CN102176000A - Sea clutter suppression method for marine radar - Google Patents
Sea clutter suppression method for marine radar Download PDFInfo
- Publication number
- CN102176000A CN102176000A CN2011100299310A CN201110029931A CN102176000A CN 102176000 A CN102176000 A CN 102176000A CN 2011100299310 A CN2011100299310 A CN 2011100299310A CN 201110029931 A CN201110029931 A CN 201110029931A CN 102176000 A CN102176000 A CN 102176000A
- Authority
- CN
- China
- Prior art keywords
- distribution
- sea clutter
- data
- radar
- sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000001629 suppression Effects 0.000 title claims abstract description 31
- 238000009826 distribution Methods 0.000 claims abstract description 96
- 238000001514 detection method Methods 0.000 claims description 11
- 238000013506 data mapping Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种船用雷达海杂波的抑制方法。现有船用雷达大多都没有处理近处海杂波,现有的海杂波抑制方法中,一般是根据固定模板进行海杂波抑制,会对近处目标信号幅度造成很大衰减,甚至导致漏检的发生。本发明针对上述缺陷而提出。本发明的方法包括如下几个步骤:初始化参数和数据、参数估计、海杂波的抑制和估计样本更新。用户可以根据不同的海情选择不同的海杂波分布进行海杂波估计,并根据抑制效果来判断样本数据是否需要更新进行重新估计,在尽可能大的抑制海杂波的同时,把对目标的影响降至最小,克服了对近处目标信号幅度造成很大衰减的问题。
The invention discloses a method for suppressing sea clutter of marine radar. Most of the existing marine radars do not deal with the nearby sea clutter. In the existing sea clutter suppression methods, the sea clutter suppression is generally performed according to a fixed template, which will greatly attenuate the signal amplitude of the nearby target, and even cause leakage. Check happens. The present invention proposes in view of above-mentioned shortcoming. The method of the invention includes the following steps: initializing parameters and data, estimating parameters, suppressing sea clutter and updating estimated samples. Users can choose different sea clutter distributions to estimate sea clutter according to different sea conditions, and judge whether the sample data needs to be updated for re-estimation according to the suppression effect. While suppressing sea clutter as much as possible, the target The influence is reduced to the minimum, and the problem of greatly attenuating the signal amplitude of the nearby target is overcome.
Description
技术领域technical field
本发明属于船用雷达技术领域,特别涉及其中的海杂波的抑制。The invention belongs to the technical field of marine radar, in particular to the suppression of sea clutter therein.
背景技术Background technique
船用雷达是船舶不可缺少的导航设备之一,但是船用雷达的探测和跟踪性能常常会受海浪表面散射电磁波(即海杂波)的影响,尤其是在探测掠海低空飞行的小目标时,海杂波问题更为严重。众所周知,杂波会增加虚警概率或相应地降低虚警率恒定时的检测概率。而对于海杂波来说这种情况可能更加严重,因为与地杂波相比,海杂波是运动和起伏的,因而很难消除。现有的船用雷达大都没有处理雷达附近海杂波,导致中心会有所谓“大饼”现象。现有的海杂波抑制方法中,一般是根据固定模板进行海杂波抑制,会对近处目标信号幅度造成很大衰减,甚至导致漏检的发生。Marine radar is one of the indispensable navigation equipment for ships, but the detection and tracking performance of marine radar is often affected by the scattered electromagnetic waves on the surface of the waves (that is, sea clutter), especially when detecting small targets flying at low altitudes skimming the sea. The clutter problem is more serious. It is well known that clutter increases the false alarm probability or correspondingly reduces the detection probability for a constant false alarm rate. This situation may be even more serious for sea clutter, because compared with ground clutter, sea clutter is moving and undulating, so it is difficult to eliminate. Most of the existing marine radars do not deal with the sea clutter near the radar, which leads to the so-called "big pie" phenomenon in the center. In the existing sea clutter suppression methods, the sea clutter suppression is generally performed according to a fixed template, which will greatly attenuate the signal amplitude of nearby targets, and even lead to missed detection.
发明内容Contents of the invention
本发明的目的是为了解决现有的船用雷达海杂波抑制方法中,在进行雷达附近海杂波抑制的同时,可能会对近处目标信号幅度造成很大衰减的问题,提出了一种船用雷达海杂波的抑制方法。The purpose of the present invention is to solve the problem that in the existing marine radar sea clutter suppression method, while suppressing the sea clutter near the radar, the signal amplitude of nearby targets may be greatly attenuated. Suppression method of radar sea clutter.
为了实现上述目的,本发明的技术方案是:一种船用雷达海杂波的抑制方法,包括如下步骤:In order to achieve the above object, the technical solution of the present invention is: a method for suppressing marine radar sea clutter, comprising the steps of:
S1.初始化,完成参数的初始化设置和数据的初始化,具体又包括如下分步骤:S1. Initialization, complete the initialization setting of parameters and data initialization, specifically including the following sub-steps:
S11.根据实际海情和雷达的性能,选择海杂波的分布;S11. Select the distribution of sea clutter according to the actual sea situation and the performance of the radar;
S12.抑制方法参数的设置,N:样本更新周期中处理的扫描线个数,M:样本估计所需的扫描线个数,α:重新估计的阈值,β:二值化的阈值;S12. The setting of suppression method parameters, N: the number of scan lines processed in the sample update period, M: the number of scan lines required for sample estimation, α: threshold for re-estimation, β: threshold for binarization;
S13.读取M条扫描线数据,记为{Ti(k),i=1,2...M,k=1,...,Num},由式子计算一条扫描线上海杂波的数据点数,其中n是一条扫描线上海杂波的数据点数,D为雷达附近的海杂波距离雷达的最远距离,Range为雷达的探测距离,Num为一条扫描线上数据点的个数,得到M条扫描线的前n个扫描线数据点{Ti(k),i=1,2...M,k=1,...,n},取其平均值,记为并保存为样本数据;S13. Read M scanning line data, denoted as {T i (k), i=1, 2...M, k=1,..., Num}, by the formula Calculate the number of data points of sea clutter in a scan line, where n is the number of data points of sea clutter in a scan line, D is the farthest distance between the sea clutter near the radar and the radar, Range is the detection distance of the radar, and Num is a scan The number of data points on the line, to obtain the first n scan line data points {T i (k), i=1, 2...M, k=1,..., n} of the M scan lines, take its average value, denoted as and saved as sample data;
S2.参数估计和数据映射,由样本数据C(k)和步骤S11选择海杂波的分布,估计分布的参数,得到海杂波数据{B(k),k=1,...,n},利用式子进行数据映射,得到映射后的海杂波数据D(k);S2. parameter estimation and data mapping, select the distribution of sea clutter by sample data C(k) and step S11, estimate the parameters of the distribution, and obtain sea clutter data {B(k), k=1,...,n }, using the formula Carry out data mapping to obtain the mapped sea clutter data D(k);
S3.读取N条扫描线数据并进行海杂波抑制处理,即将N条扫描线数据与步骤S2估计的海杂波数据D(k)进行减运算,再根据阈值β对结果进行二值化处理,当抑制进行到N-M条时,在进行海杂波抑制的同时,读取N-M+1到N条扫描数据的前n个点数据,取其平均值,记为并保存;S3. Read N scan line data and perform sea clutter suppression processing, that is, subtract the N scan line data from the sea clutter data D(k) estimated in step S2, and then binarize the result according to the threshold β Processing, when the suppression is carried out to NM pieces, while performing sea clutter suppression, read the first n point data of N-M+1 to N pieces of scanning data, take the average value, and record it as and save;
S4.判断雷达探测距离有没有改变,如果改变了,执行步骤S13,否则执行步骤S5;S4. Judging whether the radar detection distance has changed, if changed, execute step S13, otherwise execute step S5;
S5.样本数据的更新,如果满足则不需要重新估计海杂波数据,执行步骤S3;如果不满足,用步骤S3中保存的M条前n个的扫描线数据点的平均值C′(k)更新样本数据C(k),执行步骤S2,重新估计参数。S5. Update of sample data, if satisfied Then there is no need to re-estimate the sea clutter data, execute step S3; if not satisfied, update the sample data C(k) with the average value C'(k) of the M first n scan line data points saved in step S3, Execute step S2 to re-estimate the parameters.
其中,步骤S11中的海杂波的分布为瑞利分布、对数正态分布、韦布尔分布和K分布。Wherein, the distribution of sea clutter in step S11 is Rayleigh distribution, lognormal distribution, Weibull distribution and K distribution.
这里假设雷达一条扫描线上用于估计海杂波分布的样本数据序列为Z={zi,i=1,Ln},n为数据点的个数。步骤S2所述的参数估计的具体过程如下:It is assumed here that the sample data sequence used to estimate the sea clutter distribution on one scanning line of the radar is Z={z i , i=1, Ln}, and n is the number of data points. The specific process of parameter estimation described in step S2 is as follows:
(1)瑞利分布:瑞利分布概率密度函数如下(1) Rayleigh distribution: The probability density function of Rayleigh distribution is as follows
其中,σ2为平均功率,则可根据样本数据估计瑞利分布的参数σ;Among them, σ2 is the average power, then the parameter σ of the Rayleigh distribution can be estimated according to the sample data;
(2)对数正态分布:对数正态分布的概率密度函数如下(2) Lognormal distribution: The probability density function of the lognormal distribution is as follows
其中,σ为形状参数,是对数正态分布ln zi的标准差,随着σ的增大,其概率密度分布的拖尾变长;μ为尺度参数,是对数正态分布ln zi的均值。根据海情的不同,取0.5至1.2之间,即可根据样本数据估计对数正态分布的参数σ和μ;Among them, σ is the shape parameter, which is the standard deviation of the lognormal distribution ln z i . As σ increases, the tail of the probability density distribution becomes longer; μ is the scale parameter, which is the lognormal distribution ln z the mean of i . According to the different sea conditions, the parameters σ and μ of the lognormal distribution can be estimated according to the sample data by taking between 0.5 and 1.2;
(3)韦布尔分布:韦布尔分布概率密度函数如下,(3) Weibull distribution: The probability density function of Weibull distribution is as follows,
其中,q为尺度参数,p为形状参数,取值范围为0<p≤2,分布参数(p,q)的估计如下:Among them, q is a scale parameter, p is a shape parameter, and the value range is 0<p≤2. The distribution parameters (p, q) are estimated as follows:
方法一:method one:
海杂波的韦布尔分布是有经验值的,这里设为(p0,q0),设计p,q的迭代区间(p0-δp,p0+δp),(q0-δq,q0+δq),其中δp,δq为根据实际情况预先设定的值,决定了p,q迭代区间的大小,这里以q为外循环,p为内循环,进行曲线拟合,记录每次拟合的曲线数据与样本数据的差值,当差值小于给定的阈值时,就以此次迭代的p,q值为参数。The Weibull distribution of sea clutter has empirical values, here it is set as (p 0 , q 0 ), and the iteration interval of p, q is designed (p 0 -δ p , p 0 +δ p ), (q 0 -δ p q , q 0 +δ q ), where δ p , δ q are pre-set values according to the actual situation, which determine the size of the iteration interval of p and q. Here, q is the outer loop and p is the inner loop to perform curve fitting. Combine, record the difference between the fitted curve data and the sample data each time, when the difference is less than a given threshold, the p, q values of this iteration are used as parameters.
方法二:Method Two:
其中<.>表示矩估计,矩估计为本领域的公知常识,在此不再详细描述。Where <.> represents moment estimation, which is common knowledge in this field and will not be described in detail here.
(4)K分布:K分布概率密度函数如下(4) K distribution: The probability density function of K distribution is as follows
其中,Kv(.)为第二类修正贝塞尔函数,c为尺度参数,它影响杂波的平均功率,c越小表明杂波强度越小,形状参数v反映了K分布的偏倚程度,v越小分布的不对称性越明显,与瑞利分布的偏差越大。v一般在0.1到10之间变化,当v=∞为瑞利分布,这里的Γ(v)指的是Γ函数。Among them, K v (.) is the second type of modified Bessel function, c is the scale parameter, which affects the average power of clutter, the smaller c is, the smaller the clutter intensity is, and the shape parameter v reflects the degree of bias of the K distribution , the smaller the v, the more obvious the asymmetry of the distribution, and the greater the deviation from the Rayleigh distribution. v generally varies between 0.1 and 10, when v=∞ is a Rayleigh distribution, where Γ(v) refers to the Γ function.
K分布的参数采用矩估计的方法,对于已知样本,采用样本原点矩对总体相应的各阶原点矩进行估计:The parameters of the K distribution adopt the method of moment estimation. For known samples, the origin moment of the sample is used to estimate the corresponding origin moments of each order of the population:
则v,c的矩估计的经验估算式如下:Then the empirical estimation formula of moment estimation of v and c is as follows:
其中,分别为样本数据的二阶,四阶原点矩。in, are the second-order and fourth-order origin moments of the sample data, respectively.
本发明的有益效果:本发明提出的海杂波抑制方法,用户可以根据不同海情选择不同海杂波分布进行海杂波估计,并根据抑制效果来判断样本数据是否需要更新进行重新估计,在尽可能大的抑制海杂波的同时,把对目标的影响降至最小,克服了对近处目标信号幅度造成很大衰减的问题。Beneficial effects of the present invention: With the sea clutter suppression method proposed by the present invention, the user can select different sea clutter distributions for sea clutter estimation according to different sea conditions, and judge whether the sample data needs to be updated for re-estimation according to the suppression effect. While suppressing the sea clutter as much as possible, the impact on the target is minimized, and the problem of greatly attenuating the signal amplitude of the nearby target is overcome.
附图说明Description of drawings
图1是本发明的船用雷达海杂波的抑制方法的流程示意图。Fig. 1 is a schematic flow chart of the method for suppressing marine radar sea clutter of the present invention.
图2是本发明的船用雷达扫描数据的示意图。FIG. 2 is a schematic diagram of marine radar scan data of the present invention.
图3是本发明实施例的对一条扫描数据采用韦布尔分布进行海杂波抑制的结果示意图。Fig. 3 is a schematic diagram of a result of sea clutter suppression using Weibull distribution on a piece of scanning data according to an embodiment of the present invention.
图4是本发明实施例的船用雷达的实测数据示意图。Fig. 4 is a schematic diagram of measured data of a marine radar according to an embodiment of the present invention.
图5是本发明实施例的对实测数据采用韦布尔分布进行海杂波抑制的结果示意图。FIG. 5 is a schematic diagram of sea clutter suppression results using Weibull distribution on measured data according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图,给出本发明的具体实施例。需要说明的是:实施例中的参数并不影响本发明的一般性。Below in conjunction with accompanying drawing, provide the specific embodiment of the present invention. It should be noted that the parameters in the examples do not affect the generality of the present invention.
海杂波特性包括两个方面:一是确定海杂波的幅度分布和功率谱类型;二是根据具体的雷达体制与雷达工作环境,确定幅度分布和功率谱模型的参数。海杂波幅度分布函数对于设计目标检测、估计、跟踪与识别等信号与信息处理算法至关重要。本发明实施例的流程示意图如图1所示,具体如下:The characteristics of sea clutter include two aspects: one is to determine the amplitude distribution and power spectrum type of sea clutter; the other is to determine the parameters of the amplitude distribution and power spectrum model according to the specific radar system and radar working environment. The sea clutter amplitude distribution function is very important for designing signal and information processing algorithms such as target detection, estimation, tracking and recognition. The schematic flow chart of the embodiment of the present invention is shown in Figure 1, specifically as follows:
S1.初始化,完成参数的初始化设置和数据的初始化,具体如下:S1. Initialization, complete the initialization of parameters and data initialization, as follows:
S11.根据实际海情和雷达的性能,这里选用韦布尔分布,S11. According to the actual sea situation and the performance of the radar, the Weibull distribution is selected here,
S12.参数的设置:每个样本更新周期处理的扫描线个数N=100,每个样本估计所需的扫描线个数M=15,重新估计参数的阈值α=0.2,二值化的阈值β=60,S12. Parameter setting: the number of scan lines processed in each sample update period N=100, the number of scan lines required for each sample estimation M=15, the threshold of re-estimating parameters α=0.2, and the threshold of binarization β=60,
S13.样本数据的初始化:读取15条扫描线,记为{Ti(k),i=1,2...15,k=1,...,Num},由式子计算一条扫描线上海杂波的数据点数,其中n是一条扫描线上海杂波的数据点数,如图2所示,D为雷达附近的海杂波距离雷达的最远距离,这里D=3海里,雷达的探测距离Range=60海里,一条扫描线上数据点的个数Num=1000,即可得到15条扫描线的前50个点扫描线数据{Ti(k),i=1,2...15,k=1,...,50},取其平均值,记为并保存为样本数据。S13. Initialization of sample data: read 15 scan lines, recorded as {T i (k), i=1, 2...15, k=1,..., Num}, by the formula Calculate the number of data points of sea clutter on a scan line, where n is the number of data points of sea clutter on a scan line, as shown in Figure 2, D is the farthest distance from the sea clutter near the radar to the radar, where D=3 nautical miles , the radar detection range Range=60 nautical miles, the number of data points Num=1000 on one scan line, the first 50 point scan line data {T i (k), i=1, 2 of 15 scan lines can be obtained ...15, k=1, ..., 50}, take the average value, and write it as and save as sample data.
S2.参数估计,由样本数据C(k)和步骤S1选择海杂波的分布,估计分布的参数,得到海杂波数据;S2. parameter estimation, select the distribution of sea clutter by sample data C(k) and step S1, estimate the parameter of distribution, obtain sea clutter data;
由样本数据C(k)和海杂波服从的韦布尔分布,估计所需参数p,q,具体过程如下:From the sample data C(k) and the Weibull distribution obeyed by the sea clutter, the required parameters p, q are estimated, and the specific process is as follows:
韦布尔分布概率密度函数如下,The Weibull distribution probability density function is as follows,
式中q为尺度参数,一般偏小于曲线分布峰值位置;p为形状参数,取值范围为0<p≤2,当形状参数p=1时,韦布尔分布退化为指数分布;当形状参数p=2时,韦布尔分布退化为瑞利分布。随着形状参数p减小,概率密度分布的拖尾变长;这里假设雷达一条扫描线上用于估计海杂波分布的数据序列为Z={zi,i=1,L n},n为数据点的个数。In the formula, q is a scale parameter, which is generally smaller than the peak position of the curve distribution; p is a shape parameter, and the value range is 0<p≤2. When the shape parameter p=1, the Weibull distribution degenerates into an exponential distribution; when the shape parameter When p=2, Weibull distribution degenerates into Rayleigh distribution. As the shape parameter p decreases, the tail of the probability density distribution becomes longer; here it is assumed that the data sequence used to estimate the sea clutter distribution on a radar scan line is Z={z i , i=1, L n}, n is the number of data points.
一般海杂波的韦布尔分布是有经验值的,这里设为(1,15),这里取为设计p,q的迭代区间(0,2),(0,20),执行迭代运算,进行曲线拟合,记录每次拟合的曲线与实际所给雷达数据的差值,当差值小于给定的阈值时,就以此次迭代的p,q值作为估计的参数,即得到海杂波数据{B(k),k=1,...,50}。Generally, the Weibull distribution of sea clutter has empirical values, here it is set to (1, 15), here it is taken as the iterative interval (0, 2), (0, 20) of the design p, q, and the iterative operation is carried out. Curve fitting, record the difference between each fitted curve and the actual radar data, when the difference is less than a given threshold When , the p and q values of this iteration are used as the estimated parameters to obtain the sea clutter data {B(k), k=1,...,50}.
因为估计的海杂波数据是对概率分布的采样,数据区间在(0,1),所以需要进行数据的映射,即把得到的海杂波数据映射到与扫描线数据相当的范围,即根据式子进行数据映射,得到映射后的海杂波数据{D(k),k=1,...,50};Because the estimated sea clutter data is a sampling of the probability distribution, and the data interval is (0, 1), it is necessary to map the data, that is, to map the obtained sea clutter data to a range equivalent to the scan line data, that is, according to formula Perform data mapping to obtain the mapped sea clutter data {D(k), k=1,...,50};
其中雷达的一条扫描数据海杂波抑制的结果如图3所示,可以看出雷达附近的海杂波被很好的估计出来,使得被海杂波淹没的目标得到了有效的检测。The results of sea clutter suppression for a piece of radar scan data are shown in Figure 3. It can be seen that the sea clutter near the radar is well estimated, so that the target submerged by the sea clutter can be effectively detected.
S3.读取100条扫描线数据并进行海杂波抑制处理,即将100条扫描线线上的海杂波数据{Ti(k),i=1,2...100,k=1,...,50},与步骤S2估计的海杂波数据{D(k),k=1,...,50}分别进行减运算,再根据阈值60对结果进行二值化处理。当抑制进行到85条时,在进行杂波抑制的同时,保存最后15条前50个点的扫描线数据的平均值,记为 S3. Read 100 scan line data and perform sea clutter suppression processing, that is, the sea clutter data {T i (k), i=1, 2...100, k=1, ..., 50}, subtracted from the sea clutter data {D(k), k=1, ..., 50} estimated in step S2, and then binarized the result according to the threshold 60. When 85 lines are suppressed, while performing clutter suppression, save the average value of the last 15 scanning line data of the first 50 points, which is recorded as
S4.判断雷达探测距离有没有改变,如果改变了,执行步骤S13,否则执行步骤S5;S4. Judging whether the radar detection distance has changed, if changed, execute step S13, otherwise execute step S5;
S5.样本数据的更新,如果满足则不需要重新估计海杂波数据,执行步骤S3;如果不满足,用步骤S3中保存的15条前50个点的扫描线数据的平均值C′(k)更新样本数据C(k),执行步骤S2,重新估计参数。S5. Update of sample data, if satisfied Then there is no need to re-estimate the sea clutter data, execute step S3; if not satisfied, update the sample data C(k) with the average value C'(k) of the scan line data of the 15 first 50 points saved in step S3, Execute step S2 to re-estimate the parameters.
其中一帧雷达的扫描数据如图4所示,抑制结果如图5所示,可以看出雷达附近的海杂波得到了有效抑制,同时被海杂波淹没的目标得到了有效的检测。The scanning data of one frame of radar is shown in Figure 4, and the suppression result is shown in Figure 5. It can be seen that the sea clutter near the radar has been effectively suppressed, and the target submerged by the sea clutter has been effectively detected.
在本实施例中选用的是韦布尔分布,但本发明并不限于韦布尔分布,在实际处理中,也可以根据不同的海情选择其它的三个分布——瑞利分布、对数正态分布、K分布。What selected in this embodiment is Weibull distribution, but the present invention is not limited to Weibull distribution, in actual processing, also can select other three distributions-Rayleigh distribution, logarithmic normal according to different sea situation distribution, K distribution.
瑞利分布是一种经典的描述海杂波幅度分布的函数,适用于描述低分辨力雷达的海杂波,当在一个海杂波单元内含有大量的、相互独立的散射源,其中没有贡献明显的个体时,雷达海杂波的包络振幅服从瑞利分布;对数正态分布适用于一些平坦区高分辨力的海杂波数据;在高分辨力雷达、低入射角的情况下,一般海情的海浪杂波能够用韦布尔分布精确地描述;K分布对雷达在低入射余角工作时得到的海杂波包络数据拟合较好,它不但可以模拟海杂波幅度分布的“长尾”特性,还能正确地模拟其时间相关性,这一特性对精确预测回波脉冲积累后的检测性能是很重要的,同时K分布还具有很宽的适应范围,适用于不同类型的雷达海杂波。The Rayleigh distribution is a classic function to describe the amplitude distribution of sea clutter, which is suitable for describing the sea clutter of low-resolution radar. When there are a large number of independent scattering sources in a sea clutter unit, there is no contribution When there are obvious individuals, the envelope amplitude of radar sea clutter obeys the Rayleigh distribution; the lognormal distribution is suitable for high-resolution sea clutter data in some flat areas; in the case of high-resolution radar and low incident angle, The sea clutter of general sea conditions can be accurately described by the Weibull distribution; the K distribution is a good fit for the sea clutter envelope data obtained when the radar works at a low grazing angle, and it can not only simulate the sea clutter amplitude distribution The "long tail" characteristic can also correctly simulate its time correlation. This characteristic is very important for accurately predicting the detection performance after echo pulse accumulation. At the same time, the K distribution also has a wide range of adaptation and is suitable for different types of radar sea clutter.
从本实施例可以看出,本发明提出的海杂波抑制方法,用户可以根据不同海情选择不同的海杂波分布进行海杂波估计,并根据抑制效果来判断样本数据是否需要更新进行重新估计,在尽可能大的抑制海杂波的同时,把对目标的影响降至最小,克服了对近处目标信号幅度造成很大衰减的问题。It can be seen from this embodiment that with the sea clutter suppression method proposed by the present invention, the user can select different sea clutter distributions for sea clutter estimation according to different sea conditions, and judge whether the sample data needs to be updated for re-according to the suppression effect. It is estimated that while the sea clutter is suppressed as much as possible, the impact on the target is minimized, and the problem of greatly attenuating the signal amplitude of the nearby target is overcome.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为发明的保护范围并不局限于这样的特别陈述和实施例。凡是根据上述描述做出各种可能的等同替换或改变,均被认为属于本发明的权利要求的保护范围。Those skilled in the art will appreciate that the embodiments described herein are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the invention is not limited to such specific statements and embodiments. All possible equivalent replacements or changes made according to the above description are considered to belong to the protection scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100299310A CN102176000B (en) | 2011-01-27 | 2011-01-27 | Sea clutter suppression method for marine radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100299310A CN102176000B (en) | 2011-01-27 | 2011-01-27 | Sea clutter suppression method for marine radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102176000A true CN102176000A (en) | 2011-09-07 |
CN102176000B CN102176000B (en) | 2012-11-28 |
Family
ID=44519203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100299310A Expired - Fee Related CN102176000B (en) | 2011-01-27 | 2011-01-27 | Sea clutter suppression method for marine radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102176000B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540161A (en) * | 2011-12-01 | 2012-07-04 | 宁波成电泰克电子信息技术发展有限公司 | Sea cluster parameter obtaining method for ship radar |
CN102565774A (en) * | 2011-12-12 | 2012-07-11 | 中国船舶重工集团公司第七二四研究所 | Stepwise regression estimation method for radar detection efficiency |
CN102928823A (en) * | 2012-10-30 | 2013-02-13 | 四川九洲空管科技有限责任公司 | Sea clutter suppressing method based on relevant characteristic of secondary radar answering signal |
CN103020474A (en) * | 2012-12-27 | 2013-04-03 | 北京航天福道高技术股份有限公司 | Cluster model determining method based on cluster statistical distribution model and power spectrum model |
CN103645467A (en) * | 2013-11-11 | 2014-03-19 | 北京环境特性研究所 | Method and system for sea-clutter restraining and target detection in sea-clutter background |
CN103675777A (en) * | 2013-12-16 | 2014-03-26 | 无锡市雷华科技有限公司 | Airborne radar clutter analogy method and device based on fitting method |
CN103901418A (en) * | 2014-04-11 | 2014-07-02 | 中国科学院电子学研究所 | Method for clutter suppression in glacier detection radar imaging |
CN104316914A (en) * | 2014-11-03 | 2015-01-28 | 西安电子科技大学 | Radar target self-adaptation detection method depending on shape parameters |
CN105068054A (en) * | 2015-08-25 | 2015-11-18 | 中船航海科技有限责任公司 | Sea clutter suppression algorithm for marine radar |
CN105158749A (en) * | 2015-08-26 | 2015-12-16 | 哈尔滨工业大学 | High-frequency radar sea-clutter amplitude statistical distribution test method |
CN105334503A (en) * | 2014-08-12 | 2016-02-17 | 中国海洋大学 | Sea clutter azimuth correlation function model and parameter estimation method thereof |
CN107122764A (en) * | 2017-05-22 | 2017-09-01 | 中国人民解放军国防科学技术大学 | ShipTargets detection method based on KpN models |
CN107621635A (en) * | 2017-08-21 | 2018-01-23 | 电子科技大学 | A forward-looking sea surface target angle super-resolution method |
CN108535710A (en) * | 2018-03-06 | 2018-09-14 | 中国船舶重工集团公司第七二四研究所 | A kind of AF panel and target identification method based on target environment feature vector |
CN109934101A (en) * | 2019-01-24 | 2019-06-25 | 西安电子科技大学 | Radar clutter identification method based on convolutional neural network |
CN111665509A (en) * | 2020-06-17 | 2020-09-15 | 上海宜通海洋科技股份有限公司 | Intelligent collision-prevention radar |
CN112698277A (en) * | 2020-12-21 | 2021-04-23 | 上汽通用五菱汽车股份有限公司 | Target detection method of vehicle-mounted millimeter wave radar |
CN113449850A (en) * | 2021-07-05 | 2021-09-28 | 电子科技大学 | Intelligent inhibition method for clutter of sea surface monitoring radar |
WO2022213527A1 (en) * | 2021-04-06 | 2022-10-13 | 中船航海科技有限责任公司 | Precipitation clutter suppression algorithm for marine radar |
CN115184937A (en) * | 2022-05-27 | 2022-10-14 | 北京理工大学 | A quantitative analysis method of sea clutter for wide-swath observation of boat-borne typhoon radar |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080191929A1 (en) * | 2007-02-08 | 2008-08-14 | Wood Thomas E | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
-
2011
- 2011-01-27 CN CN2011100299310A patent/CN102176000B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080191929A1 (en) * | 2007-02-08 | 2008-08-14 | Wood Thomas E | Methods and apparatus for log-ftc radar receivers having enhanced sea clutter model |
CN101806887A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Space tracking filter-based sea clutter suppression and target detection method |
Non-Patent Citations (2)
Title |
---|
於建生等: "基于雷达回波相关特征的海杂波抑制方法", 《舰船电子工程》, vol. 29, no. 6, 31 December 2009 (2009-12-31), pages 121 - 124 * |
顾庆辉等: "岸基对空情报雷达抑制海杂波的一种方法", 《舰船电子对抗》, vol. 33, no. 2, 30 April 2010 (2010-04-30), pages 30 - 33 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540161B (en) * | 2011-12-01 | 2013-09-04 | 宁波成电泰克电子信息技术发展有限公司 | Sea cluster parameter obtaining method for ship radar |
CN102540161A (en) * | 2011-12-01 | 2012-07-04 | 宁波成电泰克电子信息技术发展有限公司 | Sea cluster parameter obtaining method for ship radar |
CN102565774A (en) * | 2011-12-12 | 2012-07-11 | 中国船舶重工集团公司第七二四研究所 | Stepwise regression estimation method for radar detection efficiency |
CN102928823A (en) * | 2012-10-30 | 2013-02-13 | 四川九洲空管科技有限责任公司 | Sea clutter suppressing method based on relevant characteristic of secondary radar answering signal |
CN103020474A (en) * | 2012-12-27 | 2013-04-03 | 北京航天福道高技术股份有限公司 | Cluster model determining method based on cluster statistical distribution model and power spectrum model |
CN103645467A (en) * | 2013-11-11 | 2014-03-19 | 北京环境特性研究所 | Method and system for sea-clutter restraining and target detection in sea-clutter background |
CN103645467B (en) * | 2013-11-11 | 2016-04-06 | 北京环境特性研究所 | The method and system of target detection in ocean clutter cancellation and sea clutter background |
CN103675777B (en) * | 2013-12-16 | 2016-01-06 | 无锡市雷华科技有限公司 | Based on airborne radar clutter analogy method and the device of fitting process |
CN103675777A (en) * | 2013-12-16 | 2014-03-26 | 无锡市雷华科技有限公司 | Airborne radar clutter analogy method and device based on fitting method |
CN103901418A (en) * | 2014-04-11 | 2014-07-02 | 中国科学院电子学研究所 | Method for clutter suppression in glacier detection radar imaging |
CN105334503A (en) * | 2014-08-12 | 2016-02-17 | 中国海洋大学 | Sea clutter azimuth correlation function model and parameter estimation method thereof |
CN105334503B (en) * | 2014-08-12 | 2018-01-09 | 中国海洋大学 | A kind of sea clutter orientation Ionosphere model and its method for parameter estimation |
CN104316914A (en) * | 2014-11-03 | 2015-01-28 | 西安电子科技大学 | Radar target self-adaptation detection method depending on shape parameters |
CN104316914B (en) * | 2014-11-03 | 2017-01-25 | 西安电子科技大学 | Radar target self-adaptation detection method depending on shape parameters |
CN105068054A (en) * | 2015-08-25 | 2015-11-18 | 中船航海科技有限责任公司 | Sea clutter suppression algorithm for marine radar |
CN105158749A (en) * | 2015-08-26 | 2015-12-16 | 哈尔滨工业大学 | High-frequency radar sea-clutter amplitude statistical distribution test method |
CN107122764A (en) * | 2017-05-22 | 2017-09-01 | 中国人民解放军国防科学技术大学 | ShipTargets detection method based on KpN models |
CN107122764B (en) * | 2017-05-22 | 2019-08-06 | 中国人民解放军国防科学技术大学 | Maritime ship target detection method based on KpN model |
CN107621635B (en) * | 2017-08-21 | 2020-09-01 | 电子科技大学 | A forward-looking sea surface target angle super-resolution method |
CN107621635A (en) * | 2017-08-21 | 2018-01-23 | 电子科技大学 | A forward-looking sea surface target angle super-resolution method |
CN108535710A (en) * | 2018-03-06 | 2018-09-14 | 中国船舶重工集团公司第七二四研究所 | A kind of AF panel and target identification method based on target environment feature vector |
CN109934101A (en) * | 2019-01-24 | 2019-06-25 | 西安电子科技大学 | Radar clutter identification method based on convolutional neural network |
CN111665509A (en) * | 2020-06-17 | 2020-09-15 | 上海宜通海洋科技股份有限公司 | Intelligent collision-prevention radar |
CN112698277A (en) * | 2020-12-21 | 2021-04-23 | 上汽通用五菱汽车股份有限公司 | Target detection method of vehicle-mounted millimeter wave radar |
WO2022213527A1 (en) * | 2021-04-06 | 2022-10-13 | 中船航海科技有限责任公司 | Precipitation clutter suppression algorithm for marine radar |
CN113449850A (en) * | 2021-07-05 | 2021-09-28 | 电子科技大学 | Intelligent inhibition method for clutter of sea surface monitoring radar |
CN115184937A (en) * | 2022-05-27 | 2022-10-14 | 北京理工大学 | A quantitative analysis method of sea clutter for wide-swath observation of boat-borne typhoon radar |
Also Published As
Publication number | Publication date |
---|---|
CN102176000B (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102176000B (en) | Sea clutter suppression method for marine radar | |
CN106918807B (en) | A kind of Targets Dots condensing method of radar return data | |
CN103760543B (en) | A kind of based on multimodal CFAR object detection method | |
Bianco et al. | Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods | |
CN103760542A (en) | MMVI-CFAR target detection method | |
CN104914418B (en) | A kind of microwave scattering remote sensing technique of wave slope distribution | |
CN110134976B (en) | Airborne laser sounding signal extraction method and system | |
CN107255805B (en) | Prediction Method of Radar Target RCS Based on Weighted Least Squares | |
CN105842687A (en) | Detection tracking integrated method based on RCS prediction information | |
CN103076602A (en) | Self-adaption constant false alarm rate (CFAR) fusion detection method aiming at multi-target background radar | |
CN110261857B (en) | Spatial interpolation method for weather radar | |
CN103809173A (en) | Detection and tracking integration method for frame constant false-alarm target | |
CN106125088A (en) | Sea water advanced method is determined based on laser radar sounding system | |
JP2007240317A (en) | Detection distance calculation method, and radar system using this | |
Xu et al. | A high success rate full-waveform lidar echo decomposition method | |
CN105116387A (en) | PD radar velocity pull-off resisting method based on position and Doppler velocity information | |
CN106556824B (en) | A kind of the noise echo elimination method and system of all-wave graphic data | |
CN106526545A (en) | Method for detecting robust CFAR detector | |
CN112327265A (en) | A Divide and Conquer Detection Method Based on Semantic Segmentation Network | |
CN106970366A (en) | Object detection method and device in sea clutter | |
RU2376581C2 (en) | Method and device for obtaining information on size distribution of microscopic particles in liquid | |
CN102621535A (en) | High-efficiency method for estimating covariance matrix structures | |
CN110133680A (en) | A Method and System for Determining Initial Value of Effective Signal of Airborne Laser Sounding Received Waveform | |
CN110515044A (en) | Low slow small radar null tone domain four-dimension clutter suppression method | |
CN108615238A (en) | Sea Clutter from HF Radar method for extracting region based on region segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: NINGBO CHENGDIAN TAIKE ELECTRONIC INFORMATION TECH Free format text: FORMER OWNER: ELECTRON SCIENCE + TECHNOLOGY UNIV. Effective date: 20120130 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 611731 CHENGDU, SICHUAN PROVINCE TO: 315040 NINGBO, ZHEJIANG PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20120130 Address after: 999, Lane 315040, sailing Road, hi tech Zone, Zhejiang, Ningbo B5-704 Applicant after: Ningbo Chengdian Taike Electronic Information Technology Development Co., Ltd. Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006 Applicant before: University of Electronic Science and Technology of China |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121128 Termination date: 20160127 |
|
EXPY | Termination of patent right or utility model |