obtain a channel coefficient;
3) a basic signal estimator ESE for initializing the prior probability likelihood ratio information to 0;
4) the basic signal estimator ESE takes the received signal after FFT processing, the channel coefficient generated by the channel estimator and the prior probability likelihood ratio information as input, operates the detection algorithm of the ESE, carries out multi-user detection and outputs multi-channel log likelihood ratio information;
5) each deinterleaver pi-1Deinterleaving each path of log-likelihood ratio information output by the ESE, wherein each deinterleaver corresponds to an interleaver of each cell base station;
6) each decoder DEC decodes the deinterleaved information of each path to generate log-likelihood ratio information; meanwhile, a decoder corresponding to the target cell base station outputs the sending data of the target cell base station;
7) each interleaver pi interleaves log likelihood ratio information generated by each DEC. Each interleaver is the same as the interleaver of each cell base station; interleaving the generated prior probability likelihood ratio information to input into a basic signal estimator;
8) and (4) repeating the steps from 4) to 7) for iteration, wherein the more the iteration times, the better the interference elimination effect.
Considering the scenario shown in fig. 1, the mobile user can receive signals from N cell base stations (N is large), and p is the number of T-BS and S-BS. The signal processing step of the cell base station transmitter comprises the following steps:
1) the coding unit C is used for coding and spreading the transmitted data and mainly comprises an error correcting code module and a spreading module; for the kth cell base station, data sequence dkGenerating a data sequence b by an error correcting code modulekPair of spread spectrum modules bkSpreading by using preset spreading code, repeating data sequence by using repeated code in practical application, wherein the spreading code has s bits to generate data sequence ck=[ck(1),ck(2),ck(3),...,ck(s)];
2) The interleaver pi interleaves the data processed by the coding unit, and different cell base stations are distinguished by using different interleaving patterns; for the k cell base station, the data sequence c generated by the coding unitkInput interleaver pikIn (3), obtain the interleaved data sequence xk=[xk(1),xk(2),xk(3),...,xk(s)];
3) The inverse Fourier transform unit IFFT performs inverse Fourier transform processing on the interleaved data to generate OFDM signals and transmits the OFDM signals through an antenna;
● the signal processing steps of the mobile subscriber receiver include:
1) the FFT carries out Fourier transform processing on OFDM signals received by an antenna to obtain signals r (J), wherein J belongs to 1 and 2, and J is the bit number of a current frame;
2) the channel estimator CHE performs channel estimation by using the pilot information of the received signal after FFT to obtain a channel coefficient estimation value { h }k,k∈(1,...,p)};
3) A basic signal estimator ESE for estimating prior probability likelihood ratio information eDEC(xk(j) K ∈ (1,..., p) } is initialized to 0;
4) basic signal estimator ESE, channel with signal r (J), J ∈ 1, 2Coefficient { h }kK ∈ (1,... p) } and prior probability likelihood ratio information { eDEC(xk(j) K belongs to (1, p) as input, running an ESE detection algorithm, carrying out multi-user detection, and outputting multi-channel log-likelihood ratio information { e) }ESE(xk(j)),k∈(1,...,p)};
5) Each deinterleaver (pi)-1) For each path of log likelihood ratio information { e }ESE(xk(j) K ∈ (1,... p) } deinterleaves, and { e is outputESE(ck(j) K is (1,.. p) }, and each path of deinterleaver corresponds to an interleaver of each cell base station;
6) information e after deinterleaving in each way for each decoder DECESE(ck(j) K belongs to (1, 1.. p) } is input, and the coding code element posterior probability { L of each cell base station is generated by decodingAPP(bk) K ∈ (1,..., p) }; l to target cell base station if set iteration number is finishedAPP(bk) Making decision and outputting data sequence
Figure BDA0000065994860000081
7) If the iteration has not been completed, each DEC generates each way of log-likelihood ratio information eDEC(ck(j)),k∈(1,...,p)};
8) Each interleaver pi pair each way { eDEC(ck(j) K ∈ (1,.. p) } are interleaved to generate each path of prior probability likelihood ratio { e }DEC(xk(j) K belongs to (1,.. p) }, ESE is input to complete information updating, and the step 4 is returned to, so that one iteration is realized; the more the iteration times, the better the inter-cell interference cancellation effect.
● detection algorithm by ESE:
the received signal r (j) can be expressed as <math><mrow><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>h</mi><mi>n</mi></msub><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>+</mo><mi>n</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></mrow></math>
Where { n (j) } is the additive white gaussian noise of the channel. The mobile user receiver classifies all base stations except the target cell base station T-BS into a strong interference base station S-BS and a weak interference base station W-BS according to the strength of interference signals, the sum of the numbers of the T-BS and the S-BS is p, and the expression of r (j) is rewritten into
<math><mrow><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></munderover><msub><mi>h</mi><mi>n</mi></msub><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></mrow></math>
Wherein,
Figure BDA0000065994860000092
representing the superposition of all W-BS interfering signals and channel noise. In the case of BPSK modulation, ζ is determined according to the central limit theoremk(j) Approximated as a mean of 0 and a variance of Var (ζ)k(j) Gaussian distribution of). The received signal r (j) can be represented by a conditional Gaussian probability density function
<math><mrow><mi>P</mi><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>|</mo><msub><mi>x</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mo>&PlusMinus;</mo><mn>1</mn><mo>,</mo><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mo>&PlusMinus;</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>x</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mo>&PlusMinus;</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn><mi>&pi;Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></msqrt></mfrac><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>&PlusMinus;</mo><msub><mi>h</mi><mn>1</mn></msub><mo>&PlusMinus;</mo><msub><mi>h</mi><mn>2</mn></msub><mo>&PlusMinus;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&PlusMinus;</mo><msub><mi>h</mi><mi>p</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
Defining a kth cell base station signal xk(j) Prior probability log likelihood ratio of
e DEC ( x k ( j ) ) = log ( P ( x k ( j ) = + 1 ) P ( x k ( j ) ) = - 1 ) - - - ( 2 )
ESE outputs log-likelihood ratio extrinsic information
e ESE ( x k ( j ) ) = log ( P ( r ( j ) | x k ( j ) = + 1 ) P ( r ( j ) | x k ( j ) ) = - 1 ) - - - ( 3 )
Obtainable from the formula (2)
P ( x k ( j ) = + 1 ) = e e DEC ( x k ( j ) ) e e DEC ( x k ( k ) ) + 1 P ( x k ( j ) = - 1 ) = 1 e e DWC ( x k ( j ) ) + 1 - - - ( 4 )
Based on conditional probability formula <math><mrow><mi>P</mi><mrow><mo>(</mo><mi>A</mi><mo>|</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><munder><mi>&Sigma;</mi><mi>i</mi></munder><mi>P</mi><mrow><mo>(</mo><mi>A</mi><mo>|</mo><mi>B</mi><msub><mi>C</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>*</mo><mi>P</mi><mrow><mo>(</mo><msub><mi>C</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></math>
By direct calculation, the signal processing algorithm of ESE can be obtained
e ESE = ( x k ( j ) )
<math><mrow><mo>=</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munder><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>-</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munderover><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mi>p</mi><mo>)</mo></mrow></mrow><mi>p</mi></munderover><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>J</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>J</mi></munderover><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></munderover><msub><mi>h</mi><mi>k</mi></msub><mi>E</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup></mrow></math>
Wherein,
E ( x k ( j ) ) = tanh ( e DEC ( x k ( j ) ) 2 )
● DEC Signal processing flow:
1) input eESE(ck(j) To b) ofkAnd (3) carrying out soft estimation:
<math><mrow><mi>L</mi><mrow><mo>(</mo><msub><mi>b</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>S</mi></munderover><msub><mi>e</mi><mi>ESE</mi></msub><mrow><mo>(</mo><msub><mi>c</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>S</mi></munderover><mi>log</mi><mrow><mo>(</mo><mfrac><mrow><mi>P</mi><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>|</mo><msub><mi>c</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>P</mi><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>|</mo><msub><mi>c</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow></mrow></math>
where s is the number of bits of the spreading repetition code;
2) to L (b)k) Performing posterior probability decoding of forward error correction coding to generate posterior probability L of coding code element of k cell base stationAPP(bk) I.e. by
Figure BDA0000065994860000107
3) Spread spectrum generation LAPP(ck(j))=LAPP(bk) J 1, 2.., S, and generates log-likelihood ratio information eDEC(ck(j))
e DEC ( c k ( j ) ) = L APP ( c k ( j ) ) - e ESE ( c k ( j ) )
= log ( P ( c k ( j ) = + 1 | r ( j ) ) P ( c k ( j ) = - 1 | r ( j ) ) ) - e ESE ( c k ( j ) )
= log ( P ( c k ( j ) = + 1 ) P ( c k ( j ) = - 1 ) )
4) After the iteration is completed, the pair LAPP(bk) Hard decision is made and an estimated value is output
Figure BDA00000659948600001011

Claims (5)

1. An OFDM system inter-cell interference elimination method based on IDMA, the OFDM system includes cell base station transmitter and mobile user receiver, its characteristic is: differentiating different cell base station transmitters by configuring different interleavers; the mobile user receiver adopts IDMA multi-user detection method to eliminate the interference between cells.
2. The IDMA-based OFDM system inter-cell interference cancellation method of claim 1, wherein the signal processing step of the cell base station transmitter comprises:
(2.1) the coding unit C codes and spreads the transmission data;
(2.2) the interleaver pi performs interleaving processing on the data processed by the coding unit; different cell base stations use different interleaving patterns;
(2.3) the inverse fourier transform unit IFFT performs inverse fourier transform processing on the interleaved data, generates an OFDM signal, and transmits it through an antenna.
3. The method of claim 1 wherein the signal processing step of the mobile subscriber receiver comprises:
(3.1) a Fourier transform unit (FFT) for carrying out Fourier transform processing on the OFDM signal received by the antenna;
(3.2) the channel estimator CHE, which performs channel estimation by using the pilot frequency information of the received signal after FFT to obtain a channel coefficient;
(3.3) the basic signal estimator ESE initializing the prior probability likelihood ratio information to 0;
(3.4) the basic signal estimator ESE takes the received signal after FFT processing, the channel coefficient generated by the channel estimator and the prior probability likelihood ratio information as input, operates the detection algorithm of the ESE, carries out multi-user detection and outputs multi-channel log likelihood ratio information;
(3.5) Each deinterleaver π-1Deinterleaving each path of log-likelihood ratio information output by the ESE, wherein each deinterleaver corresponds to an interleaver of each cell base station;
(3.6) each decoder DEC decodes the deinterleaved information of each path to generate log-likelihood ratio information; meanwhile, a decoder corresponding to the target cell base station outputs the sending data of the target cell base station;
(3.7) each interleaver pi, interleaving log-likelihood ratio information generated by each DEC; each interleaver is the same as the interleaver of each cell base station; interleaving the generated prior probability likelihood ratio information to input into a basic signal estimator;
and (3.8) repeating the steps 4) to 7) for iteration, wherein the more the iteration times, the better the interference elimination effect.
4. The method for eliminating interference between cells in OFDM system based on IDMA as claimed in claim 1 or 3, wherein said method for multi-user detection is: the mobile user receiver classifies all base stations except the T-BS of the target cell into a strong interference base station S-BS and a weak interference base station W-BS according to the strength of interference signals, processes the signals of the W-BS as Gaussian noise, and carries out iterative detection on the signals of the T-BS and the S-BS, thereby suppressing the interference outside the T-BS and obtaining the estimation data of the T-BS.
5. The method of claim 3, wherein the detection algorithm of the ESE treats the signal of the W-BS as Gaussian noise, and performs iterative detection on the signals of the T-BS and the S-BS, and the detection algorithm is expressed by the following mathematical expression:
e ESE = ( x k ( j ) )
<math><mrow><mo>=</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munder><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>-</mo><mi>log</mi><mrow><mo>(</mo><munder><munder><mi>&Sigma;</mi><mrow><msub><mi>I</mi><mi>m</mi></msub><mo>&Element;</mo><mrow><mo>(</mo><mn>0,1</mn><mo>)</mo></mrow></mrow></munder><mrow><mi>m</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><mrow><mo>(</mo><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><msub><mi>h</mi><mi>n</mi></msub><mo>+</mo><munder><mi>&Sigma;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></msup><msub><mi>h</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></mfrac><mo>}</mo><mo>&CenterDot;</mo><munderover><mi>&Pi;</mi><mrow><mi>n</mi><mo>&NotEqual;</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>&Element;</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mi>p</mi><mo>)</mo></mrow></mrow><mi>p</mi></munderover><msup><mrow><mo>(</mo><msub><mrow><mi>exp</mi><mo>{</mo><mi>e</mi></mrow><mi>DEC</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>I</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math>
<math><mrow><mi>Var</mi><mrow><mo>(</mo><msub><mi>&zeta;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>J</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>J</mi></munderover><msup><mrow><mo>(</mo><mi>r</mi><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>-</mo><munderover><mi>&Sigma;</mi><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></munderover><msub><mi>h</mi><mi>k</mi></msub><mi>E</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup></mrow></math>
wherein,
E ( x k ( j ) ) = tanh ( e DEC ( x k ( j ) ) 2 )
wherein, { eESE(xk(j) K ∈ (1,... p) } denotes x about the ESE outputk(j) Log likelihood ratio information of (1), xk(j) Data indicating the jth bit of the kth cell base station, p is the number of T-BS and S-BS, J is the number of bits of the current frame, r (J) is the received signal after FFT, { hkK ∈ (1,... p) } is a channel coefficient generated by a channel estimator, eDEC(xk(j) K ∈ (1,... p) } is initialized to 0 and updated in iteration, and is prior probability log-likelihood ratio information generated by an iteration loop, and ζ isk(j) Is the superposition of channel noise and all W-BS interference signals, with an approximate mean of 0 and a variance of Var (ζ)k(j) Gaussian distribution) that by default employs BPSK modulation.
CN201110148347.7A 2011-06-02 2011-06-02 OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access) Expired - Fee Related CN102195672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110148347.7A CN102195672B (en) 2011-06-02 2011-06-02 OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110148347.7A CN102195672B (en) 2011-06-02 2011-06-02 OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access)

Publications (2)

Publication Number Publication Date
CN102195672A true CN102195672A (en) 2011-09-21
CN102195672B CN102195672B (en) 2014-09-10

Family

ID=44603128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110148347.7A Expired - Fee Related CN102195672B (en) 2011-06-02 2011-06-02 OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access)

Country Status (1)

Country Link
CN (1) CN102195672B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904690A (en) * 2012-10-15 2013-01-30 复旦大学 Method and device for restraining inter-cell interference of high level modulating signal based on OFDM-IDMA (Orthogonal Frequency Division Multiplexing-Interleave-division Multiple Access)
WO2013166717A1 (en) * 2012-05-11 2013-11-14 富士通株式会社 Interference suppression method, device and system in hierarchical networking of heterogeneous network
CN103580721A (en) * 2013-11-04 2014-02-12 复旦大学 Multi-antenna iteration multi-user detection method and device in complex time varying multi-path channel
WO2014169445A1 (en) * 2013-04-17 2014-10-23 华为技术有限公司 Information acquisition method, evolved node b and user equipment
CN104782066A (en) * 2012-11-02 2015-07-15 三星电子株式会社 Interference-aware detection method and apparatus for use in wireless communication system
CN104811410A (en) * 2014-01-26 2015-07-29 上海数字电视国家工程研究中心有限公司 Construction method, transmitting method and demodulation method of physical frames
CN104901911A (en) * 2015-04-27 2015-09-09 复旦大学 Iterative inter-cell interference suppression method and apparatus
CN106330254A (en) * 2011-10-14 2017-01-11 高通股份有限公司 Idle mode operation in heterogeneous networks
CN106899326A (en) * 2017-03-10 2017-06-27 重庆邮电大学 A kind of method of raising IDMA system baseband signal estimated accuracies
CN107078832A (en) * 2014-10-27 2017-08-18 索尼公司 A kind of device
CN107835141A (en) * 2017-11-13 2018-03-23 华南理工大学 The multistage repetitive sequence OFDM synchronized algorithms that auto-correlation is combined with cross-correlation
CN109327850A (en) * 2018-11-16 2019-02-12 安徽大学 Multi-user detection method of non-orthogonal multiple access system based on gradient tracking and multi-step quasi-Newton method technology
CN111711510A (en) * 2020-03-11 2020-09-25 中山大学 Low-complexity multi-user detection method for asynchronous interleaving multi-address system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355541A (en) * 2008-07-18 2009-01-28 中国人民解放军理工大学 Blocking equalizing method for OFDM system under Quick-Change channel condition
US20100098180A1 (en) * 2007-06-19 2010-04-22 Huawei Technologies Co., Ltd. Method, apparatus and terminal device of symbol interleaving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098180A1 (en) * 2007-06-19 2010-04-22 Huawei Technologies Co., Ltd. Method, apparatus and terminal device of symbol interleaving
CN101355541A (en) * 2008-07-18 2009-01-28 中国人民解放军理工大学 Blocking equalizing method for OFDM system under Quick-Change channel condition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
祁建纲: "《北京邮电大学硕士研究生学位论文》", 31 March 2011, article "LTE及后续演进的干扰抑制研究" *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330254A (en) * 2011-10-14 2017-01-11 高通股份有限公司 Idle mode operation in heterogeneous networks
CN106330254B (en) * 2011-10-14 2019-03-08 高通股份有限公司 Idle mode operations in heterogeneous network
WO2013166717A1 (en) * 2012-05-11 2013-11-14 富士通株式会社 Interference suppression method, device and system in hierarchical networking of heterogeneous network
CN102904690A (en) * 2012-10-15 2013-01-30 复旦大学 Method and device for restraining inter-cell interference of high level modulating signal based on OFDM-IDMA (Orthogonal Frequency Division Multiplexing-Interleave-division Multiple Access)
CN104782066B (en) * 2012-11-02 2018-01-02 三星电子株式会社 The interference used in a wireless communication system perceives detection method and device
US9907027B2 (en) 2012-11-02 2018-02-27 Samsung Electronics Co., Ltd Interference-aware detection method and apparatus for use in wireless communication system
CN104782066A (en) * 2012-11-02 2015-07-15 三星电子株式会社 Interference-aware detection method and apparatus for use in wireless communication system
CN104509016A (en) * 2013-04-17 2015-04-08 华为技术有限公司 Information acquisition method, evolved node b and user equipment
WO2014169445A1 (en) * 2013-04-17 2014-10-23 华为技术有限公司 Information acquisition method, evolved node b and user equipment
CN103580721B (en) * 2013-11-04 2015-12-02 复旦大学 Multi-antenna iteration multi-user detection and device in a kind of complicated time-variant multipath channel
CN103580721A (en) * 2013-11-04 2014-02-12 复旦大学 Multi-antenna iteration multi-user detection method and device in complex time varying multi-path channel
CN104811410A (en) * 2014-01-26 2015-07-29 上海数字电视国家工程研究中心有限公司 Construction method, transmitting method and demodulation method of physical frames
CN104811410B (en) * 2014-01-26 2018-05-04 上海数字电视国家工程研究中心有限公司 Construction method, sending method and the demodulation method of physical frame
US11695432B2 (en) 2014-10-17 2023-07-04 Sony Group Corporation Apparatus for transmitting data in interleave division multiple access (IDMA) system
US11171669B2 (en) 2014-10-17 2021-11-09 Sony Corporation Apparatus for transmitting data in interleave division multiple access (IDMA) system
CN107078832A (en) * 2014-10-27 2017-08-18 索尼公司 A kind of device
CN107078832B (en) * 2014-10-27 2018-12-18 索尼公司 A kind of device
CN104901911A (en) * 2015-04-27 2015-09-09 复旦大学 Iterative inter-cell interference suppression method and apparatus
CN106899326A (en) * 2017-03-10 2017-06-27 重庆邮电大学 A kind of method of raising IDMA system baseband signal estimated accuracies
CN107835141B (en) * 2017-11-13 2020-09-22 华南理工大学 Self-correlation and cross-correlation combined multi-segment repeated sequence OFDM synchronization algorithm
CN107835141A (en) * 2017-11-13 2018-03-23 华南理工大学 The multistage repetitive sequence OFDM synchronized algorithms that auto-correlation is combined with cross-correlation
CN109327850B (en) * 2018-11-16 2021-06-25 安徽大学 Multi-user detection method of non-orthogonal multiple access system based on gradient tracking and multi-step quasi-Newton method technology
CN109327850A (en) * 2018-11-16 2019-02-12 安徽大学 Multi-user detection method of non-orthogonal multiple access system based on gradient tracking and multi-step quasi-Newton method technology
CN111711510A (en) * 2020-03-11 2020-09-25 中山大学 Low-complexity multi-user detection method for asynchronous interleaving multi-address system
CN111711510B (en) * 2020-03-11 2021-06-22 中山大学 Low-complexity multi-user detection method for asynchronous interleaving multi-address system

Also Published As

Publication number Publication date
CN102195672B (en) 2014-09-10

Similar Documents

Publication Publication Date Title
CN102195672B (en) OFDM (Orthogonal Frequency Division Multiplexing) system inter-cell interference elimination method based on IDMA (Interleave-Division Mutiple-Access)
Ma et al. Data-aided channel estimation in large antenna systems
US8116242B2 (en) Receiver having multi-antenna log likelihood ratio generation with channel estimation error
CN102571666B (en) MMSE (Minimum Mean Square Error)-based equalization method of underwater sound OFDM (Orthogonal Frequency Division Multiplexing) judgment iterative channel
CN103220046B (en) Remote underwater sound communication method
CN101299743A (en) Decoding symbols of a signal distributed according to a frequency dimension and a time dimension
CN105187169A (en) Iterative multiple-input multiple-output communication system and method based on IDMA
CN102404257A (en) Narrow-band interference detection method and device in MIMO-OFDM system
CN101582742B (en) Method for detecting iteration of multiple input multiple output (MIMO) system, system thereof and device thereof
CN103647741A (en) Subcarrier Index Modulation (SIM)-Orthogonal Frequency Division Multiplexing (OFDM) based superposition coded modulation method
CN103580721B (en) Multi-antenna iteration multi-user detection and device in a kind of complicated time-variant multipath channel
Xu et al. Low complexity joint channel estimation and decoding for LDPC coded MIMO-OFDM systems
CN105323201B (en) Anti-multipath interference system and method applied to multi-carrier receiver
Enayati et al. A novel bandwidth efficient SOC-based turbo coding scheme mid reduced complexity MUD for SA-based MC-CDMA systems
Anoh et al. An evaluation of coded wavelet for multicarrier modulation with OFDM
CN109245858B (en) Improved joint network-Turbo coding method based on decoding forwarding
CN104079302B (en) The channel decoding method and channel code translator of signal are sent for double fluid
CN101582743A (en) MIMO detection method and system used for iterative receivers
Chen et al. Channel quality estimation with MMSE filter and viterbi decoding for airborne communications
Peng et al. An improved iterative channel estimation based LTE downlink
Kaltenberger et al. Low-complexity distributed MIMO receiver and its implementation on the OpenAirInterface platform
Zhou et al. A single antenna interference cancellation algorithm for OFDM communication systems
Pan et al. Equalization Techniques for Unmanned Aerial Vehicles Communication Based on Early Termination of Iteration
Krishnamoorthy et al. Comparative study of error control coding in underwater acoustic channel
John et al. A non-resampling sequential Monte Carlo detector for coded OFDM systems based on periodic termination of differential phase trellis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140910

CF01 Termination of patent right due to non-payment of annual fee