CN102136583A - Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery - Google Patents
Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery Download PDFInfo
- Publication number
- CN102136583A CN102136583A CN201110037756XA CN201110037756A CN102136583A CN 102136583 A CN102136583 A CN 102136583A CN 201110037756X A CN201110037756X A CN 201110037756XA CN 201110037756 A CN201110037756 A CN 201110037756A CN 102136583 A CN102136583 A CN 102136583A
- Authority
- CN
- China
- Prior art keywords
- zinc
- negative electrode
- electrode material
- zinc powder
- manganese dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 62
- 239000002699 waste material Substances 0.000 title claims abstract description 31
- SZKTYYIADWRVSA-UHFFFAOYSA-N zinc manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Zn++] SZKTYYIADWRVSA-UHFFFAOYSA-N 0.000 title claims abstract 12
- 238000011069 regeneration method Methods 0.000 title claims description 4
- 239000000706 filtrate Substances 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 239000003792 electrolyte Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 23
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 21
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000002791 soaking Methods 0.000 claims abstract description 14
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 13
- 238000001914 filtration Methods 0.000 claims abstract description 12
- 230000001172 regenerating effect Effects 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 11
- 239000004094 surface-active agent Substances 0.000 claims abstract description 9
- 238000004140 cleaning Methods 0.000 claims abstract 2
- 238000007790 scraping Methods 0.000 claims abstract 2
- 239000000126 substance Substances 0.000 claims abstract 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 51
- 239000011701 zinc Substances 0.000 claims description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 238000002386 leaching Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000005868 electrolysis reaction Methods 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- 150000003751 zinc Chemical class 0.000 claims description 10
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 10
- 238000004090 dissolution Methods 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 239000002585 base Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- 238000010297 mechanical methods and process Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 239000011572 manganese Substances 0.000 abstract description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 3
- 239000011707 mineral Substances 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 239000010406 cathode material Substances 0.000 abstract 1
- WJZHMLNIAZSFDO-UHFFFAOYSA-N manganese zinc Chemical compound [Mn].[Zn] WJZHMLNIAZSFDO-UHFFFAOYSA-N 0.000 description 22
- 239000010405 anode material Substances 0.000 description 17
- 238000000605 extraction Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 8
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 8
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 8
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000010926 waste battery Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Abstract
Description
技术领域technical field
本发明属于环境保护和资源再生应用领域,特别涉及一种废旧碱性锌锰电池负极材料锌粉的再生方法。The invention belongs to the application fields of environmental protection and resource regeneration, and in particular relates to a method for regenerating zinc powder, a negative electrode material of a waste alkaline zinc-manganese battery.
背景技术Background technique
由于电子工业的迅速发展,以及人们环保意识的日益增强,对电池的性能提出了更高的要求。碱性锌锰电池与普通电池相比具有如下的优点:①容量大,约为普通电池的3~8倍;②高功率,大电流放电的条件下曲线较平稳;③高的资源利用率,提高了电池的性价比;④低的污染,实现了完全的无汞化等优点,所以碱性锌锰电池已经成为全球一次电池生产和消费的主流。特别是近十年来,我国碱性锌锰电池的平均质量水平与国外的差距越来越小,有些已达到国外先进水平。据行业预测,2010年,我国碱性锌锰电池的产量将达到180亿只,占世界碱性锌锰电池产量份额的1/3。因此,我国是碱性锌锰电池生产和消费大国。Due to the rapid development of the electronic industry and the increasing awareness of environmental protection, higher requirements are placed on the performance of batteries. Compared with ordinary batteries, alkaline zinc-manganese batteries have the following advantages: ① Large capacity, about 3 to 8 times that of ordinary batteries; ② High power, stable curve under high current discharge conditions; ③ High resource utilization, Improve the cost performance of the battery; ④Low pollution, realize the advantages of completely mercury-free, so alkaline zinc-manganese batteries have become the mainstream of global primary battery production and consumption. Especially in the past ten years, the gap between the average quality level of alkaline zinc-manganese batteries in my country and foreign countries has become smaller and smaller, and some have reached the advanced level in foreign countries. According to industry forecasts, in 2010, the output of alkaline zinc-manganese batteries in my country will reach 18 billion, accounting for 1/3 of the world's output of alkaline zinc-manganese batteries. Therefore, my country is a big country in the production and consumption of alkaline zinc-manganese batteries.
随着人们对可持续发展和资源节约型、环境友好型社会认识的加深,碱性锌锰电池的大量生产和消费对“绿色世界”提出了严重的挑战。大量的废旧电池的随意丢弃,对环境造成了严重的危害。同时,大量废旧电池的随意丢弃,造成了锌、锰等不可再生自然资源的严重浪费。因此,废旧电池中电极材料锌的回收与再生在降低电池成本及实现矿物资源的循环利用中占有不可言喻的重要性,同样对经济的可持续发展以及“绿色电池”具有重要的意义。With the deepening of people's understanding of sustainable development and resource-saving and environment-friendly society, the mass production and consumption of alkaline zinc-manganese batteries pose a serious challenge to the "green world". The random discarding of a large number of waste batteries has caused serious harm to the environment. At the same time, the random discarding of a large number of used batteries has caused a serious waste of non-renewable natural resources such as zinc and manganese. Therefore, the recovery and regeneration of the electrode material zinc in waste batteries plays an indescribable importance in reducing battery costs and realizing the recycling of mineral resources, and is also of great significance to the sustainable development of the economy and "green batteries".
目前对废旧锌锰电池负极材料锌的回收利用主要有以下几种方法:(1)将电极物质取出并溶解到适宜条件下酸性溶液中,通过提高锌的浸取率提高锌的回收量;例如,专利CN87102008《从废锌锰干电池中提取二氧化锰及锌的方法》;(2)将废旧电池破碎后经溶解制成电解液,在通过电解、过滤、重结晶制成金属化合物;例如,专利CN03111163.7《利用废旧锌锰干电池生产金属化合物的方法》;以上方法的缺点是操作复杂、耗能大、设备费用较高;(3)废旧电池中的Zn、Mn、Cu等是农作物必须的微量元素,可以用废电池直接制备ZnSO4和MnSO4等微肥,例如,文献《利用废碱锰电池研制有机微肥及肥效试验》。可以看出,现有的方法都未能使负极材料锌直接得到再生。At present, there are mainly the following methods for the recovery and utilization of zinc as the negative electrode material of waste zinc-manganese batteries: (1) take out the electrode material and dissolve it in an acidic solution under suitable conditions, and increase the recovery of zinc by increasing the leaching rate of zinc; for example , Patent CN87102008 "Method for Extracting Manganese Dioxide and Zinc from Waste Zinc-Manganese Dry Batteries"; (2) dissolving waste batteries to make electrolyte, and then making metal compounds through electrolysis, filtration and recrystallization; for example, Patent CN03111163.7 "The Method of Utilizing Waste Zinc-Manganese Dry Batteries to Produce Metal Compounds"; the disadvantages of the above methods are complex operation, high energy consumption, and high equipment costs; (3) Zn, Mn, Cu, etc. in waste batteries are necessary for crops Micronutrients such as ZnSO 4 and MnSO 4 can be directly prepared with waste batteries, for example, the document "Development of Organic Micro-fertilizers and Fertilizer Efficiency Tests Using Waste Alkali-Manganese Batteries". It can be seen that none of the existing methods can directly regenerate the negative electrode material zinc.
发明内容Contents of the invention
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种废旧碱性锌锰电池负极材料锌粉的再生方法。In order to overcome the shortcomings and deficiencies in the prior art, the object of the present invention is to provide a method for regenerating zinc powder, the negative electrode material of waste alkaline zinc-manganese batteries.
本发明的目的通过下述技术方案实现:一种废旧碱性锌锰电池负极材料锌粉的再生方法,包括以下操作步骤:The object of the present invention is achieved through the following technical solutions: a method for regenerating the zinc powder of the negative electrode material of the waste alkaline zinc-manganese battery, comprising the following steps:
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料(主要包括锌和氧化锌);(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material (mainly including zinc and zinc oxide);
(2)浸取:室温下将步骤(1)取出的负极材料在稀盐酸或强碱溶液中浸泡1~2h,浸泡期间不断搅拌加快溶解,得到混合物;(2) Leaching: soak the negative electrode material taken out in step (1) in dilute hydrochloric acid or strong alkali solution at room temperature for 1 to 2 hours, stir continuously during the soaking to speed up the dissolution, and obtain a mixture;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,加入聚醇类表面活性剂,在20~50℃下进行电解,阴极电流密度为10~30A/dm2,在阴极析出锌粉;(4) Electrolytic production of zinc powder: adjust the filtrate obtained in step (3) into an electrolyte, add polyalcohol surfactants, and conduct electrolysis at 20-50°C with a cathode current density of 10-30A/dm 2 Precipitation of zinc powder;
(5)每隔10~30分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液,调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和干燥处理后,得到回收锌粉。(5) Every 10 to 30 minutes, scrape off the zinc powder precipitated on the cathode, and add the filtrate obtained in step (3) to the electrolyte at the same time, adjust the zinc ion in the electrolyte to the initial concentration; clean the scraped zinc powder And after drying treatment, the recovered zinc powder is obtained.
步骤(2)所述负极材料在稀盐酸中浸泡得到混合物,混合物由以下按重量百分比计的组分组成:Step (2) said anode material is soaked in dilute hydrochloric acid to obtain mixture, and mixture is made up of following components by weight percentage:
负极材料 40%Negative electrode material 40%
HCl 10%HCl 10%
水 50%。Water 50%.
步骤(2)所述负极材料在强碱溶液中浸泡得到混合物,混合物由以下按重量百分比计的组分组成:The negative electrode material described in step (2) is soaked in a strong alkali solution to obtain a mixture, and the mixture is composed of the following components by weight percentage:
负极材料 10%Negative electrode material 10%
强碱 20%Strong base 20%
水 70%;Water 70%;
所述强碱为氢氧化钠或氢氧化钾。The strong base is sodium hydroxide or potassium hydroxide.
步骤(4)所述滤液为酸性时,调整锌离子浓度为0.4~0.7M,调节pH至5~6。When the filtrate in step (4) is acidic, adjust the zinc ion concentration to 0.4-0.7M, and adjust the pH to 5-6.
所述调节pH是采用氨水进行调节。The adjustment of pH is carried out by using ammonia water for adjustment.
步骤(4)所述滤液为碱性时,调整锌离子浓度为0.1~0.4M,强碱与锌离子的摩尔比为3∶1~15∶1。When the filtrate in step (4) is alkaline, the concentration of zinc ions is adjusted to 0.1-0.4M, and the molar ratio of strong base to zinc ions is 3:1-15:1.
步骤(4)所述聚醇类表面活性剂的加入量为电解液质量的0.2%~1%。The addition amount of the polyalcohol surfactant in step (4) is 0.2% to 1% of the mass of the electrolyte.
步骤(4)所述阴极电流密度为10~30A/dm2。The cathode current density in step (4) is 10-30A/dm 2 .
步骤(4)所述电解采用的阴极为不锈钢板或锌板,阳极为石墨、铂板、钛板、不锈钢板或镀镍铁板。The cathode used in the electrolysis in step (4) is a stainless steel plate or a zinc plate, and the anode is a graphite, platinum plate, titanium plate, stainless steel plate or nickel-plated iron plate.
本发明与现有技术相比具有如下优点和效果:本发明具有工艺简单,操作方便,生产成本低等优点;用再生后的锌粉组装的AA电池,其性能达到国家标准。整个生产过程中,工艺简单,经济效益好,可以解决废旧碱锰电池的环境污染和矿物资源过度开发的问题,有利于社会的可持续发展。Compared with the prior art, the present invention has the following advantages and effects: the present invention has the advantages of simple process, convenient operation and low production cost; the performance of the AA battery assembled with regenerated zinc powder reaches the national standard. In the whole production process, the process is simple and the economic benefits are good, which can solve the problems of environmental pollution of waste alkaline manganese batteries and over-exploitation of mineral resources, and is beneficial to the sustainable development of society.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with examples, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在稀盐酸中浸泡1h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、HCl 10%和水50%;(2) Leaching: soak the negative electrode material taken out in step (1) in dilute hydrochloric acid at room temperature for 1 hour, stir continuously during the soaking to speed up the dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40% , HCl 10% and water 50%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.4M,pH=6;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.2%,以阳极为石墨,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为15A/dm2,在阴极析出锌粉;(4) Electrolytic production of zinc powder: adjust the filtrate obtained in step (3) into an electrolyte so that [Zn 2+ ] is 0.4M, pH = 6; introduce the adjusted leachate into the electrolytic cell, and add polyalcohol surface The active agent is 0.2%, the anode is graphite, the cathode plate is stainless steel plate, electrolysis is carried out at 20-50°C, the cathode current density is 15A/dm 2 , and zinc powder is precipitated at the cathode;
(5)每隔25分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 25 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.58V;10Ω间放:12.6h;3.9Ω间放:4.52h;1.8Ω脉冲:330次;43Ω间放:63.1h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.58V; 10Ω discharge: 12.6h; 3.9Ω discharge: 4.52h; 1.8Ω pulse: 330 times; 43Ω discharge : 63.1h.
实施例2Example 2
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在稀盐酸中浸泡1h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、HCl 10%和水50%;(2) Leaching: soak the negative electrode material taken out in step (1) in dilute hydrochloric acid at room temperature for 1 hour, stir continuously during the soaking to speed up the dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40% , HCl 10% and water 50%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.5M,pH=5;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.5%,以阳极为铂板,阴极板为锌板,在20~50℃下进行电解,阴极电流密度为15A/dm2,在阴极析出锌粉;(4) Electrolytic production of zinc powder: adjust the filtrate obtained in step (3) into an electrolyte, so that [Zn 2+ ] is 0.5M, pH=5; introduce the adjusted leachate into the electrolytic cell, and add polyalcohol surface The active agent is 0.5%, the anode is a platinum plate, the cathode is a zinc plate, electrolysis is carried out at 20-50°C, the cathode current density is 15A/dm 2 , and zinc powder is precipitated at the cathode;
(5)每隔15分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 15 minutes, scrape off the zinc powder precipitated on the cathode, add the filtrate obtained in step (3) to the electrolyte and adjust the zinc ion in the electrolyte to the initial concentration at the same time; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.58V;10Ω间放:12.8h;3.9Ω间放:4.61h;1.8Ω脉冲:350次;43Ω间放:63.7h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.58V; 10Ω discharge: 12.8h; 3.9Ω discharge: 4.61h; 1.8Ω pulse: 350 times; 43Ω discharge : 63.7h.
实施例3Example 3
实施例2Example 2
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在稀盐酸中浸泡2h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、HCl 10%和水50%;(2) Leaching: soak the negative electrode material taken out in step (1) in dilute hydrochloric acid at room temperature for 2h, stir continuously during the soaking to speed up the dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40% , HCl 10% and water 50%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.7M,pH=5;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂1%,以阳极为钛板,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为20A/dm2,在阴极析出锌粉;(4) Electrolytic production of zinc powder: adjust the filtrate obtained in step (3) into an electrolyte so that [Zn 2+ ] is 0.7M, pH=5; introduce the adjusted leaching solution into the electrolytic cell, and add polyalcohol surface The active agent is 1%, the anode is a titanium plate, the cathode is a stainless steel plate, electrolysis is carried out at 20-50°C, the cathode current density is 20A/dm 2 , and zinc powder is precipitated at the cathode;
(5)每隔10分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 10 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.58V;10Ω间放:12.6h;3.9Ω间放:4.87h;1.8Ω脉冲:375次;43Ω间放:63.9h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.58V; 10Ω interval discharge: 12.6h; 3.9Ω interval discharge: 4.87h; : 63.9h.
实施例4Example 4
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在稀盐酸中浸泡2h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、HCl 10%和水50%;(2) Leaching: soak the negative electrode material taken out in step (1) in dilute hydrochloric acid at room temperature for 2h, stir continuously during the soaking to speed up the dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40% , HCl 10% and water 50%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.6M,pH=6;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.8%,以阳极为石墨,阴极板为锌板,在20~50℃下进行电解,阴极电流密度为20A/dm2,在阴极析出锌粉;(4) Electrolytic production of zinc powder: adjust the filtrate obtained in step (3) into an electrolyte so that [Zn 2+ ] is 0.6M, pH=6; introduce the adjusted leachate into the electrolytic cell, and add polyalcohol surface The active agent is 0.8%, the anode is graphite, the cathode plate is zinc plate, electrolysis is carried out at 20-50°C, the cathode current density is 20A/dm 2 , and zinc powder is precipitated at the cathode;
(5)每隔10分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 10 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.59V;10Ω间放:12.3h;3.9Ω间放:4.97h;1.8Ω脉冲:404次;43Ω间放:61.5h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.59V; 10Ω interval discharge: 12.3h; 3.9Ω interval discharge: 4.97h; : 61.5h.
实施例5Example 5
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在氢氧化钠溶液中浸泡2h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、氢氧化钠20%和水70%;(2) Leaching: Soak the negative electrode material taken out in step (1) in sodium hydroxide solution for 2 hours at room temperature, stir continuously during the soaking to accelerate dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40%, sodium hydroxide 20% and water 70%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.1M,氢氧化钠与锌离子的摩尔比为15∶1;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.2%,以阳极为镀镍铁,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为10A/dm2,在阴极析出锌粉;(4) Electrolytic zinc powder: adjust the filtrate obtained in step (3) into an electrolyte, so that [Zn 2+ ] is 0.1M, and the molar ratio of sodium hydroxide to zinc ions is 15:1; In the electrolytic cell, add 0.2% polyalcohol surfactant, the anode is nickel-plated iron, the cathode plate is stainless steel plate, electrolyze at 20-50°C, the cathode current density is 10A/dm 2 , and zinc is precipitated at the cathode pink;
(5)每隔20分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 20 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.56V;10Ω间放:12.3h;3.9Ω间放:4.59h;1.8Ω脉冲:381次;43Ω间放:63.2h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.56V; 10Ω interval: 12.3h; 3.9Ω interval: 4.59h; 1.8Ω pulse: 381 times; 43Ω interval : 63.2h.
实施例6Example 6
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在氢氧化钾溶液中浸泡2h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、氢氧化钾20%和水70%;(2) Leaching: at room temperature, soak the negative electrode material taken out in step (1) in potassium hydroxide solution for 2h, stir continuously during the soaking to accelerate dissolution, and obtain a mixture; the mixture is composed of the following components by weight percentage: negative electrode material 40%, potassium hydroxide 20% and water 70%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.2M,氢氧化钾与锌离子的摩尔比为10∶1;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.4%,以阳极为不锈钢板,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为30A/dm2,在阴极析出锌粉;(4) Electrolytic zinc powder: adjust the filtrate obtained in step (3) into an electrolyte so that [Zn 2+ ] is 0.2M, and the molar ratio of potassium hydroxide to zinc ions is 10:1; Add 0.4% polyalcohol surfactant to the electrolytic cell, use the anode as stainless steel plate, and the cathode plate as stainless steel plate, conduct electrolysis at 20-50°C, the cathode current density is 30A/dm 2 , and precipitate zinc powder at the cathode ;
(5)每隔30分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 30 minutes, scrape off the zinc powder precipitated on the cathode, add the filtrate obtained in step (3) to the electrolyte and adjust the zinc ion in the electrolyte to the initial concentration at the same time; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.59V;10Ω间放:12.6h;3.9Ω间放:4.88h;1.8Ω脉冲:375次;43Ω间放:62.9h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.59V; 10Ω discharge: 12.6h; 3.9Ω discharge: 4.88h; : 62.9h.
实施例7Example 7
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在氢氧化钾溶液中浸泡1h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、氢氧化钾20%和水70%;(2) Leaching: Under room temperature, the negative electrode material taken out of step (1) is soaked in potassium hydroxide solution for 1h, during the soaking period, stirring is constantly accelerated to dissolve, and a mixture is obtained; the mixture is composed of the following components by weight percentage: negative electrode material 40%, potassium hydroxide 20% and water 70%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.3M,氢氧化钾与锌离子的摩尔比为6∶1;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂0.8%,以阳极为石墨,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为20A/dm2,在阴极析出锌粉;(4) Electrolytic zinc powder: adjust the filtrate obtained in step (3) into an electrolyte solution, so that [Zn 2+ ] is 0.3M, and the molar ratio of potassium hydroxide to zinc ions is 6:1; In the electrolytic cell, add 0.8% polyalcohol surfactant, use graphite as the anode, and stainless steel as the cathode plate, conduct electrolysis at 20-50°C, the cathode current density is 20A/dm 2 , and precipitate zinc powder at the cathode;
(5)每隔20分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 20 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.58V;10Ω间放:13.1h;3.9Ω间放:4.91h;1.8Ω脉冲:381次;43Ω间放:61.7h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.58V; 10Ω interval: 13.1h; 3.9Ω interval: 4.91h; 1.8Ω pulse: 381 times; 43Ω interval : 61.7h.
实施例8Example 8
(1)分离提取负极材料:用机械方法剖开废旧碱性锌锰电池的外壳,取出负极材料;(1) Separation and extraction of the negative electrode material: mechanically cut open the shell of the waste alkaline zinc-manganese battery, and take out the negative electrode material;
(2)浸取:室温下将步骤(1)取出的负极材料在氢氧化钾溶液中浸泡1h,浸泡期间不断搅拌加快溶解,得到混合物;混合物由以下按重量百分比计的组分组成:负极材料40%、氢氧化钾20%和水70%;(2) Leaching: Under room temperature, the negative electrode material taken out of step (1) is soaked in potassium hydroxide solution for 1h, during the soaking period, stirring is constantly accelerated to dissolve, and a mixture is obtained; the mixture is composed of the following components by weight percentage: negative electrode material 40%, potassium hydroxide 20% and water 70%;
(3)分离锌盐或者锌酸盐:将步骤(2)所得混合物进行过滤,回收不溶物,得到滤液;(3) Separating zinc salt or zincate: filtering the mixture obtained in step (2), reclaiming the insoluble matter, and obtaining the filtrate;
(4)电解制锌粉:将步骤(3)所得滤液调整为电解液,使[Zn2+]为0.4M,氢氧化钾与锌离子的摩尔比为3∶1;把调整后的浸出液导入电解槽中,并加入聚醇类表面活性剂1%,以阳极为钛板,阴极板为不锈钢板,在20~50℃下进行电解,阴极电流密度为20A/dm2,在阴极析出锌粉;(4) Electrolytic zinc powder: adjust the filtrate obtained in step (3) into an electrolyte so that [Zn 2+ ] is 0.4M, and the molar ratio of potassium hydroxide to zinc ions is 3:1; In the electrolytic cell, add 1% polyalcohol surfactant, take the anode as titanium plate, and the cathode plate as stainless steel plate, conduct electrolysis at 20-50°C, the cathode current density is 20A/dm 2 , and precipitate zinc powder at the cathode ;
(5)每隔10分钟,将阴极上析出的锌粉刮下,同时向电解液中添加步骤(3)所得滤液并调整电解液中锌离子至初始浓度;将刮下的锌粉清洗和真空干燥处理后,得到回收锌粉。(5) Every 10 minutes, scrape off the zinc powder precipitated on the cathode, add step (3) gained filtrate to the electrolyte at the same time and adjust the zinc ion in the electrolyte to the initial concentration; the zinc powder scraped off is cleaned and vacuumized After drying treatment, recovered zinc powder is obtained.
将本实施例所得回收锌粉结合其他负极材料(负极材料中含有以下按重量百分比计的组分:锌粉58.97%,聚丙烯酸钠0.5%,羟甲基纤维素钠0.5%,氢氧化铟0.03%,氢氧化钾40%)组装成AA电池,其性能达到国家标准:开路电压:1.58V;10Ω间放:12.7h;3.9Ω间放:4.85h;1.8Ω脉冲:397次;43Ω间放:62.1h。The zinc powder that present embodiment gained is reclaimed in conjunction with other anode materials (contain following components by weight percentage in the anode material: zinc powder 58.97%, sodium polyacrylate 0.5%, hydroxymethyl cellulose sodium 0.5%, indium hydroxide 0.03 %, Potassium Hydroxide 40%) assembled into AA batteries, its performance meets the national standard: open circuit voltage: 1.58V; 10Ω discharge: 12.7h; 3.9Ω discharge: 4.85h; 1.8Ω pulse: 397 times; : 62.1h.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110037756XA CN102136583A (en) | 2011-02-14 | 2011-02-14 | Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110037756XA CN102136583A (en) | 2011-02-14 | 2011-02-14 | Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102136583A true CN102136583A (en) | 2011-07-27 |
Family
ID=44296285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110037756XA Pending CN102136583A (en) | 2011-02-14 | 2011-02-14 | Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102136583A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505525A (en) * | 2014-12-17 | 2015-04-08 | 华东师范大学 | Method for preparing nano-zinc powder by using waste zinc-manganese battery |
CN108808033A (en) * | 2018-06-01 | 2018-11-13 | 南京信息工程大学 | Method for preparing electrode material of supercapacitor by using waste zinc-manganese battery |
RU2763076C1 (en) * | 2021-09-01 | 2021-12-27 | Общество с ограниченной ответственностью «Технологии Вторичных Металлов» | Method for processing waste salt and alkaline batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0158627A2 (en) * | 1984-04-10 | 1985-10-16 | VOEST-ALPINE Aktiengesellschaft | Process for recovering zinc and manganese from scrap containing zinc and manganese oxide originating from discharged zinc-carbon-manganese oxide batteries |
CN1692997A (en) * | 2005-02-21 | 2005-11-09 | 华南师范大学 | Method for recovering and treating mixed waste battery and special roasting furnace thereof |
CN1794504A (en) * | 2005-12-28 | 2006-06-28 | 华南师范大学 | Method for extracting metal indium and graphite from waste alkaline zinc-manganese batteries |
CN101054187A (en) * | 2007-04-03 | 2007-10-17 | 深圳市格林美高新技术股份有限公司 | Selective volatilization recovery process and recovery system for waste zinc-manganese battery |
CN101673829A (en) * | 2009-09-25 | 2010-03-17 | 华南师范大学 | Recycling method of waste zinc-manganese battery |
-
2011
- 2011-02-14 CN CN201110037756XA patent/CN102136583A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0158627A2 (en) * | 1984-04-10 | 1985-10-16 | VOEST-ALPINE Aktiengesellschaft | Process for recovering zinc and manganese from scrap containing zinc and manganese oxide originating from discharged zinc-carbon-manganese oxide batteries |
CN1692997A (en) * | 2005-02-21 | 2005-11-09 | 华南师范大学 | Method for recovering and treating mixed waste battery and special roasting furnace thereof |
CN1794504A (en) * | 2005-12-28 | 2006-06-28 | 华南师范大学 | Method for extracting metal indium and graphite from waste alkaline zinc-manganese batteries |
CN101054187A (en) * | 2007-04-03 | 2007-10-17 | 深圳市格林美高新技术股份有限公司 | Selective volatilization recovery process and recovery system for waste zinc-manganese battery |
CN101673829A (en) * | 2009-09-25 | 2010-03-17 | 华南师范大学 | Recycling method of waste zinc-manganese battery |
Non-Patent Citations (1)
Title |
---|
黄启明;李伟善: "《废旧碱性锌电池的回收与利用》", 《第十三次全国电化学会议论文》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505525A (en) * | 2014-12-17 | 2015-04-08 | 华东师范大学 | Method for preparing nano-zinc powder by using waste zinc-manganese battery |
CN108808033A (en) * | 2018-06-01 | 2018-11-13 | 南京信息工程大学 | Method for preparing electrode material of supercapacitor by using waste zinc-manganese battery |
RU2763076C1 (en) * | 2021-09-01 | 2021-12-27 | Общество с ограниченной ответственностью «Технологии Вторичных Металлов» | Method for processing waste salt and alkaline batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102263260B (en) | Application of zinc based polynary hydrotalcite in preparation of zinc negative pole of zinc-nickel secondary battery | |
CN106992329B (en) | A kind of resource utilization reuse method of waste and old lithium ion battery lithium iron phosphate positive material | |
CN108384955A (en) | A method of from selectively carrying lithium in waste material containing lithium battery | |
WO2017215283A1 (en) | Method for recycling lithium in lithium iron phosphate by means of electrochemical process | |
CN109103534B (en) | Recovery method of waste cobalt-containing lithium ion battery | |
CN101969144A (en) | Alkaline zinc battery cathode electrolyte and preparation method and application thereof | |
CN106785174A (en) | A kind of method for being leached from lithium ion cell anode waste based on electrochemical process and reclaiming metal | |
CN110620277A (en) | Method for separating and recovering valuable metal from waste lithium ion battery anode material | |
CN101499547A (en) | Positive electrode material recovering method for waste lithium ionic cell | |
CN112645362B (en) | Method for preparing lithium carbonate by electrochemical extraction of lithium from chloride type lithium-containing brine | |
CN112186287A (en) | Ball-milling spray regeneration method for waste lithium ion battery anode material | |
CN100560758C (en) | A method for recovering indium from waste mercury-free alkaline zinc-manganese batteries | |
CN103510109B (en) | The method of the leaded grid of waste lead acid battery is reclaimed from gravity contact electricity solution | |
CN102242373B (en) | Method for preparing powdery electrolytic manganese dioxide (EMD) | |
CN102367578B (en) | Combined method for electrolyzing and recovering lead | |
CN102263261B (en) | Method for application of zinc-aluminum hydrotalcite in preparation of zinc anode of zinc-nickel secondary battery | |
CN111321297A (en) | A method for recovering valuable metals from spent lithium-ion batteries | |
CN116926572A (en) | Method for recovering lithium iron phosphate positive electrode material by electrochemical lithium removal and synchronous lithium intercalation repair | |
CN106099234A (en) | Method for electrolytically separating anode material and aluminum current collector in waste lithium ion battery | |
CN102136583A (en) | Regeneration method of zinc powder as negative electrode material of waste alkaline zinc-manganese dioxide battery | |
CN114079095B (en) | Method for preparing copper-based negative electrode material by using waste batteries | |
CN106654439A (en) | Utilization method of waste lithium ion battery anode carbon material | |
CN1808761A (en) | Clean recovery method of lead from waste storage cells by acidic electrolyzing and in-situ deoxidation in solid phase through wet process | |
CN110176647A (en) | A kind of negative electrode material of waste lithium ion battery stepped utilization method | |
CN108384957A (en) | A method of the collaboration recycling valuable metal from waste lithium cell and Ni-MH battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110727 |