Nothing Special   »   [go: up one dir, main page]

CN102176000A - Sea clutter suppression method for marine radar - Google Patents

Sea clutter suppression method for marine radar Download PDF

Info

Publication number
CN102176000A
CN102176000A CN2011100299310A CN201110029931A CN102176000A CN 102176000 A CN102176000 A CN 102176000A CN 2011100299310 A CN2011100299310 A CN 2011100299310A CN 201110029931 A CN201110029931 A CN 201110029931A CN 102176000 A CN102176000 A CN 102176000A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
sea clutter
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100299310A
Other languages
Chinese (zh)
Other versions
CN102176000B (en
Inventor
段昶
姚云萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO CHENGDIAN TAIKE ELECTRONIC INFORMATION TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2011100299310A priority Critical patent/CN102176000B/en
Publication of CN102176000A publication Critical patent/CN102176000A/en
Application granted granted Critical
Publication of CN102176000B publication Critical patent/CN102176000B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a sea clutter suppression method for a marine radar. Most of the existing marine radars can not process the nearby sea clutter, and the existing sea clutter suppression methods usually suppress the sea clutter according to a fixed template, which can result in the great attenuation in the amplitude of a nearby target signal or even result in miss detection. The sea clutter suppression method provided for overcoming the above disadvantages comprises the following steps: initializing parameters and data, estimating parameters, suppressing the sea clutter and updating an estimation sample. The method can estimate the sea clutter according to different sea clutter distributions selected according to different sea conditions, and determine whether the sample data need to be updated for re-estimation according to the suppression effect, thereby maximally reducing the influence to the target while suppressing the sea clutter as much as possible, and obviating the great attenuation in the amplitude of the nearby target signal.

Description

Marine radar sea clutter suppression method
Technical Field
The invention belongs to the technical field of marine radars, and particularly relates to inhibition of sea clutter in the marine radars.
Background
The ship radar is one of indispensable navigation equipment of ships, but the detection and tracking performance of the ship radar is often influenced by electromagnetic waves (sea clutter) scattered by the surface of sea waves, and the sea clutter problem is more serious especially when small targets flying in low altitude and sea sweepback are detected. It is well known that clutter increases the false alarm probability or correspondingly decreases the detection probability at constant false alarm rates. This may be more severe for sea clutter, which is moving and fluctuating and thus difficult to eliminate than ground clutter. Most of the existing marine radars do not process the near-sea clutter of the radar, so that the phenomenon of large cake at the center can be caused. In the existing sea clutter suppression method, sea clutter suppression is generally performed according to a fixed template, so that the amplitude of a near target signal is greatly attenuated, and even missing detection is caused.
Disclosure of Invention
The invention aims to solve the problem that the amplitude of a near target signal can be greatly attenuated while radar near sea clutter suppression is carried out in the conventional marine radar sea clutter suppression method, and provides a marine radar sea clutter suppression method.
In order to achieve the purpose, the technical scheme of the invention is as follows: a method for suppressing sea clutter of a marine radar comprises the following steps:
s1, initializing, namely completing the initialization setting of parameters and the initialization of data, and specifically comprising the following steps:
s11, selecting the distribution of sea clutter according to the actual sea situation and the performance of the radar;
s12, setting parameters of a suppression method, N: number of scan lines processed in a sample update period, M: number of scanning lines required for sample estimation, α: re-estimated threshold, β: a threshold value of binarization;
s13, reading M scanning line data, and marking as { Ti(k) M, k 1, 2, Num, represented by the formula
Figure BDA0000045742870000021
Calculating the data point number of the sea clutter on one scanning line, wherein n is the data point number of the sea clutter on one scanning line, D is the farthest distance between the sea clutter near the radar and the radar, Range is the detection distance of the radar, and Num is the number of the data points on one scanning line, and obtaining the first n scanning line data points { T } of M scanning linesi(k) M, k is 1, 2.. n }, and the average value is recorded as
Figure BDA0000045742870000022
And storing as sample data;
s2, parameter estimation and data mapping, wherein sample data C (k) and step S11 are used for selecting the distribution of the sea clutter and estimating the parameters of the distribution to obtain sea clutter data { B (k) }, wherein k is 1
Figure BDA0000045742870000023
Carrying out data mapping to obtain mapped sea clutter data D (k);
s3, reading N scanning line data and carrying out sea clutter suppression treatment, namely carrying out subtraction operation on the N scanning line data and the sea clutter data D (k) estimated in the step S2, carrying out binarization treatment on the result according to a threshold value beta, reading the first N point data of the N-M +1 to N scanning data while carrying out sea clutter suppression when the suppression is carried out to N-M, and taking the average value of the data and recording the average value as the average value
Figure BDA0000045742870000024
And storing;
s4, judging whether the detection distance of the radar is changed or not, if so, executing a step S13, otherwise, executing a step S5;
s5, updating sample data if the sample data meets the requirement
Figure BDA0000045742870000025
Then step S3 is executed without re-estimating the sea clutter data; if not, using the first n scan line data points of the M stored in step S3The average value C' (k) updates the sample data C (k), and step S2 is executed to re-estimate the parameters.
The distribution of the sea clutter in step S11 is rayleigh distribution, log-normal distribution, weibull distribution, and K distribution.
It is assumed that a sample data sequence for estimating the sea clutter distribution on one scan line of the radar is Z ═ ZiI is 1, Ln, and n is the number of data points. The specific process of parameter estimation described in step S2 is as follows:
(1) rayleigh distribution: the Rayleigh distribution probability density function is as follows
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mfrac><msub><mi>z</mi><mi>i</mi></msub><msup><mi>&sigma;</mi><mn>2</mn></msup></mfrac><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mfrac><msubsup><mi>z</mi><mi>i</mi><mn>2</mn></msubsup><mrow><mn>2</mn><msup><mi>&sigma;</mi><mn>2</mn></msup></mrow></mfrac><mo>)</mo></mrow></mtd><mtd><msub><mi>z</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mtext>0</mtext></mtd><mtd><msub><mi>z</mi><mi>i</mi></msub><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></mrow></math>
Wherein σ2If the average power is the power, then the parameter sigma of the Rayleigh distribution can be estimated according to the sample data;
<math><mrow><msup><mover><mi>&sigma;</mi><mo>^</mo></mover><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><msub><mi>z</mi><mi>i</mi></msub><mn>2</mn></msup><mo>)</mo></mrow></mrow></math>
(2) lognormal distribution: the probability density function of the lognormal distribution is as follows
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><msqrt><mn>2</mn><mi>&pi;</mi></msqrt><mi>&sigma;</mi><msub><mi>z</mi><mi>i</mi></msub></mrow></mfrac><mi>exp</mi><mo>[</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>ln</mi><msub><mi>z</mi><mi>i</mi></msub><mo>-</mo><mi>&mu;</mi><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><msup><mi>&sigma;</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo><mo>,</mo><msub><mi>z</mi><mi>i</mi></msub><mo>></mo><mn>0</mn><mo>,</mo><mi>&sigma;</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>&mu;</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
Wherein σ is a shape parameter and is a lognormal distribution ln ziThe standard deviation of (a), the tailing of the probability density distribution of which becomes longer as σ increases; μ is a scale parameter and is lognormal distribution ln ziIs measured. Taking the parameters between 0.5 and 1.2 according to different sea conditions, namely estimating parameters sigma and mu of lognormal distribution according to sample data;
<math><mfenced open='{' close=''><mtable><mtr><mtd><mover><mi>&mu;</mi><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mi>ln</mi><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><msup><mover><mi>&sigma;</mi><mo>^</mo></mover><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><mrow><mo>(</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><mover><mi>&mu;</mi><mo>^</mo></mover><mo>)</mo></mrow><mn>2</mn></msup></mtd></mtr></mtable></mfenced></math>
(3) weibull distribution: the weibull distribution probability density function is as follows,
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mi>p</mi><mi>q</mi></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>z</mi><mi>i</mi></msub><mi>q</mi></mfrac><mo>)</mo></mrow><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>exp</mi><mo>[</mo><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>/</mo><mi>q</mi><mo>)</mo></mrow><mi>p</mi></msup><mo>]</mo><msub><mrow><mo>,</mo><mi>z</mi></mrow><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
wherein q is a scale parameter, p is a shape parameter, the value range is more than 0 and less than or equal to 2, and the estimation of the distribution parameters (p, q) is as follows:
the method comprises the following steps:
the Weibull distribution of sea clutter is empirical and is set to (p)0,q0) Designing an iteration interval (p) of p, q0p,p0p),(q0q,q0q) Wherein δp,δqDetermining the size of p and q iteration intervals according to values preset according to actual conditions, wherein q is used as an outer loop and p is used as an inner loop, performing curve fitting, recording the difference value between curve data and sample data of each fitting, and taking the p and q values of the iteration as parameters when the difference value is smaller than a given threshold value.
The second method comprises the following steps:
<math><mfenced open='{' close=''><mtable><mtr><mtd><mover><mi>p</mi><mo>^</mo></mover><mo>=</mo><msup><mrow><mo>{</mo><mfrac><mn>6</mn><msup><mi>&pi;</mi><mn>2</mn></msup></mfrac><mfrac><mi>n</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mtext>[&lt;</mtext><msup><mrow><mo>(</mo><mi>ln</mi><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn></msup><mo>></mo><mo>-</mo><msup><mrow><mo>&lt;</mo><mi>ln</mi><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow><mo>></mo></mrow><mn>2</mn></msup><mo>]</mo><mo>}</mo></mrow><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mtd></mtr><mtr><mtd><mrow><mover><mi>q</mi><mo>^</mo></mover><mo>=</mo><mi>exp</mi><mo>[</mo><mo>&lt;</mo><mi>ln</mi><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow><mo>></mo><mo>+</mo><mn>0.5772</mn><msup><mover><mi>p</mi><mo>^</mo></mover><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>]</mo></mrow></mtd></mtr></mtable></mfenced></math>
where < > denotes moment estimation, which is common knowledge in the art and will not be described in detail here.
(4) K distribution: the K distribution probability density function is as follows
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>c</mi></mrow><mrow><mi>&Gamma;</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><mi>c</mi><msub><mi>z</mi><mi>i</mi></msub></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mi>v</mi></msup><msub><mi>K</mi><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>c</mi><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>z</mi><mi>i</mi></msub><mo>></mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>c</mi><mo>></mo><mn>0</mn></mrow></math>
Wherein, Kv(.) is a second type of modified Bessel function, c is a scale parameter which affects the average power of the clutter, a smaller c indicates a smaller clutter intensity, the shape parameter v reflects the degree of bias of the K distribution, and a smaller v indicates a more pronounced asymmetry of the distribution, with a greater deviation from the Rayleigh distribution. v generally varies from 0.1 to 10, and is a rayleigh distribution when v ∞, where Γ (v) refers to the Γ function.
And (3) estimating parameters of the K distribution by adopting a moment estimation method, and for known samples, estimating the overall corresponding origin moment of each order by adopting the origin moment of the samples:
<math><mrow><msub><mover><mi>m</mi><mo>^</mo></mover><mi>K</mi></msub><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>z</mi><mi>i</mi><mi>K</mi></msubsup><mo>,</mo><mi>K</mi><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo></mrow></math> wherein
Figure BDA0000045742870000044
Denotes ziTo the power of K of (a),
then the empirical estimate of the moment estimate of v, c is as follows:
v ^ = ( m ^ 4 2 m ^ 2 2 - 1 ) - 1 c ^ = 0.5 m ^ 2 / v ^
wherein,
Figure BDA0000045742870000046
the second order and the fourth order origin moments of the sample data are respectively.
The invention has the beneficial effects that: according to the sea clutter suppression method provided by the invention, a user can select different sea clutter distributions to carry out sea clutter estimation according to different sea conditions, and whether sample data needs to be updated for re-estimation is judged according to the suppression effect, so that the influence on a target is reduced to the minimum while the sea clutter is suppressed as much as possible, and the problem of great attenuation on the signal amplitude of a near target is solved.
Drawings
FIG. 1 is a schematic flow chart of the sea clutter suppression method of the marine radar of the present invention.
FIG. 2 is a schematic representation of the marine radar scan data of the present invention.
Fig. 3 is a schematic diagram of a result of performing sea clutter suppression on a piece of scan data by using weibull distribution according to an embodiment of the present invention.
Fig. 4 is a schematic diagram of measured data of the marine radar according to the embodiment of the present invention.
Fig. 5 is a schematic diagram of a result of performing sea clutter suppression on measured data by using weibull distribution according to an embodiment of the present invention.
Detailed Description
Specific embodiments of the present invention are given below with reference to the accompanying drawings. It should be noted that: the parameters in the examples do not affect the generality of the invention.
The sea clutter characteristics include two aspects: firstly, determining the amplitude distribution and the power spectrum type of the sea clutter; secondly, parameters of the amplitude distribution and power spectrum model are determined according to a specific radar system and a radar working environment. The sea clutter amplitude distribution function is important for designing signal and information processing algorithms such as target detection, estimation, tracking and identification. The flow diagram of the embodiment of the invention is shown in fig. 1, and specifically as follows:
s1, initializing, namely completing the initialization setting of parameters and the initialization of data, and specifically comprising the following steps:
s11, selecting Weibull distribution according to the actual sea situation and the performance of the radar,
s12, setting parameters: the number of scanning lines N processed in each sample update cycle is 100, the number of scanning lines M required for each sample estimation is 15, the threshold value α of the re-estimation parameter is 0.2, the threshold value β of the binarization is 60,
s13, initializing sample data: read 15 scan lines, denoted as { T }i(k) 1, 2.. 15, k ═ 1,... Num }, represented by the formula
Figure BDA0000045742870000051
Calculating the number of data points of the sea clutter on one scanning line, where n is the number of data points of the sea clutter on one scanning line, as shown in fig. 2, D is the farthest distance of the sea clutter near the radar from the radar, where D is 3 nautical miles, the detection distance Range of the radar is 60 nautical miles, and the number Num of data points on one scanning line is 1000, so as to obtain the first 50 point scanning line data { T ═ T ] of 15 scanning linesi(k) 1, 2.. 15, k ═ 1,.. 50}, and the average value is taken and recorded as
Figure BDA0000045742870000061
And saved as sample data.
S2, parameter estimation, namely selecting the distribution of the sea clutter by sample data C (k) and the step S1, and estimating the distributed parameters to obtain sea clutter data;
estimating required parameters p and q by sample data C (k) and Weibull distribution obeyed by sea clutter, wherein the specific process is as follows:
the weibull distribution probability density function is as follows,
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mi>p</mi><mi>q</mi></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>z</mi><mi>i</mi></msub><mi>q</mi></mfrac><mo>)</mo></mrow><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>exp</mi><mo>[</mo><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>/</mo><mi>q</mi><mo>)</mo></mrow><mi>p</mi></msup><mo>]</mo><msub><mrow><mo>,</mo><mi>z</mi></mrow><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
in the formula, q is a scale parameter and is generally smaller than the peak position of curve distribution; p is a shape parameter, the value range is more than 0 and less than or equal to 2, and when the shape parameter p is 1, the Weibull distribution is degenerated into exponential distribution; when the shape parameter p is 2, the weibull distribution degenerates to a rayleigh distribution. As the shape parameter p decreases, the tailing of the probability density distribution becomes longer; it is assumed here that the data sequence for estimating the sea clutter distribution on one scan line of the radar is Z ═ ZiI is 1, L n, and n is the number of data points.
The Weibull distribution of the general sea clutter is empirical, is set as (1, 15) here, and is taken as iteration intervals (0, 2) and (0, 20) of design p and q, iterative operation is carried out, curve fitting is carried out, the difference value of the curve fitted each time and the actual radar data is recorded, and when the difference value is smaller than a given threshold value
Figure BDA0000045742870000063
And then, the p and q values of the iteration are used as estimated parameters, and the sea clutter data { B (k) }, wherein k is 1.
Since the estimated sea clutter data is a sample of the probability distribution, and the data interval is (0, 1), mapping of the data, i.e. mapping the obtained sea clutter data to the range corresponding to the scan line data, i.e. according to the equationPerforming data mapping to obtain mapped sea clutter data { D (k) }, wherein k is 1.
The result of sea clutter suppression of one piece of scan data of the radar is shown in fig. 3, and it can be seen that the sea clutter near the radar is well estimated, so that the target submerged by the sea clutter is effectively detected.
S3, reading 100 scanning line data and performing sea clutter suppression processing, namely, sea clutter data { T } on 100 scanning line datai(k) 1, 2.. 100, k ═ 1,. 50}, and the sea clutter data { d (k) } estimated in step S2, k ═ 1,. 50} are respectively subjected to subtraction, and the result is subjected to binarization processing according to a threshold 60. When the suppression is performed to 85 pieces, the average value of the scanning line data of the first 50 points of the last 15 pieces is stored while the clutter suppression is performed, and is recorded as
S4, judging whether the detection distance of the radar is changed or not, if so, executing a step S13, otherwise, executing a step S5;
s5, updating sample data if the sample data meets the requirement
Figure BDA0000045742870000073
Then step S3 is executed without re-estimating the sea clutter data; if not, the average value C' (k) of the scan line data of the first 50 points of 15 stored in step S3 is usedAnd (k) executing step S2 to re-estimate the parameters.
The scanning data of one frame of radar is shown in fig. 4, and the suppression result is shown in fig. 5, so that it can be seen that the sea clutter near the radar is effectively suppressed, and meanwhile, the target submerged by the sea clutter is effectively detected.
In the present embodiment, weibull distribution is used, but the present invention is not limited to weibull distribution, and in actual processing, other three distributions, i.e., rayleigh distribution, log-normal distribution, and K distribution, may be selected according to different situations.
The Rayleigh distribution is a classical function for describing the amplitude distribution of the sea clutter, is suitable for describing the sea clutter of the low-resolution radar, and when a sea clutter unit contains a large number of mutually independent scattering sources and does not contribute obviously to individuals, the envelope amplitude of the radar sea clutter obeys the Rayleigh distribution; the lognormal distribution is suitable for some flat area high-resolution sea clutter data; under the conditions of high-resolution radar and low incidence angle, the wave clutter of the general sea situation can be accurately described by using Weibull distribution; the K distribution has good fitting effect on sea clutter envelope data obtained when the radar works at a low incidence complementary angle, can simulate the long tail characteristic of sea clutter amplitude distribution and can also correctly simulate the time correlation of the sea clutter amplitude distribution, the characteristic is very important for accurately predicting the detection performance after echo pulse accumulation, and meanwhile, the K distribution also has a wide application range and is suitable for different types of radar sea clutter.
According to the sea clutter suppression method provided by the embodiment of the invention, a user can select different sea clutter distributions to carry out sea clutter estimation according to different sea conditions, and whether sample data needs to be updated to carry out re-estimation is judged according to the suppression effect, so that the influence on a target is reduced to the minimum while the sea clutter is suppressed as much as possible, and the problem of great attenuation on the amplitude of a near target signal is solved.
It will be appreciated by those of ordinary skill in the art that the embodiments described herein are intended to assist the reader in understanding the principles of the invention and are to be construed as being without limitation to such specifically recited embodiments and examples. All such possible equivalents and modifications are deemed to fall within the scope of the invention as defined in the claims.

Claims (7)

1. A method for suppressing sea clutter of a marine radar comprises the following steps:
s1, initializing, namely completing the initialization setting of parameters and the initialization of data, and specifically comprising the following steps:
s11, selecting the distribution of sea clutter according to the actual sea situation and the performance of the radar;
s12, setting parameters of a suppression method, N: number of scan lines processed in a sample update period, M: number of scanning lines required for sample estimation, α: re-estimated threshold, β: a threshold value of binarization;
s13, reading M scanning line data, and marking as { Ti(k) M, k 1, 2, Num, represented by the formula
Figure FDA0000045742860000011
Calculating the data point number of the sea clutter on one scanning line, wherein n is the data point number of the sea clutter on one scanning line, D is the farthest distance between the sea clutter near the radar and the radar, Range is the detection distance of the radar, and Num is the number of the data points on one scanning line, and obtaining the first n scanning line data points { T } of M scanning linesi(k) M, k is 1, 2.. n }, and the average value is recorded as
Figure FDA0000045742860000012
And storing as sample data;
s2, parameter estimation and data mapping, wherein sample data C (k) and step S11 are used for selecting the distribution of the sea clutter and estimating the parameters of the distribution to obtain sea clutter data { B (k) }, wherein k is 1Carrying out data mapping to obtain mapped sea clutter data D (k);
s3, reading N scanning line data and carrying out sea clutter suppression treatment, namely carrying out subtraction operation on the N scanning line data and the sea clutter data D (k) estimated in the step S2, carrying out binarization treatment on the result according to a threshold value beta, reading the first N point data of the N-M +1 to N scanning data while carrying out sea clutter suppression when the suppression is carried out to N-M, and taking the average value of the data and recording the average value as the average value
Figure FDA0000045742860000014
And storing;
s4, judging whether the detection distance of the radar is changed or not, if so, executing a step S13, otherwise, executing a step S5;
s5, updating sample data if the sample data meets the requirement
Figure FDA0000045742860000021
Then step S3 is executed without re-estimating the sea clutter data; if not, the sample data C (k) is updated with the average value C' (k) of the M previous n scan line data points saved in step S3, and step S2 is executed to re-estimate the parameters.
2. The method for suppressing sea clutter of a marine radar according to claim 1, wherein said sea clutter is distributed in a rayleigh distribution, a lognormal distribution, a weibull distribution, and a K distribution.
3. The method for suppressing sea clutter according to claim 2, wherein the specific process of the parameter estimation of the rayleigh distribution is: the rayleigh distribution probability density function is as follows:
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mfrac><msub><mi>z</mi><mi>i</mi></msub><msup><mi>&sigma;</mi><mn>2</mn></msup></mfrac><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mfrac><msubsup><mi>z</mi><mi>i</mi><mn>2</mn></msubsup><mrow><mn>2</mn><msup><mi>&sigma;</mi><mn>2</mn></msup></mrow></mfrac><mo>)</mo></mrow></mtd><mtd><msub><mi>z</mi><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mtext>0</mtext></mtd><mtd><msub><mi>z</mi><mi>i</mi></msub><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mfenced></mrow></math>
wherein σ2For average power, { zi1, L n, which is a sample data sequence used for estimating sea clutter distribution on a scanning line of the radar, and n is the number of data points, then a parameter σ of rayleigh distribution can be estimated according to the sample data;
<math><mrow><msup><mover><mi>&sigma;</mi><mo>^</mo></mover><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msup><msub><mi>z</mi><mi>i</mi></msub><mn>2</mn></msup><mo>)</mo></mrow></mrow></math>
4. the method for suppressing marine radar sea clutter according to claim 2, wherein the specific process of the lognormal distribution parameter estimation is as follows: the probability density function of the lognormal distribution is as follows
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><msqrt><mn>2</mn><mi>&pi;</mi></msqrt><mi>&sigma;</mi><msub><mi>z</mi><mi>i</mi></msub></mrow></mfrac><mi>exp</mi><mo>[</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>ln</mi><msub><mi>z</mi><mi>i</mi></msub><mo>-</mo><mi>&mu;</mi><mo>)</mo></mrow><mn>2</mn></msup><mrow><mn>2</mn><msup><mi>&sigma;</mi><mn>2</mn></msup></mrow></mfrac><mo>]</mo><mo>,</mo><msub><mi>z</mi><mi>i</mi></msub><mo>></mo><mn>0</mn><mo>,</mo><mi>&sigma;</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>&mu;</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
Wherein σ is a shape parameter and is a lognormal distribution ln ziThe standard deviation of (a), the tailing of the probability density distribution of which becomes longer as σ increases; μ is a scale parameter and is lognormal distribution ln ziMean value of { z }iI is 1, L n, which is a sample data sequence used for estimating sea clutter distribution on a scanning line of the radar, n is the number of data points, and the parameters sigma and mu of the lognormal distribution can be estimated according to the sample data by taking the number between 0.5 and 1.2 according to the difference of sea conditions;
<math><mrow><mfenced open='{' close=''><mtable><mtr><mtd><mover><mi>&mu;</mi><mo>^</mo></mover><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>ln</mi><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><msup><mover><mi>&sigma;</mi><mo>^</mo></mover><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msup><mrow><mo>(</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><mover><mi>&mu;</mi><mo>^</mo></mover><mo>)</mo></mrow><mn>2</mn></msup></mtd></mtr></mtable></mfenced><mo>.</mo></mrow></math>
5. the method for suppressing marine radar sea clutter according to claim 2, wherein the specific process of the parameter estimation of the weibull distribution is as follows: the weibull distribution probability density function is as follows,
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mi>p</mi><mi>q</mi></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>z</mi><mi>i</mi></msub><mi>q</mi></mfrac><mo>)</mo></mrow><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>exp</mi><mo>[</mo><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>/</mo><mi>q</mi><mo>)</mo></mrow><mi>p</mi></msup><mo>]</mo><msub><mrow><mo>,</mo><mi>z</mi></mrow><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
wherein q is a scale parameter, p is a shape parameter, the value range is more than 0 and less than or equal to 2, and zi1, L n } for a sample on a scan line of the radar used to estimate the distribution of sea clutterThe data sequence, n being the number of data points, the distribution parameters (p, q) are estimated as follows: the Weibull distribution of sea clutter is empirical and is set to (p)0,q0) Designing an iteration interval (p) of p, q0p,p0p),(q0q,q0q) Wherein δp,δqDetermining the size of p and q iteration intervals according to values preset according to actual conditions, wherein q is used as an outer loop and p is used as an inner loop, performing curve fitting, recording the difference value between curve data and sample data of each fitting, and taking the p and q values of the iteration as parameters when the difference value is smaller than a given threshold value.
6. The method for suppressing marine radar sea clutter according to claim 2, wherein the specific process of the parameter estimation of the weibull distribution is as follows: the weibull distribution probability density function is as follows,
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mi>p</mi><mi>q</mi></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>z</mi><mi>i</mi></msub><mi>q</mi></mfrac><mo>)</mo></mrow><mrow><mi>p</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>exp</mi><mo>[</mo><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>/</mo><mi>q</mi><mo>)</mo></mrow><mi>p</mi></msup><mo>]</mo><msub><mrow><mo>,</mo><mi>z</mi></mrow><mi>i</mi></msub><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math>
wherein q is a scale parameter, p is a shape parameter, the value range is more than 0 and less than or equal to 2, and Z is { Z ═i1, L n, for a sample data sequence on a scan line of the radar used for estimating the distribution of the sea clutter, n is the number of data points, and the distribution parameters (p, q) are estimated as follows:
Figure FDA0000045742860000034
wherein<.>The moment estimate is represented.
7. The method for suppressing marine radar sea clutter according to claim 2, wherein the specific process of the parameter estimation of the K-distribution is: the K-distribution probability density function is as follows,
<math><mrow><msub><mi>f</mi><mi>Z</mi></msub><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>c</mi></mrow><mrow><mi>&Gamma;</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><mi>c</mi><msub><mi>z</mi><mi>i</mi></msub></mrow><mn>2</mn></mfrac><mo>)</mo></mrow><mi>v</mi></msup><msub><mi>K</mi><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>c</mi><msub><mi>z</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>z</mi><mi>i</mi></msub><mo>></mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>c</mi><mo>></mo><mn>0</mn></mrow></math>
wherein, Kv(.) is a modified Bessel function of the second type, c is a scale parameter which influences the mean power of the clutter, and the shape parameter v reflects the degree of bias of the K distribution, { z }iI is 1, L n, which is a sample data sequence used for estimating the distribution of the sea clutter on one scanning line of the radar, n is the number of data points,
and (3) estimating parameters of the K distribution by adopting a moment estimation method, and for known samples, estimating the overall corresponding origin moment of each order by adopting the origin moment of the samples:
<math><mrow><msub><mover><mi>m</mi><mo>^</mo></mover><mi>K</mi></msub><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>z</mi><mi>i</mi><mi>K</mi></msubsup><mo>,</mo><mi>K</mi><mo>&GreaterEqual;</mo><mn>0</mn><mo>,</mo></mrow></math> wherein
Figure FDA0000045742860000043
Denotes ziTo the power of K of (a),
then the empirical estimate of the moment estimate of v, c is as follows:
v ^ = ( m ^ 4 2 m ^ 2 2 - 1 ) - 1 c ^ = 0.5 m ^ 2 / v ^
wherein,the second order and the fourth order origin moments of the sample data are respectively.
CN2011100299310A 2011-01-27 2011-01-27 Sea clutter suppression method for marine radar Expired - Fee Related CN102176000B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100299310A CN102176000B (en) 2011-01-27 2011-01-27 Sea clutter suppression method for marine radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100299310A CN102176000B (en) 2011-01-27 2011-01-27 Sea clutter suppression method for marine radar

Publications (2)

Publication Number Publication Date
CN102176000A true CN102176000A (en) 2011-09-07
CN102176000B CN102176000B (en) 2012-11-28

Family

ID=44519203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100299310A Expired - Fee Related CN102176000B (en) 2011-01-27 2011-01-27 Sea clutter suppression method for marine radar

Country Status (1)

Country Link
CN (1) CN102176000B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540161A (en) * 2011-12-01 2012-07-04 宁波成电泰克电子信息技术发展有限公司 Sea cluster parameter obtaining method for ship radar
CN102565774A (en) * 2011-12-12 2012-07-11 中国船舶重工集团公司第七二四研究所 Stepwise regression estimation method for radar detection efficiency
CN102928823A (en) * 2012-10-30 2013-02-13 四川九洲空管科技有限责任公司 Sea clutter suppressing method based on relevant characteristic of secondary radar answering signal
CN103020474A (en) * 2012-12-27 2013-04-03 北京航天福道高技术股份有限公司 Cluster model determining method based on cluster statistical distribution model and power spectrum model
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background
CN103675777A (en) * 2013-12-16 2014-03-26 无锡市雷华科技有限公司 Airborne radar clutter analogy method and device based on fitting method
CN103901418A (en) * 2014-04-11 2014-07-02 中国科学院电子学研究所 Method for clutter suppression in glacier detection radar imaging
CN104316914A (en) * 2014-11-03 2015-01-28 西安电子科技大学 Radar target self-adaptation detection method depending on shape parameters
CN105068054A (en) * 2015-08-25 2015-11-18 中船航海科技有限责任公司 Sea clutter suppression algorithm for marine radar
CN105158749A (en) * 2015-08-26 2015-12-16 哈尔滨工业大学 High-frequency radar sea-clutter amplitude statistical distribution test method
CN105334503A (en) * 2014-08-12 2016-02-17 中国海洋大学 Sea clutter azimuth correlation function model and parameter estimation method thereof
CN107122764A (en) * 2017-05-22 2017-09-01 中国人民解放军国防科学技术大学 ShipTargets detection method based on KpN models
CN107621635A (en) * 2017-08-21 2018-01-23 电子科技大学 A kind of forward sight sea-surface target angle ultra-resolution method
CN108535710A (en) * 2018-03-06 2018-09-14 中国船舶重工集团公司第七二四研究所 A kind of AF panel and target identification method based on target environment feature vector
CN109934101A (en) * 2019-01-24 2019-06-25 西安电子科技大学 Radar clutter recognition method based on convolutional neural networks
CN111665509A (en) * 2020-06-17 2020-09-15 上海宜通海洋科技股份有限公司 Intelligent collision-prevention radar
CN112698277A (en) * 2020-12-21 2021-04-23 上汽通用五菱汽车股份有限公司 Target detection method of vehicle-mounted millimeter wave radar
CN113449850A (en) * 2021-07-05 2021-09-28 电子科技大学 Intelligent inhibition method for clutter of sea surface monitoring radar
WO2022213527A1 (en) * 2021-04-06 2022-10-13 中船航海科技有限责任公司 Precipitation clutter suppression algorithm for marine radar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191929A1 (en) * 2007-02-08 2008-08-14 Wood Thomas E Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model
CN101806887A (en) * 2010-03-19 2010-08-18 清华大学 Space tracking filter-based sea clutter suppression and target detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191929A1 (en) * 2007-02-08 2008-08-14 Wood Thomas E Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model
CN101806887A (en) * 2010-03-19 2010-08-18 清华大学 Space tracking filter-based sea clutter suppression and target detection method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
於建生等: "基于雷达回波相关特征的海杂波抑制方法", 《舰船电子工程》, vol. 29, no. 6, 31 December 2009 (2009-12-31), pages 121 - 124 *
顾庆辉等: "岸基对空情报雷达抑制海杂波的一种方法", 《舰船电子对抗》, vol. 33, no. 2, 30 April 2010 (2010-04-30), pages 30 - 33 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540161B (en) * 2011-12-01 2013-09-04 宁波成电泰克电子信息技术发展有限公司 Sea cluster parameter obtaining method for ship radar
CN102540161A (en) * 2011-12-01 2012-07-04 宁波成电泰克电子信息技术发展有限公司 Sea cluster parameter obtaining method for ship radar
CN102565774A (en) * 2011-12-12 2012-07-11 中国船舶重工集团公司第七二四研究所 Stepwise regression estimation method for radar detection efficiency
CN102928823A (en) * 2012-10-30 2013-02-13 四川九洲空管科技有限责任公司 Sea clutter suppressing method based on relevant characteristic of secondary radar answering signal
CN103020474A (en) * 2012-12-27 2013-04-03 北京航天福道高技术股份有限公司 Cluster model determining method based on cluster statistical distribution model and power spectrum model
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background
CN103645467B (en) * 2013-11-11 2016-04-06 北京环境特性研究所 The method and system of target detection in ocean clutter cancellation and sea clutter background
CN103675777B (en) * 2013-12-16 2016-01-06 无锡市雷华科技有限公司 Based on airborne radar clutter analogy method and the device of fitting process
CN103675777A (en) * 2013-12-16 2014-03-26 无锡市雷华科技有限公司 Airborne radar clutter analogy method and device based on fitting method
CN103901418A (en) * 2014-04-11 2014-07-02 中国科学院电子学研究所 Method for clutter suppression in glacier detection radar imaging
CN105334503A (en) * 2014-08-12 2016-02-17 中国海洋大学 Sea clutter azimuth correlation function model and parameter estimation method thereof
CN105334503B (en) * 2014-08-12 2018-01-09 中国海洋大学 A kind of sea clutter orientation Ionosphere model and its method for parameter estimation
CN104316914A (en) * 2014-11-03 2015-01-28 西安电子科技大学 Radar target self-adaptation detection method depending on shape parameters
CN104316914B (en) * 2014-11-03 2017-01-25 西安电子科技大学 Radar target self-adaptation detection method depending on shape parameters
CN105068054A (en) * 2015-08-25 2015-11-18 中船航海科技有限责任公司 Sea clutter suppression algorithm for marine radar
CN105158749A (en) * 2015-08-26 2015-12-16 哈尔滨工业大学 High-frequency radar sea-clutter amplitude statistical distribution test method
CN107122764B (en) * 2017-05-22 2019-08-06 中国人民解放军国防科学技术大学 ShipTargets detection method based on KpN model
CN107122764A (en) * 2017-05-22 2017-09-01 中国人民解放军国防科学技术大学 ShipTargets detection method based on KpN models
CN107621635A (en) * 2017-08-21 2018-01-23 电子科技大学 A kind of forward sight sea-surface target angle ultra-resolution method
CN107621635B (en) * 2017-08-21 2020-09-01 电子科技大学 Forward-looking sea surface target angle super-resolution method
CN108535710A (en) * 2018-03-06 2018-09-14 中国船舶重工集团公司第七二四研究所 A kind of AF panel and target identification method based on target environment feature vector
CN109934101A (en) * 2019-01-24 2019-06-25 西安电子科技大学 Radar clutter recognition method based on convolutional neural networks
CN111665509A (en) * 2020-06-17 2020-09-15 上海宜通海洋科技股份有限公司 Intelligent collision-prevention radar
CN112698277A (en) * 2020-12-21 2021-04-23 上汽通用五菱汽车股份有限公司 Target detection method of vehicle-mounted millimeter wave radar
WO2022213527A1 (en) * 2021-04-06 2022-10-13 中船航海科技有限责任公司 Precipitation clutter suppression algorithm for marine radar
CN113449850A (en) * 2021-07-05 2021-09-28 电子科技大学 Intelligent inhibition method for clutter of sea surface monitoring radar

Also Published As

Publication number Publication date
CN102176000B (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102176000B (en) Sea clutter suppression method for marine radar
CN107167781B (en) Quantile estimation method for sea clutter amplitude log-normal distribution parameter
CN106569208B (en) Airfield runway foreign matter detecting method based on clutter map
CN104749564B (en) Many quantile methods of estimation of sea clutter Weibull amplitude distribution parameters
JP4667426B2 (en) Weather radar equipment
US9188666B2 (en) System and method for distribution free target detection in a dependent non-Gaussian background
CN103760542A (en) MMVI-CFAR target detection method
CN103809173B (en) Frame CFAR target detection Tracking Integrative method
CN112684428B (en) Multi-target constant false alarm rate detection method based on signal agent
CN103760543A (en) MM-CFAR target detection method
CN109324315B (en) Space-time adaptive radar clutter suppression method based on double-layer block sparsity
AU2012239932A1 (en) Systems and methods for calibrating dual polarization radar systems
WO2023284698A1 (en) Multi-target constant false alarm rate detection method based on deep neural network
CN110308442B (en) GM-PHD target tracking method of phased array radar in strong clutter environment
Rothrock et al. The accuracy of sea ice drafts measured from US Navy submarines
CN110134976A (en) A kind of airborne laser sounding method for extracting signal and system
CN111796288B (en) Clutter frequency spectrum compensation technology-based three-coordinate radar moving target processing method
Hamdollahzadeh et al. Moving target localization in bistatic forward scatter radars: Performance study and efficient estimators
CN105652256B (en) A kind of high-frequency ground wave radar TBD methods based on polarization information
CN108615238A (en) Sea Clutter from HF Radar method for extracting region based on region segmentation
Słota Decomposition techniques for full-waveform airborne laser scanning data
CN108008374B (en) Sea surface large target detection method based on energy median
CN107315169B (en) Clutter covariance matrix estimation method based on second-order statistic similarity
CN110133670B (en) Denoising processing method and system for airborne laser sounding received waveform
CN113009444B (en) Target detection method and device under generalized Gaussian texture sea clutter background

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NINGBO CHENGDIAN TAIKE ELECTRONIC INFORMATION TECH

Free format text: FORMER OWNER: ELECTRON SCIENCE + TECHNOLOGY UNIV.

Effective date: 20120130

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 611731 CHENGDU, SICHUAN PROVINCE TO: 315040 NINGBO, ZHEJIANG PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20120130

Address after: 999, Lane 315040, sailing Road, hi tech Zone, Zhejiang, Ningbo B5-704

Applicant after: Ningbo Chengdian Taike Electronic Information Technology Development Co., Ltd.

Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Applicant before: University of Electronic Science and Technology of China

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20160127

EXPY Termination of patent right or utility model