CN102069290B - Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding - Google Patents
Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding Download PDFInfo
- Publication number
- CN102069290B CN102069290B CN 201010580638 CN201010580638A CN102069290B CN 102069290 B CN102069290 B CN 102069290B CN 201010580638 CN201010580638 CN 201010580638 CN 201010580638 A CN201010580638 A CN 201010580638A CN 102069290 B CN102069290 B CN 102069290B
- Authority
- CN
- China
- Prior art keywords
- alloy
- diffusion
- composite structure
- composite construction
- technique
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims 5
- 229910017372 Fe3Al Inorganic materials 0.000 title abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000003466 welding Methods 0.000 claims abstract description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims 5
- 238000004140 cleaning Methods 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 2
- 244000137852 Petrea volubilis Species 0.000 claims 1
- 150000001298 alcohols Chemical class 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 230000007704 transition Effects 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 2
- NGONBPOYDYSZDR-UHFFFAOYSA-N [Ar].[W] Chemical compound [Ar].[W] NGONBPOYDYSZDR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
本发明属于有色金属的焊接技术领域,公开了一种扩散连接制备Fe3Al/Al复合结构的工艺。焊前将Fe3Al合金和Al合金的表面进行机械清理和化学清洗后,将Fe3Al合金和Al合金工件用压头压紧,在真空环境下进行扩散连接。通过Al原子的扩散,在界面处形成一定厚度的过渡层,实现Fe3Al合金和Al合金的连接,得到Fe3Al/Al复合结构。该方法不需要添加中间层,在具有真空环境和加压能力的加热炉中即可进行,适用性强。The invention belongs to the technical field of welding of nonferrous metals, and discloses a process for preparing Fe3Al /Al composite structure through diffusion connection. Before welding, the surface of Fe 3 Al alloy and Al alloy is cleaned mechanically and chemically, and then the workpieces of Fe 3 Al alloy and Al alloy are pressed with a pressure head, and the diffusion connection is carried out in a vacuum environment. Through the diffusion of Al atoms, a transition layer with a certain thickness is formed at the interface to realize the connection of the Fe 3 Al alloy and the Al alloy, and obtain the Fe 3 Al/Al composite structure. The method does not need to add an intermediate layer, and can be carried out in a heating furnace with a vacuum environment and a pressurization capability, and has strong applicability.
Description
技术领域 technical field
本发明涉及金属材料加工领域,具体为有色金属的焊接技术,尤其是有色金属间的扩散连接方法,具体是扩散连接制备Fe3Al/Al复合结构的方法。The invention relates to the field of metal material processing, specifically the welding technology of nonferrous metals, especially the diffusion connection method between nonferrous metals, and specifically the method for preparing Fe3Al /Al composite structure by diffusion connection.
背景技术 Background technique
结构材料是现代工业领域的重要基础,其性能决定了工业装备的水平。新型有色金属材料是重要的一类材料。铝合金是目前工业领域广泛采用的有色金属,具有低密度、高比强度、易加工等特点。Fe3Al是一种新型的有色金属,具有较高的比强度、优良的耐磨性和耐腐蚀等特性,是航空航天、汽车、化工等领域极具潜力的材料。但是Fe3Al具有比较明显的环境脆性和较低的室温塑性。通过合金化和热机械加工的方式可以改善Fe3Al的室温塑性和强度。将Fe3Al和Al合金连接起来,可以充分利用Fe3Al的高强度、耐磨性和Al合金的优良塑性,得到综合性能优异的Fe3Al/Al复合结构。此外,Fe3Al合金和Al合金都具有较好的耐腐蚀性能,因此Fe3Al/Al复合结构在腐蚀环境下服役的可靠性也较好。Structural materials are an important foundation in the modern industrial field, and their performance determines the level of industrial equipment. New non-ferrous metal materials are an important class of materials. Aluminum alloy is a non-ferrous metal widely used in the industrial field at present. It has the characteristics of low density, high specific strength, and easy processing. Fe 3 Al is a new type of non-ferrous metal with high specific strength, excellent wear resistance and corrosion resistance. It is a material with great potential in aerospace, automobile, chemical and other fields. But Fe 3 Al has obvious environmental brittleness and low room temperature plasticity. The ductility and strength at room temperature of Fe 3 Al can be improved by alloying and thermomechanical processing. By connecting Fe 3 Al and Al alloy, the high strength and wear resistance of Fe 3 Al and the excellent plasticity of Al alloy can be fully utilized to obtain a Fe 3 Al/Al composite structure with excellent comprehensive properties. In addition, both Fe 3 Al alloys and Al alloys have good corrosion resistance, so the reliability of Fe 3 Al/Al composite structures in corrosive environments is also good.
目前Fe3Al常用的连接方法主要是焊条电弧焊、钨极氩弧焊、电子束焊和扩散连接。采用TIG焊和电子束焊焊接Fe3Al时,容易产生热裂纹。为了避免产生热裂纹,应当控制焊材中的B、Zr、Mo等元素,而增加Cr、Nb、C等碳化物形成元素。但是B、Zr、Mo等元素是Fe3Al合金常用的强韧化元素。采用焊条电弧焊和钨极氩弧焊焊接Fe3Al时容易出现冷裂纹问题。空气中的水汽在高温下分解出原子氢,可以直接和熔池中的Al反应生成原子氢,是Fe3Al合金熔化焊时产生冷裂纹的主要因素之一。Fe3Al合金的热导率小、热膨胀系数大,在熔化焊过程中容易在接头区域形成较大的残余应力,有助于氢的扩散、聚集。因此,在Fe3Al合金与异种材料(如Q235、Cr18-Ni8等)连接时主要采用的是扩散连接。扩散连接时存在的主要问题是难以得到微观组织均匀过渡的界面区,在界面区往往容易出现高硬度脆性相,导致接头区的力学性能恶化。目前还没有将Fe3Al合金和Al合金连接制备Fe3Al/Al复合结构的报道。At present, the commonly used connection methods of Fe 3 Al are mainly electrode arc welding, argon tungsten arc welding, electron beam welding and diffusion connection. When Fe 3 Al is welded by TIG welding and electron beam welding, thermal cracks are prone to occur. In order to avoid hot cracks, elements such as B, Zr, and Mo in welding consumables should be controlled, and carbide-forming elements such as Cr, Nb, and C should be increased. However, B, Zr, Mo and other elements are common strengthening and toughening elements for Fe 3 Al alloys. Cold cracks are prone to occur when welding Fe 3 Al with electrode arc welding and argon tungsten arc welding. The water vapor in the air decomposes into atomic hydrogen at high temperature, which can directly react with Al in the molten pool to generate atomic hydrogen, which is one of the main factors for cold cracks in Fe 3 Al alloy fusion welding. Fe 3 Al alloy has low thermal conductivity and large thermal expansion coefficient, and it is easy to form a large residual stress in the joint area during the fusion welding process, which is conducive to the diffusion and accumulation of hydrogen. Therefore, diffusion bonding is mainly used when connecting Fe 3 Al alloys with dissimilar materials (such as Q235, Cr18-Ni8, etc.). The main problem in diffusion bonding is that it is difficult to obtain an interface region with a uniform microstructure transition, and high hardness and brittle phases tend to appear in the interface region, resulting in deterioration of the mechanical properties of the joint region. At present, there is no report on the connection of Fe 3 Al alloy and Al alloy to prepare Fe 3 Al/Al composite structure.
发明内容 Contents of the invention
本发明旨在提供通过扩散连接制备Fe3Al/Al复合结构的工艺。The present invention aims to provide a process for preparing Fe 3 Al/Al composite structure through diffusion bonding.
本发明提出了一种Fe3Al合金和Al合金异种金属材料的扩散连接工艺,将Fe3Al合金和Al合金的表面进行机械清理和化学清洗后,将Fe3Al合金和Al合金工件用压头压紧,在真空环境下进行扩散连接。不需要添加中间合金层,主要通过Al原子的扩散,实现Fe3Al合金与Al合金的连接,得到Fe3Al/Al复合结构。The present invention proposes a diffusion bonding process of Fe 3 Al alloy and Al alloy dissimilar metal materials. After the surfaces of Fe 3 Al alloy and Al alloy are cleaned mechanically and chemically, the workpieces of Fe 3 Al alloy and Al alloy are pressed The head is pressed tightly, and the diffusion connection is performed in a vacuum environment. There is no need to add an intermediate alloy layer, and the connection between the Fe3Al alloy and the Al alloy is realized mainly through the diffusion of Al atoms, and a Fe3Al /Al composite structure is obtained.
这种扩散连接制备Fe3Al/Al复合结构的工艺,包括以下步骤:The process for preparing the Fe 3 Al/Al composite structure by diffusion connection includes the following steps:
(1)对Fe3Al合金和Al合金的表面进行机械清理和化学清洗并干燥;可用砂纸逐级打磨后,可再用醇类(如乙醇)或者丙酮清洗后吹干;(1) Mechanically clean and chemically clean and dry the surface of Fe 3 Al alloy and Al alloy; after grinding step by step with sandpaper, it can be cleaned with alcohol (such as ethanol) or acetone and then dried;
所用的Fe3Al合金中,Fe的原子百分比为65~75%,Al的原子百分比为22~28%;In the Fe 3 Al alloy used, the atomic percentage of Fe is 65-75%, and the atomic percentage of Al is 22-28%;
Al合金中Al的重量百分比为99.0~99.9%;The weight percentage of Al in the Al alloy is 99.0-99.9%;
(2)将Fe3Al合金和Al合金工件用压头压紧,放置在真空室中进行扩散连接,采用的扩散焊工艺参数为:500~640℃下保温30~90min,Fe3Al合金和Al合金所受压力15~35MPa,真空度为10-2Pa~10-3Pa;(2) Press the Fe 3 Al alloy and Al alloy workpieces tightly with a pressure head, and place them in a vacuum chamber for diffusion bonding. The pressure of Al alloy is 15-35MPa, and the vacuum degree is 10-2 Pa- 10-3 Pa;
加热过程中为了获得均匀的温度分布,采用5~10℃/min的加热升温速度和台阶式加热方式,即分别在195~205℃和395~405℃下保温8~15min;In order to obtain a uniform temperature distribution during the heating process, a heating rate of 5-10°C/min and a stepped heating method are adopted, that is, heat preservation at 195-205°C and 395-405°C for 8-15 minutes;
(3)达到保温时间后,将真空室冷却到80~110℃后将工件取出,得到Fe3Al/Al复合结构。(3) After reaching the holding time, cool the vacuum chamber to 80-110°C and take out the workpiece to obtain a Fe 3 Al/Al composite structure.
Fe3Al合金与Al合金之间的界面处形成厚度约10-30μm的过渡层,接头处没有裂纹形成。A transition layer with a thickness of about 10-30 μm is formed at the interface between the Fe 3 Al alloy and the Al alloy, and no cracks are formed at the joint.
本发明的特点在于,利用扩散连接方法,通过Al原子的扩散,即可实现Fe3Al合金和Al合金的连接,不需要添加中间层。这种扩散连接方法可以获得结合良好的Fe3Al/Al异种材料接头,界面处形成厚度约10-30μm的过渡层,接头处没有裂纹形成。The feature of the present invention is that the connection of Fe 3 Al alloy and Al alloy can be realized through the diffusion of Al atoms by using the diffusion connection method without adding an intermediate layer. This diffusion bonding method can obtain a well-bonded joint of Fe 3 Al/Al dissimilar materials, a transition layer with a thickness of about 10-30 μm is formed at the interface, and no cracks are formed at the joint.
本发明的扩散连接方法在真空环境和加压环境下的加热炉中即可进行,无需保护气体,工艺操作简单,适用性强,便于应用。The diffusion connection method of the present invention can be carried out in a heating furnace under a vacuum environment or a pressurized environment, without the need of protective gas, simple process operation, strong applicability and convenient application.
具体实施方式 Detailed ways
实施例1Example 1
(1)将化学成分为73Fe-25Al-2Cr at.%的Fe3Al合金和1060Al合金(Al 99.6wt%)的表面采用200Cw、400Cw和600Cw水砂纸逐级打磨后,用乙醇清洗后吹干。(1) The surface of Fe 3 Al alloy and 1060Al alloy (Al 99.6wt%) with chemical composition of 73Fe-25Al-2Cr at.% is polished step by step with 200Cw, 400Cw and 600Cw water sandpaper, cleaned with ethanol and dried .
(2)然后将Fe3Al合金和Al合金工件用压头压紧,放置在真空室中进行扩散连接。(2) Then the Fe 3 Al alloy and Al alloy workpieces are pressed with a pressure head and placed in a vacuum chamber for diffusion bonding.
采用的扩散焊工艺参数为:550℃下保温90min,Fe3Al合金和Al合金所受压力22MPa,真空度10-2Pa~10-3Pa。加热的升温速度10℃/min,加热过程中分别在200℃和400℃保温10min。The parameters of the diffusion welding process used are: holding temperature at 550°C for 90 minutes, the pressure of Fe 3 Al alloy and Al alloy is 22MPa, and the degree of vacuum is 10 -2 Pa~10 -3 Pa. The heating rate was 10°C/min, and the temperature was kept at 200°C and 400°C for 10 minutes during the heating process.
达到保温时间后,通过水循环冷却,将真空室冷却到100℃时,将Fe3Al/Al复合结构接头取出。After the heat preservation time is reached, the Fe 3 Al/Al composite structure joint is taken out when the vacuum chamber is cooled to 100° C. through water circulation cooling.
用扫描电镜对Fe3Al/Al接头的观察显示,形成了厚度约11-26μm的过渡层,过渡层与Fe3Al和Al合金的基体结合良好,接头处没有裂纹形成。Observation of the Fe 3 Al/Al joint with a scanning electron microscope shows that a transition layer with a thickness of about 11-26 μm is formed, and the transition layer is well combined with the matrix of Fe 3 Al and Al alloy, and no cracks are formed at the joint.
实施例2Example 2
(1)将化学成分为73Fe-25Al-2Cr at.%的Fe3Al合金和1060Al合金(Al 99.6wt%)的表面采用200Cw、400Cw和600Cw水砂纸逐级打磨后,用乙醇(或丙酮)清洗后吹干。(1) After polishing the surface of Fe 3 Al alloy and 1060Al alloy (Al 99.6wt%) with chemical composition of 73Fe-25Al-2Cr at.% with 200Cw, 400Cw and 600Cw water sandpaper step by step, use ethanol (or acetone) Blow dry after washing.
(2)然后将Fe3Al合金和Al合金工件用压头压紧,放置在真空室中进行扩散连接。(2) Then the Fe 3 Al alloy and Al alloy workpieces are pressed with a pressure head and placed in a vacuum chamber for diffusion bonding.
采用的扩散焊工艺参数为:600℃下保温60min,Fe3Al合金和Al合金所受压力25MPa,真空度10-2Pa~10-3Pa。加热的升温速度5℃/min,加热过程中分别在200℃和400℃保温10min。The parameters of the diffusion welding process used are: holding temperature at 600°C for 60 minutes, pressure of Fe 3 Al alloy and Al alloy at 25 MPa, and vacuum degree of 10 -2 Pa to 10 -3 Pa. The heating rate was 5°C/min, and the temperature was kept at 200°C and 400°C for 10 minutes during the heating process.
达到保温时间后,通过水循环冷却,将真空室冷却到100℃时,将Fe3Al/Al复合结构接头取出。After the holding time is reached, it is cooled by water circulation, and when the vacuum chamber is cooled to 100°C, the Fe3Al/Al composite structure joint is taken out.
用扫描电镜对Fe3Al/Al接头的观察显示,形成了厚度约16-26μm的过渡层,过渡层与Fe3Al和Al合金的基体结合良好,接头处没有裂纹形成。Observation of the Fe 3 Al/Al joint with a scanning electron microscope shows that a transition layer with a thickness of about 16-26 μm is formed, and the transition layer is well combined with the matrix of Fe 3 Al and Al alloy, and no cracks are formed at the joint.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010580638 CN102069290B (en) | 2010-12-09 | 2010-12-09 | Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010580638 CN102069290B (en) | 2010-12-09 | 2010-12-09 | Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102069290A CN102069290A (en) | 2011-05-25 |
CN102069290B true CN102069290B (en) | 2013-01-09 |
Family
ID=44028166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010580638 Expired - Fee Related CN102069290B (en) | 2010-12-09 | 2010-12-09 | Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102069290B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328153B (en) * | 2011-09-01 | 2013-07-31 | 河南科技大学 | Crimping diffusion welding process of aluminum or aluminum alloy and heterogeneous metal |
CN102886599B (en) * | 2012-10-12 | 2014-11-12 | 华中科技大学 | Method for manufacturing multi-layer amorphous alloy and crystal metal composite structure through diffusion welding |
CN104741772B (en) * | 2013-12-27 | 2017-03-01 | 北京有色金属研究总院 | A kind of welding method connecting rustless steel and aluminium alloy |
CN112626378B (en) * | 2020-11-30 | 2021-09-14 | 湖南金天铝业高科技股份有限公司 | Iron-aluminum alloy composite reinforced aluminum-based material, and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0480404A2 (en) * | 1990-10-09 | 1992-04-15 | Daido Tokushuko Kabushiki Kaisha | Corrosion-resistant and heat-resistant metal composite and method of producing |
CN1559740A (en) * | 2004-02-25 | 2005-01-05 | 山东大学 | Diffusion Welding Process of Iron-Three-Al-Based Alloy and Steel with Active Intermediate Layer |
CN101074476A (en) * | 2007-06-11 | 2007-11-21 | 南京航空航天大学 | Method for producing Fe-Al intermetallic compound layer on surface of iron or steel materials |
CN101519750A (en) * | 2008-10-28 | 2009-09-02 | 兰州理工大学 | Bulk Fe3Al nanocrystalline material and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3094491B2 (en) * | 1990-04-10 | 2000-10-03 | 大同特殊鋼株式会社 | Sheet-shaped or wire-shaped heater material and method for producing the same |
-
2010
- 2010-12-09 CN CN 201010580638 patent/CN102069290B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0480404A2 (en) * | 1990-10-09 | 1992-04-15 | Daido Tokushuko Kabushiki Kaisha | Corrosion-resistant and heat-resistant metal composite and method of producing |
CN1559740A (en) * | 2004-02-25 | 2005-01-05 | 山东大学 | Diffusion Welding Process of Iron-Three-Al-Based Alloy and Steel with Active Intermediate Layer |
CN101074476A (en) * | 2007-06-11 | 2007-11-21 | 南京航空航天大学 | Method for producing Fe-Al intermetallic compound layer on surface of iron or steel materials |
CN101519750A (en) * | 2008-10-28 | 2009-09-02 | 兰州理工大学 | Bulk Fe3Al nanocrystalline material and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
JP特开平4-218682A 1992.08.10 |
李亚江等.Fe3Al/18-8异种材料真空扩散焊工艺研究.《材料科学与工艺》.2004,第12卷(第1期), * |
王娟等.Fe3Al/Q235异种材料扩散焊工艺.《焊接》.2003,(第4期), * |
Also Published As
Publication number | Publication date |
---|---|
CN102069290A (en) | 2011-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101786898B (en) | Method for connecting Cf/SiC composite material and Ni-based high-temperature alloy | |
CN103252572B (en) | Transient liquid phase diffusion bonding process of molybdenum copper alloy and stainless steel | |
CN101494322B (en) | Tungsten copper connection method | |
CN111347146B (en) | Tungsten and heat sink material connector and preparation method thereof | |
CN102059449B (en) | Diffusion welding method of tungsten alloy and tantalum alloy at low temperature | |
CN106271015A (en) | A kind of rustless steel and kovar alloy dissimilar metal diffusion welding method | |
CN102643104B (en) | Diffusion bonding method of zirconium diboride-silicon carbide composite material and metal alloy | |
CN101254572A (en) | A method of diffusion welding titanium alloy and copper alloy using niobium interlayer | |
CN109468638B (en) | A kind of preparation method of diamond reinforced high-entropy alloy composite coating | |
CN102069290B (en) | Preparation of Fe3Al/Al Composite Structure by Diffusion Bonding | |
CN106825885A (en) | A kind of connection method of TZM alloys and WRe alloys under electric field-assisted | |
CN111299796A (en) | Vacuum diffusion welding method of dissimilar metals between TC4 titanium alloy and 316L stainless steel | |
CN104014922A (en) | Fast-diffusion welding method of hard alloy and steel | |
CN107030367A (en) | The dissimilar metal diffusion welding method of titanium alloy and stainless steel | |
CN110450477B (en) | Reinforced aluminum alloy composite board and preparation method thereof | |
CN101096316A (en) | Transient Liquid Phase Diffusion Bonding Technology of Ternary Layered Ceramic Titanium Silicide | |
CN105149769B (en) | The design of lamination composite interlayer, which introduces, makes the method that magnesium alloy is connected with aluminium alloy | |
CN113878220A (en) | A tungsten and steel layered metal composite material and its diffusion bonding method | |
CN114951946B (en) | A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy | |
CN102069295A (en) | Method for preparing Fe3Al/Al composite structure by diffusion bonding of strengthening layer | |
CN114346346A (en) | A method of using high-entropy alloy brazing to connect high-entropy carbide ceramics | |
CN108145302A (en) | A kind of SPS diffusion welding methods of WC hard alloy of the same race | |
CN111299833A (en) | Dissimilar metal pulse laser welding method for titanium alloy and stainless steel | |
CN117259884A (en) | High-performance welding process for hard alloy and stainless steel dissimilar materials based on laser 3D treatment | |
CN105821459B (en) | A kind of method for preparing boride coating in stainless steel surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130109 Termination date: 20151209 |
|
EXPY | Termination of patent right or utility model |