CN102182899A - Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof - Google Patents
Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof Download PDFInfo
- Publication number
- CN102182899A CN102182899A CN 201110053202 CN201110053202A CN102182899A CN 102182899 A CN102182899 A CN 102182899A CN 201110053202 CN201110053202 CN 201110053202 CN 201110053202 A CN201110053202 A CN 201110053202A CN 102182899 A CN102182899 A CN 102182899A
- Authority
- CN
- China
- Prior art keywords
- axis
- micro
- displacement
- platform
- motion platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013519 translation Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims abstract description 143
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 230000007246 mechanism Effects 0.000 claims description 56
- 230000003321 amplification Effects 0.000 claims description 30
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 30
- 238000004148 unit process Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000003032 molecular docking Methods 0.000 abstract description 2
- 239000013307 optical fiber Substances 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002406 microsurgery Methods 0.000 description 1
Images
Landscapes
- Control Of Position Or Direction (AREA)
Abstract
一种大行程三平动正交解耦型精密微动平台及其控制方法,属于三平动微动平台及其方控制方法。该精密微动平台系统的激光位移传感器与中央控制单元的输入端相连,激光位移传感器位于精密微动平台外,位移检测挡板安装在精密微动平台上,激光位移传感器与位移检测挡板相对应;中央控制单元的输出端与驱动器电源的输入端相连,驱动器电源的多路输出端与各微位移驱动器相连,微位移驱动器安装在精密微动平台内。精密微动平台采用对称结构,有效避免了运动方向上的耦合和“温漂效应”,且结构简单紧凑、定位精度高、能实现1mm×1mm×50um的工作范围,可广泛用于生物医学工程、光纤对接等需要精细操作和加工的领域。
A large-stroke three-translation orthogonal decoupling precision micro-motion platform and a control method thereof, which belong to a three-translation micro-motion platform and a square control method thereof. The laser displacement sensor of the precision micro-motion platform system is connected to the input end of the central control unit, the laser displacement sensor is located outside the precision micro-motion platform, the displacement detection baffle is installed on the precision micro-motion platform, and the laser displacement sensor is connected to the displacement detection baffle Corresponding; the output terminal of the central control unit is connected with the input terminal of the driver power supply, and the multiple output terminals of the driver power supply are connected with each micro-displacement driver, and the micro-displacement driver is installed in the precision micro-motion platform. The precision micro-motion platform adopts a symmetrical structure, which effectively avoids coupling and "temperature drift effect" in the direction of motion, and has a simple and compact structure, high positioning accuracy, and can achieve a working range of 1mm×1mm×50um, which can be widely used in biomedical engineering , optical fiber docking and other fields that require fine operation and processing.
Description
技术领域technical field
本发明涉及一种三平动微动平台及其方控制方法,特别是一种大行程三平动正交解耦型精密微动平台及其控制方法。The invention relates to a three-translational micro-motion platform and a square control method thereof, in particular to a large-stroke three-translation orthogonal decoupling precision micro-motion platform and a control method thereof.
背景技术Background technique
精密定位技术是现代先进制造技术的关键技术之一,广泛应用在超精密加工、显微操作、生物医学工程等要求精细操作的领域。精密微动平台作为关键设备之一,在精密定位系统中有着极其重要的地位。Precision positioning technology is one of the key technologies of modern advanced manufacturing technology, and it is widely used in ultra-precision machining, micromanipulation, biomedical engineering and other fields that require fine manipulation. As one of the key equipment, the precision micro-motion platform plays an extremely important role in the precision positioning system.
1962年国外学者Ellis建议采用并联机构作为压电陶瓷微操作台的机构形式,并在显微外科及生物技术中进行了相关试验。Hara和Hemini研究了平面三自由度和六自由度微动平台。国内,清华大学、北京航空航天大学、哈尔滨工业大学等相关单位对微操作平台技术进行了相关研究。哈尔滨工业大学的孙立宁教授在公开号为CN 1562579A的专利文件中公开了“六自由度大行程、高精度柔性并联机器人”;河北工业大学的高峰教授在公开号为CN1257772A、CN1257771A、CN1257770A及CN1258589A的专利文件中公开了“三自由度三轴结构解耦并联微动机器人”、“四自由度四轴结构解耦并联微动机器人”、“五自由度五轴结构解耦并联微动机器人”、“六自由度并联解耦结构微动机器人”。山东理工大学的张彦斐在公开号CN100999080A的专利文件中公开了“三平台正交解耦并联微动平台”。In 1962, Ellis, a foreign scholar, proposed to use a parallel mechanism as the mechanism form of the piezoelectric ceramic micro-manipulator, and carried out related experiments in microsurgery and biotechnology. Hara and Hemini studied planar three-degree-of-freedom and six-degree-of-freedom micro-motion platforms. In China, Tsinghua University, Beijing University of Aeronautics and Astronautics, Harbin Institute of Technology and other relevant units have conducted relevant research on micro-operation platform technology. Professor Sun Lining of Harbin Institute of Technology disclosed a "six-degree-of-freedom large-stroke, high-precision flexible parallel robot" in the patent document with the publication number CN 1562579A; The patent documents disclose "three-degree-of-freedom three-axis structure decoupled parallel micro-robot", "four-degree-of-freedom four-axis structure decoupled parallel micro-robot", "five-degree-of-freedom five-axis structure decoupled parallel micro-robot", "Six degrees of freedom parallel decoupling structure micro-manipulator". Zhang Yanfei of Shandong University of Technology disclosed a "three-platform orthogonal decoupling parallel micro-motion platform" in the patent document with the publication number CN100999080A.
尽管国内外有众多学者对精密微动平台技术进行了研究,但这些成果和技术大多考虑了精度的要求,对整个平台的运动范围、刚度等考虑不足,此外,有些机构过于复杂,而有些机构运动解耦困难;在位移检测手段方面,目前多采用光栅传感器、电容传感器或激光干涉仪进行测量,但这些检测方法多受到安装空间的限制或者对环境有较苛刻的要求。Although many scholars at home and abroad have conducted research on precision micro-motion platform technology, most of these achievements and technologies have considered the requirements of precision, and insufficient consideration has been given to the range of motion and stiffness of the entire platform. In addition, some mechanisms are too complicated, while others Motion decoupling is difficult; in terms of displacement detection methods, grating sensors, capacitive sensors or laser interferometers are currently used for measurement, but these detection methods are mostly limited by installation space or have strict requirements for the environment.
发明内容Contents of the invention
本发明的目的是要提供一种大行程三平动正交解耦型精密微动平台及其控制方法,解决精密微动平台多采用光栅传感器、电容传感器或激光干涉仪进行测量,但这些检测方法多受到安装空间的限制或者对环境有较苛刻要求的问题。The purpose of the present invention is to provide a large-stroke three-translation orthogonal decoupling precision micro-motion platform and its control method, to solve the problem that the precision micro-motion platform is mostly measured by grating sensors, capacitive sensors or laser interferometers, but these detection methods Most of them are limited by the installation space or have strict requirements on the environment.
本发明的目的是这样实现的:该精密微动平台系统包括精密微动平台、微位移驱动器、驱动器电源、中央控制单元、激光位移传感器和位移检测挡板,激光位移传感器与中央控制单元的输入端相连,激光位移传感器位于精密微动平台外,位移检测挡板安装在精密微动平台上,激光位移传感器与位移检测挡板相对应;中央控制单元的输出端与驱动器电源的输入端相连,驱动器电源的多路输出端与各微位移驱动器相连,微位移驱动器安装在精密微动平台内。The purpose of the present invention is achieved in that the precision micro-motion platform system includes a precision micro-motion platform, a micro-displacement driver, a driver power supply, a central control unit, a laser displacement sensor and a displacement detection baffle, and the input of the laser displacement sensor and the central control unit The laser displacement sensor is located outside the precision micro-motion platform, the displacement detection baffle is installed on the precision micro-motion platform, and the laser displacement sensor corresponds to the displacement detection baffle; the output terminal of the central control unit is connected to the input terminal of the drive power supply, The multi-channel output terminals of the driver power supply are connected with each micro-displacement driver, and the micro-displacement driver is installed in the precision micro-motion platform.
所述的精密微动平台包括载物台、XY二维基座平台、固定平台、桥式微位移放大机构和柔性支链,在XY二维基座平台上连接有载物台,载物台为Z轴平台,在XY二维基座平台四侧连接有X轴和Y轴的固定平台和桥式微位移放大机构;所述的微位移驱动器有X轴和Y轴的微位移驱动器,X轴和Y轴的微位移驱动器分别安装在X轴或Y轴的桥式微位移放大机构中,X轴和Y轴桥式微位移放大机构分别与X轴或Y轴固定平台相连,XY二维基座平台的边与柔性支链组成X轴和Y轴的平行四杆导向机构,微位移驱动器、固定平台和桥式微位移放大机构位于平行四杆机构内。The precision micro-motion platform includes a stage, an XY two-dimensional base platform, a fixed platform, a bridge-type micro-displacement amplification mechanism and a flexible branch chain, and the XY two-dimensional base platform is connected with a stage, and the stage It is a Z-axis platform, and there are X-axis and Y-axis fixed platforms and a bridge-type micro-displacement amplification mechanism connected to the four sides of the XY two-dimensional base platform; the micro-displacement driver has X-axis and Y-axis micro-displacement drivers, X The micro-displacement drivers of the axis and the Y-axis are respectively installed in the bridge-type micro-displacement amplification mechanism of the X-axis or the Y-axis. The side of the base platform and the flexible branch chain form the parallel four-bar guiding mechanism of the X-axis and the Y-axis, and the micro-displacement driver, the fixed platform and the bridge-type micro-displacement amplification mechanism are located in the parallel four-bar mechanism.
平台系统的控制方法为:中央控制单元(27)将预设的载物台(13)的位移量转换成相应的电压信号并发送给驱动器电源(26),驱动器电源(26)对接受到的电压信号进行放大,进而驱动XY二维基座平台(1)和载物台(13),以实现载物台沿X、Y和Z轴方向的三自由度平移运动;同时,设在XY二维基座平台(1)轴线方向上的X轴激光位移传感器(5)、Y轴激光位移传感器(22)和设在载物台(13)上方的Z轴激光位移传感器(14)将采集精密微动平台的位置信息,并将采集到的位置信息反馈给中央控制单元(27),中央控制单元(27)对位置信息进行处理并对驱动器电源(26)做进一步的控制,从而实现闭环控制。The control method of the platform system is as follows: the central control unit (27) converts the preset displacement of the stage (13) into a corresponding voltage signal and sends it to the driver power supply (26), and the driver power supply (26) responds to the received voltage signal The signal is amplified, and then drives the XY two-dimensional base platform (1) and the stage (13), so as to realize the three-degree-of-freedom translational movement of the stage along the X, Y, and Z axes; at the same time, the XY two-dimensional The X-axis laser displacement sensor (5), Y-axis laser displacement sensor (22) in the axial direction of the base platform (1) and the Z-axis laser displacement sensor (14) above the stage (13) will collect precision micro The position information of the moving platform is collected, and the collected position information is fed back to the central control unit (27). The central control unit (27) processes the position information and further controls the drive power supply (26), thereby realizing closed-loop control.
有益效果:本发明的大行程三平动正交解耦型精密微动平台系统,包括中央控制单元,驱动器电源、激光位移传感器以及可实现三平动功能的精密微动平台;其中载物台通过Z轴柔性机构布置在XY二维基座平台之上,XY二维基座平台通过4条柔性支链分别与4个固定平台相连,每条柔性支链中集成了一个桥式微位移放大机构,并且在桥式微位移放大机构中内嵌了一个微位移驱动器;在XY二维基座平台的轴线方向上分别布置有X轴激光位移传感器、Y轴激光位移传感器和与之对应的X轴位移检测挡板、Y轴位移检测挡板,在载物台的上方设有Z轴激光位移传感器。XY二维基座平台与4条柔性支链呈全对称布置。每条柔性支链亦为对称结构,并集成桥式微位移放大机构。XY二维基座平台在X轴及Y轴运动方向上均为双驱动。XY二维基座平台与X轴前柔性支链、X轴后柔性支链构成Y轴的平行四杆导向机构,XY二维基座平台与Y轴前柔性支链、Y轴后柔性支链构成X轴的平行四杆导向机构。解决了精密微动平台多采用光栅传感器、电容传感器或激光干涉仪进行测量,但这些检测方法多受到安装空间的限制或者对环境有较苛刻要求的问题,达到本发明的目的。Beneficial effects: the large-stroke three-translation orthogonal decoupling precision micro-motion platform system of the present invention includes a central control unit, a driver power supply, a laser displacement sensor, and a precision micro-motion platform capable of realizing three-translation functions; wherein the stage passes through Z The axis flexible mechanism is arranged on the XY two-dimensional base platform, and the XY two-dimensional base platform is connected to four fixed platforms through four flexible branch chains, and a bridge-type micro-displacement amplification mechanism is integrated in each flexible branch chain. And a micro-displacement driver is embedded in the bridge-type micro-displacement amplification mechanism; X-axis laser displacement sensors, Y-axis laser displacement sensors and corresponding X-axis displacement sensors are respectively arranged in the axial direction of the XY two-dimensional base platform. The detection baffle and the Y-axis displacement detection baffle are provided with a Z-axis laser displacement sensor above the stage. The XY two-dimensional base platform and the four flexible branch chains are arranged symmetrically. Each flexible branch chain is also a symmetrical structure, and integrates a bridge-type micro-displacement amplification mechanism. The XY two-dimensional base platform has dual drives in the X-axis and Y-axis motion directions. The XY two-dimensional base platform, the X-axis front flexible branch chain, and the X-axis rear flexible branch chain constitute a parallel four-bar guide mechanism for the Y-axis. The XY two-dimensional base platform, the Y-axis front flexible branch chain, and the Y-axis rear flexible branch chain A parallel four-bar guide mechanism constituting the X-axis. It solves the problem that the precision micro-motion platform is mostly measured by grating sensors, capacitive sensors or laser interferometers, but these detection methods are often limited by installation space or have strict requirements on the environment, and achieve the purpose of the present invention.
优点:(1)XY二维基座平台及柔性支链为全对称机构布置,在X轴和Y轴运动方向上分别构建了基于平行四杆的柔性导向机构,载物台布置在XY二维基座平台之上,能够实现完全解耦的三自由度平动;(2)桥式微位移放大机构可以显著地增加压电陶瓷驱动器的输出位移,同时在X轴及Y轴方向的采取了双驱动的形式,极大地扩展了微动平台的工作行程;(3)整个平台通过多条柔性支链与固定平台相连,有效地改善了整个平台的刚度和承载力;(4)精密微动平台采用对称结构,有效避免了运动方向上的耦合和“温漂效应”,且结构简单紧凑、定位精度高、能实现1mm×1mm×50um的工作范围,可广泛用于生物医学工程、光纤对接等需要精细操作和加工的领域。Advantages: (1) The XY two-dimensional base platform and flexible branch chain are arranged in a fully symmetrical mechanism, and a flexible guiding mechanism based on parallel four rods is respectively constructed in the X-axis and Y-axis movement directions, and the stage is arranged in the XY two-dimensional On the base platform, a fully decoupled three-degree-of-freedom translation can be realized; (2) The bridge-type micro-displacement amplification mechanism can significantly increase the output displacement of the piezoelectric ceramic driver, and at the same time, the X-axis and Y-axis directions are adopted The form of double drive greatly expands the working stroke of the micro-motion platform; (3) The whole platform is connected to the fixed platform through multiple flexible branch chains, which effectively improves the stiffness and bearing capacity of the whole platform; (4) Precision micro-motion The platform adopts a symmetrical structure, which effectively avoids coupling and "temperature drift effect" in the direction of motion, and has a simple and compact structure, high positioning accuracy, and can achieve a working range of 1mm×1mm×50um, which can be widely used in biomedical engineering and optical fiber docking And other fields that require fine operation and processing.
附图说明Description of drawings
图1是本发明的结构图。Fig. 1 is a structural diagram of the present invention.
图2是本发明的控制方法框图。Fig. 2 is a block diagram of the control method of the present invention.
图中,1、XY二维基座平台;2、X轴位移检测挡板;3、X轴前位移驱动器;4、X轴前固定平台;5、X轴激光位移传感器;6、X轴前桥式微位移放大机构;7、X轴前柔性支链;8、Z轴柔性机构;9、Y轴后柔性支链;10、Y轴后位移驱动器;11、Y轴后固定平台;12、Y轴后桥式微位移放大机构;13、载物台;14、Z轴激光位移传感器;15、X轴后桥式微位移放大机构;16、X轴后位移驱动器;17、X轴后固定平台;18、X轴后柔性支链;19、Y轴前位移驱动器;20、Y轴前桥式微位移放大机构;21、Y轴前柔性支链;22、Y轴激光位移传感器;23、Y轴前固定平台;24、Y轴位移检测挡板,25、X轴主位移驱动器;26、驱动器电源;27、中央控制单元。In the figure, 1. XY two-dimensional base platform; 2. X-axis displacement detection baffle; 3. X-axis front displacement driver; 4. X-axis front fixed platform; 5. X-axis laser displacement sensor; 6. X-axis front Bridge-type micro-displacement amplification mechanism; 7. X-axis front flexible branch chain; 8. Z-axis flexible mechanism; 9. Y-axis rear flexible branch chain; 10. Y-axis rear displacement driver; 11. Y-axis rear fixed platform; 12. Y-axis rear bridge micro-displacement amplification mechanism; 13. Stage; 14. Z-axis laser displacement sensor; 15. X-axis rear bridge micro-displacement amplification mechanism; 16. X-axis rear displacement driver; 17. X-axis rear fixation Platform; 18. X-axis rear flexible branch chain; 19. Y-axis front displacement driver; 20. Y-axis front bridge micro-displacement amplification mechanism; 21. Y-axis front flexible branch chain; 22. Y-axis laser displacement sensor; 23. Y-axis front fixed platform; 24. Y-axis displacement detection baffle, 25. X-axis main displacement driver; 26. Driver power supply; 27. Central control unit.
具体实施方式Detailed ways
实施例1:该精密微动平台系统包括精密微动平台、微位移驱动器、驱动器电源、中央控制单元、激光位移传感器和位移检测挡板,激光位移传感器与中央控制单元的输入端相连,激光位移传感器位于精密微动平台外,位移检测挡板安装在精密微动平台上,激光位移传感器与位移检测挡板相对应;中央控制单元的输出端与驱动器电源的输入端相连,驱动器电源的多路输出端与各微位移驱动器相连,微位移驱动器安装在精密微动平台内。Embodiment 1: The precision micro-motion platform system includes a precision micro-motion platform, a micro-displacement driver, a driver power supply, a central control unit, a laser displacement sensor and a displacement detection baffle, the laser displacement sensor is connected to the input end of the central control unit, and the laser displacement The sensor is located outside the precision micro-motion platform, and the displacement detection baffle is installed on the precision micro-motion platform. The laser displacement sensor corresponds to the displacement detection baffle; the output terminal of the central control unit is connected to the input terminal of the drive power supply, and the multi-channel drive power supply The output end is connected with each micro-displacement driver, and the micro-displacement driver is installed in the precise micro-motion platform.
所述的精密微动平台包括载物台、XY二维基座平台、固定平台、桥式微位移放大机构、柔性支链,在XY二维基座平台上连接有载物台,载物台为Z轴平台,在XY二维基座平台四侧连接有X轴和Y轴的固定平台和桥式微位移放大机构;所述的微位移驱动器有X轴和Y轴的微位移驱动器,X轴和Y轴的微位移驱动器分别安装在X轴或Y轴的桥式微位移放大机构中,X轴和Y轴桥式微位移放大机构分别与X轴或Y轴固定平台相连,XY二维基座平台的边与柔性支链组成X轴和Y轴的平行四杆导向机构,微位移驱动器、固定平台和桥式微位移放大机构位于平行四杆机构内。The precision micro-motion platform includes a stage, an XY two-dimensional base platform, a fixed platform, a bridge-type micro-displacement amplification mechanism, and a flexible branch chain. The XY two-dimensional base platform is connected with a stage, and the stage It is a Z-axis platform, and there are X-axis and Y-axis fixed platforms and a bridge-type micro-displacement amplification mechanism connected to the four sides of the XY two-dimensional base platform; the micro-displacement driver has X-axis and Y-axis micro-displacement drivers, X The micro-displacement drivers of the axis and the Y-axis are respectively installed in the bridge-type micro-displacement amplification mechanism of the X-axis or the Y-axis. The side of the base platform and the flexible branch chain form the parallel four-bar guiding mechanism of the X-axis and the Y-axis, and the micro-displacement driver, the fixed platform and the bridge-type micro-displacement amplification mechanism are located in the parallel four-bar mechanism.
平台系统的控制方法为:中央控制单元27将预设的载物台13的位移量转换成相应的电压信号并发送给驱动器电源26,驱动器电源26对接受到的电压信号进行放大,进而驱动XY二维基座平台1和载物台13,以实现载物台沿X、Y和Z轴方向的三自由度平移运动;同时,设在XY二维基座平台1轴线方向上的X向激光位移传感器5、Y向激光位移传感器22和设在载物台13上方的Z向激光位移传感器14将采集精密微动平台的位置信息,并将采集到的位置信息反馈给中央控制单元27,中央控制单元27对位置信息进行处理并对驱动器电源26做进一步的控制,从而实现闭环控制。The control method of the platform system is as follows: the central control unit 27 converts the preset displacement of the
本发明的大行程三平动正交解耦型精密微动平台系统,包括中央控制单元27,驱动器电源26、激光位移传感器以及可实现三平动功能的精密微动平台;其中载物台13通过Z轴柔性机构8布置在XY二维基座平台1之上,XY二维基座平台1通过4条柔性支链分别与4个固定平台相连,每条柔性支链中集成了一个桥式微位移放大机构,并且在桥式微位移放大机构中内嵌了一个微位移驱动器;在XY二维基座平台1的轴线方向上分别布置有X轴激光位移传感器5、Y轴激光位移传感器22和X轴位移检测挡板2、Y轴位移检测挡板24,在载物台13的正上方设有Z轴激光位移传感器14。The large-stroke three-translation orthogonal decoupling precision micro-motion platform system of the present invention includes a central control unit 27, a driver power supply 26, a laser displacement sensor, and a precision micro-motion platform capable of realizing three-translation functions; wherein the
XY二维基座平台1与4条柔性支链呈全对称布置。每条柔支链亦为对称结构,并集成桥式微位移放大机构。XY二维基座平台1在X轴及Y轴运动方向上均为双驱动。XY二维基座平台1与X轴前柔性支链7、X轴后柔性支链18构成Y轴的平行四杆导向机构,XY二维基座平台1与Y轴前柔性支链21、Y轴后柔性支链9构成X轴的平行四杆导向机构。The XY two-dimensional base platform 1 is arranged symmetrically with the four flexible branch chains. Each flexible branch chain is also a symmetrical structure, and integrates a bridge-type micro-displacement amplification mechanism. The XY two-dimensional base platform 1 is dual-driven in both the X-axis and Y-axis motion directions. The XY two-dimensional base platform 1, the X-axis front flexible branch chain 7, and the X-axis rear
大行程三平动正交解耦型精密微动平台,包括中央控制单元27、驱动器电源26、X轴激光位移传感器5、Y轴激光位移传感器14、Z轴激光位移传感器22、载物台13、XY二维基座平台1、Z轴柔性机构8、连接于XY二维基座平台1与固定平台之间的4条柔性支链等组成部分。载物台13通过Z轴柔性机构8布置在XY二维基座平台1之上,XY二维基座平台1通过X轴前柔性支链7、X轴后柔性支链18、Y轴前柔性支链21、Y轴后柔性支链9分别与X轴前固定平台4、X轴后固定平台17、Y轴前固定平台23、Y轴后固定平台11相连,X轴前桥式微位移放大机构6、X轴后桥式微位移放大机构15、Y轴前桥式微位移放大机构20、Y轴后桥式微位移放大机构12分别集成在X轴前柔性支链7、X轴后柔性支链18、Y轴前柔性支链21、Y轴后柔性支链9之中,并内嵌着X轴前微位移驱动器3、X轴后微位移驱动器16、Y轴前微位移驱动器19、Y轴后微位移驱动器10。XY二维基座平台1与X轴前柔性支链7、X轴后柔性支链18、Y轴前柔性支链21、Y轴后柔性支链9呈全对称布置。同时,X轴前柔性支链7、X轴后柔性支链18、Y轴前柔性支链21、Y轴后柔性支链9自身均为对称结构。XY二维基座平台1在X轴及Y轴方向上均为双驱动。Large-stroke three-translation orthogonal decoupling precision micro-motion platform, including central control unit 27, driver power supply 26, X-axis
本发明的精密微动平台为一体化结构,载物台13、XY二维基座平台1、柔性支链及固定平台等均为一体,XY二维基座平台1与X轴前柔性支链7、X轴后柔性支链18构成沿Y轴方向的平行四杆导向机构,XY二维基座平台1与Y轴前柔性支链21、Y轴后柔性支链9构成沿X轴方向的平行四杆导向机构。X轴前微位移驱动器3、X轴后微位移驱动器16通过X轴前桥式微位移放大机构6、X轴后桥式微位移放大机构15分别驱动X轴前柔性支链7、X轴后柔性支链18实现了精密微动平台沿X轴方向的平动;Y轴前微位移驱动器19、Y轴后微位移驱动器10通过Y轴前桥式微位移放大机构20、Y轴后桥式微位移放大机构12分别驱动Y轴前柔性支链21、Y轴后柔性支链9实现了精密微动平台沿Y轴方向的平动;压电陶瓷驱动器25驱动Z轴柔性机构8,实现了载物台13沿Z轴的平动,三维方向上的联合驱动,可使得载物台13能够在1mm×1mm×50um的空间范围内运动。The precision micro-movement platform of the present invention is an integrated structure, the
在图2中,由中央控制单元27、驱动系统和位移检测系统组成套闭环反馈控制系统。驱动系统包括驱动电源26和三个坐标方向的位移驱动器,位移检测系统包括沿三个坐标方向的激光位移传感器和检测挡板,位移传感器可采用LK-G30型激光位移传感器,X轴和Y轴方向的激光位移传感器分别布置在轴线方向上,且距离检测挡板的距离为10±2cm, Z轴方向的位移传感布置在距离载物台13 10±2cm的正上方;工作时,首先开启中央控制单元27,中央控制单元27将预设的载物台13沿三个坐标方向的位移量分别转换成相应的电压信号并发送给驱动器电源26,驱动器电源26对接受到的电压信号进行放大,并分别驱动精密微动平台中的X向、Y向和Z向位移驱动器,实现载物台13沿X、Y和Z轴方向的三自由度平移运动;同时, X轴激光位移传感器5、Y轴激光位移传感器22和Z轴激光位移传感器14分别采集精密微动平台的位置信息,并将测量到的位置信息反馈给中央控制单元27,中央控制单元27对位置信息进行运算、比较,进而得出精密微动平台进一步控制所需的电压值,再发送给驱动器电源26,从而实现闭环控制。In Fig. 2, a closed-loop feedback control system is composed of a central control unit 27, a drive system and a displacement detection system. The drive system includes a drive power supply 26 and displacement drivers in three coordinate directions. The displacement detection system includes laser displacement sensors and detection baffles along the three coordinate directions. The displacement sensor can be LK-G30 laser displacement sensor, X-axis and Y-axis The laser displacement sensors in the direction are arranged in the axial direction, and the distance from the detection baffle is 10±2cm, and the displacement sensor in the Z-axis direction is arranged directly above the stage 13 10±2cm; when working, first turn on The central control unit 27, the central control unit 27 converts the preset displacements of the stage 13 along the three coordinate directions into corresponding voltage signals and sends them to the driver power supply 26, and the driver power supply 26 amplifies the received voltage signals, And respectively drive the X-direction, Y-direction and Z-direction displacement drivers in the precision micro-motion platform to realize the three-degree-of-freedom translation motion of the stage 13 along the X, Y and Z-axis directions; at the same time, the X-axis laser displacement sensor 5, Y The axis laser displacement sensor 22 and the Z axis laser displacement sensor 14 respectively collect the position information of the precision micro-motion platform, and feed back the measured position information to the central control unit 27, and the central control unit 27 calculates and compares the position information, and then obtains The voltage value required for further control of the precision micro-motion platform is output, and then sent to the driver power supply 26, thereby realizing closed-loop control.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110053202 CN102182899A (en) | 2011-03-07 | 2011-03-07 | Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110053202 CN102182899A (en) | 2011-03-07 | 2011-03-07 | Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102182899A true CN102182899A (en) | 2011-09-14 |
Family
ID=44569162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110053202 Pending CN102182899A (en) | 2011-03-07 | 2011-03-07 | Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102182899A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102494661A (en) * | 2011-11-18 | 2012-06-13 | 浙江工业大学 | Method for accurately measuring three-dimensional deformation of tested piece in high-low temperature chamber |
CN102830711A (en) * | 2012-09-14 | 2012-12-19 | 袁庆丹 | Large-stroke and high-precision micro-motion platform |
CN102962683A (en) * | 2012-11-22 | 2013-03-13 | 上海交通大学 | Two-degree of freedom translational parallel high-bandwidth micro-motion platform |
CN103033522A (en) * | 2012-12-14 | 2013-04-10 | 中国科学院深圳先进技术研究院 | Method and system for detecting millimeter wave samples |
CN103256461A (en) * | 2012-02-14 | 2013-08-21 | 莱卡微系统(瑞士)股份公司 | Stand with casters driven assistively used for holding at least one medical device |
CN103486413A (en) * | 2013-10-11 | 2014-01-01 | 天津理工大学 | Three-freedom-degree decoupling large-stroke micro-positioning platform |
WO2014019253A1 (en) * | 2012-08-03 | 2014-02-06 | Li Zhongxiao | Miniature teaching experiment box and experiment instrument used for same |
CN104655491A (en) * | 2015-02-13 | 2015-05-27 | 郑州大学 | Three-directional mechanical test platform |
CN104896268A (en) * | 2015-05-29 | 2015-09-09 | 山东大学 | Three degree-of-freedom large travel flexible nano positioning platform |
CN106082114A (en) * | 2016-08-24 | 2016-11-09 | 广东工业大学 | A kind of flexible big stroke micro-nano technology equipment |
CN106629586A (en) * | 2016-10-15 | 2017-05-10 | 渤海大学 | Device capable of carrying out excitation on MEMS microstructure surface designated area and exciting method thereof |
CN106767406A (en) * | 2016-12-20 | 2017-05-31 | 华南理工大学 | Micro-nano alignment system and its closed-loop On-Line Control Method to compliant mechanism platform |
CN108106547A (en) * | 2018-01-17 | 2018-06-01 | 华南理工大学 | The grand micro- compound alignment system of planar three freedom and method based on laser sensor |
CN108195249A (en) * | 2017-08-31 | 2018-06-22 | 马翼 | Hole location detecting tool |
CN108994783A (en) * | 2018-07-13 | 2018-12-14 | 东莞市瑞沧机械设备有限公司 | Electromagnetic stationary type automatic centering mobile platform |
CN109027560A (en) * | 2018-09-13 | 2018-12-18 | 深圳市三阶微控实业有限公司 | A kind of high-precision XY mobile platform and its implementation |
CN109093571A (en) * | 2018-11-08 | 2018-12-28 | 杭州电子科技大学 | A kind of compact two-dimensional nano servo platform |
CN109296895A (en) * | 2018-11-06 | 2019-02-01 | 广东工业大学 | An X-Z long-stroke high-speed scanning device |
CN109879244A (en) * | 2019-01-30 | 2019-06-14 | 宁波大学 | Two-rotation and one-translation large-stroke uncoupling large hollow parallel piezoelectric micro-motion platform |
CN110148436A (en) * | 2018-10-12 | 2019-08-20 | 宁波大学 | A kind of big stroke, rotatable freedom degree parallel connection flexible micro platform |
CN110310696A (en) * | 2019-06-12 | 2019-10-08 | 天津大学 | Three-stage displacement amplification two-degree-of-freedom compliant precision positioning platform |
CN110333019A (en) * | 2019-07-03 | 2019-10-15 | 北京航空航天大学 | A pressure probe and measurement system for measuring the dynamic pressure characteristics of an electric thruster |
CN111667878A (en) * | 2020-07-09 | 2020-09-15 | 广东工业大学 | A large-stroke, high-speed, high-precision XY parallel decoupling micro-positioning platform |
CN113759770A (en) * | 2021-08-10 | 2021-12-07 | 华中科技大学 | Two-dimensional nanometer positioning platform control system |
CN116428476A (en) * | 2023-06-14 | 2023-07-14 | 深圳市易天自动化设备股份有限公司 | Alignment platform and control method thereof |
WO2024032053A1 (en) * | 2022-08-08 | 2024-02-15 | 深圳信息职业技术学院 | Nano micro-displacement workbench for laser ultra-precision polishing for highly hard and brittle material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1445052A (en) * | 2003-04-14 | 2003-10-01 | 浙江大学 | Super accurate fine motion work platform with function of restraining vibration. |
CN1645518A (en) * | 2004-12-28 | 2005-07-27 | 华南理工大学 | Planar three freedom meek precisively positioning platform |
CN1731081A (en) * | 2005-08-26 | 2006-02-08 | 哈尔滨工业大学 | Large-travel, high-speed, nano-level precision planar positioning system with macro/micro dual drive |
CN2861965Y (en) * | 2005-04-29 | 2007-01-24 | 天津大学 | Large-stroke nanoscale step piezoelectric micro-motion work platform and its drive control system |
CN101286369A (en) * | 2008-06-05 | 2008-10-15 | 上海交通大学 | X-Y-Z three-degree-of-freedom serial nano-scale micro-positioning workbench |
JP4642294B2 (en) * | 2001-09-20 | 2011-03-02 | オリンパス株式会社 | Fine movement mechanism |
-
2011
- 2011-03-07 CN CN 201110053202 patent/CN102182899A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4642294B2 (en) * | 2001-09-20 | 2011-03-02 | オリンパス株式会社 | Fine movement mechanism |
CN1445052A (en) * | 2003-04-14 | 2003-10-01 | 浙江大学 | Super accurate fine motion work platform with function of restraining vibration. |
CN1645518A (en) * | 2004-12-28 | 2005-07-27 | 华南理工大学 | Planar three freedom meek precisively positioning platform |
CN2861965Y (en) * | 2005-04-29 | 2007-01-24 | 天津大学 | Large-stroke nanoscale step piezoelectric micro-motion work platform and its drive control system |
CN1731081A (en) * | 2005-08-26 | 2006-02-08 | 哈尔滨工业大学 | Large-travel, high-speed, nano-level precision planar positioning system with macro/micro dual drive |
CN101286369A (en) * | 2008-06-05 | 2008-10-15 | 上海交通大学 | X-Y-Z three-degree-of-freedom serial nano-scale micro-positioning workbench |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102494661A (en) * | 2011-11-18 | 2012-06-13 | 浙江工业大学 | Method for accurately measuring three-dimensional deformation of tested piece in high-low temperature chamber |
CN103256461A (en) * | 2012-02-14 | 2013-08-21 | 莱卡微系统(瑞士)股份公司 | Stand with casters driven assistively used for holding at least one medical device |
CN103256461B (en) * | 2012-02-14 | 2015-07-08 | 莱卡微系统(瑞士)股份公司 | Stand with casters driven assistively used for holding at least one medical device |
WO2014019253A1 (en) * | 2012-08-03 | 2014-02-06 | Li Zhongxiao | Miniature teaching experiment box and experiment instrument used for same |
CN102830711A (en) * | 2012-09-14 | 2012-12-19 | 袁庆丹 | Large-stroke and high-precision micro-motion platform |
CN102962683A (en) * | 2012-11-22 | 2013-03-13 | 上海交通大学 | Two-degree of freedom translational parallel high-bandwidth micro-motion platform |
CN102962683B (en) * | 2012-11-22 | 2015-03-11 | 上海交通大学 | Two-degree of freedom translational parallel high-bandwidth micro-motion platform |
CN103033522A (en) * | 2012-12-14 | 2013-04-10 | 中国科学院深圳先进技术研究院 | Method and system for detecting millimeter wave samples |
CN103033522B (en) * | 2012-12-14 | 2015-09-16 | 中国科学院深圳先进技术研究院 | Millimeter wave sample detection methods and system |
CN103486413B (en) * | 2013-10-11 | 2016-02-10 | 天津理工大学 | Three freedom decoupling Long Distances mini positioning platform |
CN103486413A (en) * | 2013-10-11 | 2014-01-01 | 天津理工大学 | Three-freedom-degree decoupling large-stroke micro-positioning platform |
CN104655491A (en) * | 2015-02-13 | 2015-05-27 | 郑州大学 | Three-directional mechanical test platform |
CN104896268A (en) * | 2015-05-29 | 2015-09-09 | 山东大学 | Three degree-of-freedom large travel flexible nano positioning platform |
CN106082114A (en) * | 2016-08-24 | 2016-11-09 | 广东工业大学 | A kind of flexible big stroke micro-nano technology equipment |
CN106629586A (en) * | 2016-10-15 | 2017-05-10 | 渤海大学 | Device capable of carrying out excitation on MEMS microstructure surface designated area and exciting method thereof |
CN106767406A (en) * | 2016-12-20 | 2017-05-31 | 华南理工大学 | Micro-nano alignment system and its closed-loop On-Line Control Method to compliant mechanism platform |
CN106767406B (en) * | 2016-12-20 | 2022-08-16 | 华南理工大学 | Micro-nano positioning system and full closed-loop online control method for compliant mechanism platform by micro-nano positioning system |
CN108195249A (en) * | 2017-08-31 | 2018-06-22 | 马翼 | Hole location detecting tool |
CN108106547A (en) * | 2018-01-17 | 2018-06-01 | 华南理工大学 | The grand micro- compound alignment system of planar three freedom and method based on laser sensor |
CN108106547B (en) * | 2018-01-17 | 2023-09-19 | 华南理工大学 | Plane three-degree-of-freedom macro-micro composite positioning system and method based on laser sensor |
CN108994783A (en) * | 2018-07-13 | 2018-12-14 | 东莞市瑞沧机械设备有限公司 | Electromagnetic stationary type automatic centering mobile platform |
CN109027560A (en) * | 2018-09-13 | 2018-12-18 | 深圳市三阶微控实业有限公司 | A kind of high-precision XY mobile platform and its implementation |
CN110148436A (en) * | 2018-10-12 | 2019-08-20 | 宁波大学 | A kind of big stroke, rotatable freedom degree parallel connection flexible micro platform |
CN109296895A (en) * | 2018-11-06 | 2019-02-01 | 广东工业大学 | An X-Z long-stroke high-speed scanning device |
CN109296895B (en) * | 2018-11-06 | 2023-09-12 | 广东工业大学 | X-Z long-stroke high-speed scanning device |
CN109093571A (en) * | 2018-11-08 | 2018-12-28 | 杭州电子科技大学 | A kind of compact two-dimensional nano servo platform |
CN109879244B (en) * | 2019-01-30 | 2020-12-04 | 宁波大学 | Two-rotation and one-translation large-stroke uncoupling large hollow parallel piezoelectric micro-motion platform |
CN109879244A (en) * | 2019-01-30 | 2019-06-14 | 宁波大学 | Two-rotation and one-translation large-stroke uncoupling large hollow parallel piezoelectric micro-motion platform |
CN110310696B (en) * | 2019-06-12 | 2021-04-27 | 天津大学 | Three-stage displacement amplification two-degree-of-freedom flexible precision positioning platform |
CN110310696A (en) * | 2019-06-12 | 2019-10-08 | 天津大学 | Three-stage displacement amplification two-degree-of-freedom compliant precision positioning platform |
CN110333019A (en) * | 2019-07-03 | 2019-10-15 | 北京航空航天大学 | A pressure probe and measurement system for measuring the dynamic pressure characteristics of an electric thruster |
CN111667878A (en) * | 2020-07-09 | 2020-09-15 | 广东工业大学 | A large-stroke, high-speed, high-precision XY parallel decoupling micro-positioning platform |
CN113759770A (en) * | 2021-08-10 | 2021-12-07 | 华中科技大学 | Two-dimensional nanometer positioning platform control system |
WO2024032053A1 (en) * | 2022-08-08 | 2024-02-15 | 深圳信息职业技术学院 | Nano micro-displacement workbench for laser ultra-precision polishing for highly hard and brittle material |
CN116428476A (en) * | 2023-06-14 | 2023-07-14 | 深圳市易天自动化设备股份有限公司 | Alignment platform and control method thereof |
CN116428476B (en) * | 2023-06-14 | 2023-09-19 | 深圳市易天自动化设备股份有限公司 | Alignment platform and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102182899A (en) | Large-stroke three-translation orthogonal decoupling-type precise micromotion platform and control method thereof | |
CN1962209B (en) | A three-branch six-degree-of-freedom parallel flexible hinge micro-motion mechanism | |
Wang et al. | A planar 3-DOF nanopositioning platform with large magnification | |
CN101417424B (en) | A three-dimensional translational micro-manipulator | |
CN103225728B (en) | Two-dimensional parallel micromotion platform driven by piezoceramic | |
CN202428438U (en) | Six-freedom-degree parallel connection micro robot | |
CN100363157C (en) | Six degrees of freedom micro-manipulation robot with full pose feedback | |
Gao et al. | Development of a novel flexure-based XY platform using single bending hybrid piezoelectric actuator | |
CN103104793B (en) | Integrated type six degrees of freedom precision positioning platform | |
CN103552061B (en) | Parallel micro-motion platform with one translational degree of freedom and two rotational degrees of freedom | |
CN106426089B (en) | Flexible three-freedom parallel institution vibration detection control device and control method | |
CN102794664B (en) | Bridge-type flexible hinge based high-frequency ultra-precision machining lathe saddle driving platform | |
CN102756366A (en) | Space decoupling three-dimensional motion parallel micro-motion mechanism | |
CN103557412A (en) | Bipolar two-dimensional fully flexible high-precision servo platform | |
CN101862966A (en) | Two-degree-of-freedom parallel decoupling micro-motion platform | |
CN106195541A (en) | A kind of Three Degree Of Freedom Piezoelectric Driving micro-nano locating platform | |
CN101531002A (en) | Micro-nano working platform of four-dimensional mobile orthogonal structure | |
Zhang et al. | Design and assessment of a 6-DOF micro/nanopositioning system | |
CN102623070A (en) | A two-degree-of-freedom micro-displacement precision positioning device | |
CN101837586B (en) | Two-dimensional micromotion stage | |
CN101157216A (en) | Three-degree-of-freedom micro-manipulation robot | |
Lv et al. | A parallel 3-DOF micro-nano motion stage for vibration-assisted milling | |
CN101530999A (en) | Micro-nano working platform of five-dimensional mobile orthogonal structure | |
CN206105840U (en) | Three flexible degree of freedom parallel mechanism vibration detection controlling means | |
CN106159079A (en) | A kind of improve piezoelectricity compliant mechanism output displacement and the structure of natural frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110914 |