Nothing Special   »   [go: up one dir, main page]

CN102044627A - 电致伸缩复合材料及电致伸缩元件 - Google Patents

电致伸缩复合材料及电致伸缩元件 Download PDF

Info

Publication number
CN102044627A
CN102044627A CN2009101103127A CN200910110312A CN102044627A CN 102044627 A CN102044627 A CN 102044627A CN 2009101103127 A CN2009101103127 A CN 2009101103127A CN 200910110312 A CN200910110312 A CN 200910110312A CN 102044627 A CN102044627 A CN 102044627A
Authority
CN
China
Prior art keywords
carbon nano
tube
composite material
electrostriction
membrane structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009101103127A
Other languages
English (en)
Inventor
陈鲁倬
刘长洪
王佳平
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2009101103127A priority Critical patent/CN102044627A/zh
Priority to US12/795,867 priority patent/US8536767B2/en
Priority to JP2010227507A priority patent/JP5539837B2/ja
Publication of CN102044627A publication Critical patent/CN102044627A/zh
Priority to US13/972,895 priority patent/US9341166B2/en
Priority to US15/099,509 priority patent/US10038135B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/008Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the actuating element
    • F03G7/012Electro-chemical actuators
    • F03G7/0121Electroactive polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06146Torque tubes or torsion bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种电致伸缩复合材料,包括一片状柔性高分子基体以及一碳纳米管膜结构,其中,所述碳纳米管膜结构设置在所述柔性高分子基体一表面,并与所述柔性高分子基体具有不同的热膨胀系数,所述碳纳米管膜结构为多个碳纳米管通过范德华力结合而成。本发明还进一步提供一种电致伸缩元件。所述电致伸缩复合材料及其电致伸缩元件可用于人工肌肉或致动器等领域。

Description

电致伸缩复合材料及电致伸缩元件
技术领域
本发明涉及一种电致伸缩复合材料及电致伸缩元件,尤其涉及一种具有可弯曲特性的电致伸缩复合材料及电致伸缩元件。
背景技术
电致伸缩材料是在电场、电压或电流的作用下发生形变产生伸缩运动,从而实现电能-机械能转换的一种材料。电致伸缩材料由于类似肌肉的运动形式又被称为人工肌肉材料。
传统的电致伸缩材料包括形状记忆合金、压电陶瓷、铁电聚合物等。然而,这些电致伸缩材料的电致伸缩率较低,且柔韧性较差,与生物肌肉特性相差较远,不利于用作人工肌肉。
现有技术提供一种电介质弹性体材料。该电介质弹性体材料通常为一硅树脂或聚丙酸树脂橡胶。这种电介质弹性体材料可以提供较高的电致伸缩率,且具有较好的柔韧性,表现出与生物肌肉相似的特性。实际应用时,可将电介质弹性体材料构成的电介质弹性体膜设置于两个平行的金属电极之间。当在两个金属电极之间施加一上千伏特的高压直流电压时,两电极之间产生的静电引力在垂直电介质弹性体膜表面的方向上挤压电介质弹性体膜,使其在平行电介质弹性体膜表面的平面内向各个方向扩张。关闭电压,作用在所述电介质弹性体膜的静电引力消失,电介质弹性体膜恢复原来形状。然而,该电介质弹性体膜通常需要较高的直流电压(上千伏特)才能工作,提高了其使用成本,限制了其应用。
为了降低电致伸缩材料的工作电压,范守善等人公开了一种电致伸缩材料,请参见“Electrothermal Actuation Based on Carbon Nanotube Network in Silicon Elastomer”Applied Physics Letters Vol,92,P 263104(2008)。该电致伸缩复合材料包括硅橡胶基体及分散在硅橡胶基体中的大量碳纳米管。所述碳纳米管的质量百分含量为0.5~5%,且碳纳米管互相搭接在硅橡胶基体中形成大量导电网络,从而使该电致伸缩复合材料导电。上述的电致伸缩复合材料可以通过将分散好的碳纳米管溶液与所述的硅橡胶的预聚物溶液混合,之后聚合固化形成。当通过两个电极向所述电致伸缩复合材料施加一伏特的电压时,该电致伸缩复合材料中的碳纳米管网络中有电流流过,并产生焦耳热。该电致伸缩复合材料被电流产生的焦耳热加热并发生膨胀。然而,上述电致伸缩复合材料必须与其他热膨胀系数不同的基材配合才能实现弯曲,使得其制作工艺较复杂。
发明内容
有鉴于此,确有必要提供一种具有弯曲特性制作工艺简单的电致伸缩复合材料及电致伸缩元件。
一种电致伸缩复合材料,包括一片状柔性高分子基体以及一碳纳米管膜结构,其特征在于,所述碳纳米管膜结构设置在所述柔性高分子基体一表面,并与所述柔性高分子基体具有不同的热膨胀系数,所述碳纳米管膜结构为多个碳纳米管通过范德华力结合而成。
一种电致伸缩元件,其包括:一电致伸缩复合材料,该电致伸缩复合材料为片材,该电致伸缩复合材料包括一柔性高分子基体,以及一碳纳米管膜结构,所述碳纳米管膜结构与所述柔性高分子基体具有不同的热膨胀系数;以及一第一电极与一第二电极,所述第一电极与第二电极间隔设置于所述电致伸缩复合材料,并与所述电致伸缩复合材料电连接;其中,所述碳纳米管膜结构设置于柔性高分子基体的表面,所述碳纳米管膜结构为多个碳纳米管通过范德华力结合而成。
与现有技术相比较,本发明提供的电致伸缩复合材料及电致伸缩元件,其包括柔性高分子基体,以及设置于柔性高分子基体表面的碳纳米管膜结构,。由于碳纳米管膜结构与柔性高分子基体具有不同的热膨胀系数,且所述碳纳米管膜结构仅设置于柔性高分子基体的表面,使得所述电致伸缩复合材料及电致伸缩元件料具有非对称的结构,从而使得该电致伸缩复合材料及电致伸缩元件在受热时会向一面弯曲。并且,该电致伸缩复合材料及电致伸缩元件具有结构简单,制备工艺简单、成本低的优点,该电致伸缩复合材料及电致伸缩元件热膨胀具有可弯曲性,从而可以应用于精确控制器件中。
附图说明
图1为本发明实施例提供的电致伸缩复合材料的立体结构示意图。
图2为图1所示的电致伸缩复合材料沿II-II线的剖视图。
图3为本发明实施例提供的电致伸缩复合材料中采用的碳纳米管拉膜的扫描电镜照片。
图4为本发明实施例提供的电致伸缩复合材料中采用的碳纳米管碾压膜的扫描电镜照片。
图5为本发明实施例提供的电致伸缩复合材料中采用的碳纳米管絮化膜的扫描电镜照片。
图6为本发明实施例提供的电致伸缩复合材料伸缩前与通电伸缩后的对比示意图。
图7为本发明实施例提供的电致伸缩元件的立体结构示意图。
图8为图7所示的电致伸缩复合材料沿III-III线的剖视图。
具体实施方式
以下将结合附图详细说明本发明提供的电致伸缩复合材料及电致伸缩元件。
请参考图1及图2,本发明实施例提供一种电致伸缩复合材料10,所述电致伸缩复合材料10为片材,其包括:一柔性高分子基体14,以及一碳纳米管膜结构12,所述碳纳米管膜结构12与所述柔性高分子基体14具有不同的热膨胀系数,其中,所述碳纳米管膜结构12设置于柔性高分子基体14的表面,所述碳纳米管膜结构12为多个碳纳米管122通过范德华力结合而成。
所述柔性高分子基体14为具有一定厚度的片材,该片材的形状不限,可以为长方形、圆形,或根据实际应用制成各种形状。所述柔性高分子基体14为柔性材料构成,该柔性材料导电性不限,只要具有柔性即可。所述柔性高分子基体14的材料为硅橡胶、聚甲基丙烯酸甲酯、聚氨脂、环氧树脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中的一种或几种的组合。本实施例中,所述柔性高分子基体14为一硅橡胶薄膜,该硅橡胶薄膜为厚度为0.7毫米厚的一长方形薄片,长为6厘米,宽为3厘米。
所述碳纳米管膜结构12为一平面结构,该碳纳米管膜结构12平行于所述柔性高分子基体14并铺设于柔性高分子基体14的表面。该碳纳米管膜结构12是在柔性高分子基体14未完全固化呈液态时铺设。由于该碳纳米管膜结构12是由多个碳纳米管122通过范德华力结合构成,多个碳纳米管122之间存在间隙,液态的柔性高分子基体材料可以渗透进入该碳纳米管膜结构12中的碳纳米管122之间的间隙当中,该柔性高分子基体14的材料与碳纳米管膜结构12中的碳纳米管122紧密结合在一起。所述碳纳米管膜结构12与柔性高分子基体14接触的表面部分包埋于所述柔性高分子基体14中。从而碳纳米管膜结构12可以很好地被固定在该柔性高分子基体14的表面,与该柔性高分子基体14具有很好的结合性能。该电致伸缩复合材料10不会因为多次使用,影响碳纳米管薄膜12与柔性高分子基体14之间界面的结合性。
所述碳纳米管膜结构12包括至少一个碳纳米管膜。当所述碳纳米管膜结构12包括多个碳纳米管膜时,所述碳纳米管膜的层数不限,该多个碳纳米管膜可并排设置或层叠设置于所述柔性高分子基体14的表面。当所述碳纳米管膜结构12包括多个碳纳米管膜层叠设置时,所述碳纳米管膜结构12中相邻的层叠的碳纳米管膜之间通过范德华力紧密连接。该碳纳米管膜可以为碳纳米管拉膜、碳纳米管碾压膜、碳纳米管絮化膜中的一种或多种的组合。
请参阅图3,所述碳纳米管拉膜包括多个碳纳米管,且该多个碳纳米管基本相互平行且平行于碳纳米管拉膜的表面。具体地,该碳纳米管膜中的多个碳纳米管通过范德华力首尾相连,且所述多个碳纳米管的轴向基本沿同一方向择优取向排列。所述碳纳米管拉膜之中的碳纳米管之间存在间隙,当使用该碳纳米管拉膜与柔性高分子基体14结合时,柔性高分子基体14的材料渗透入碳纳米管拉膜中的碳纳米管之间的间隙之中,使得该碳纳米管拉膜与柔性高分子基体14能够较好地结合。该碳纳米管拉膜的厚度为0.01微米~100微米,其中的碳纳米管为单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或几种。当该碳纳米管膜中的碳纳米管为单壁碳纳米管时,该单壁碳纳米管的直径为0.5~10纳米。当该碳纳米管膜中的碳纳米管为双壁碳纳米管时,该双壁碳纳米管的直径为1.0~20纳米。当该碳纳米管膜中的碳纳米管为多壁碳纳米管时,该多壁碳纳米管的直径为1.5~50纳米。所述碳纳米管拉膜的面积不限,可根据实际需求制备。
请参阅图4,所述碳纳米管碾压膜包括均匀分布的碳纳米管。所述碳纳米管无序排列,或者沿同一方向或不同方向择优取向排列。所述碳纳米管碾压膜中的碳纳米管相互部分交叠,并通过范德华力相互吸引,紧密结合,使得该碳纳米管结构具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂。且由于碳纳米管碾压膜中的碳纳米管之间通过范德华力相互吸引,紧密结合,使碳纳米管碾压膜为一自支撑的结构。所述碳纳米管碾压膜可通过碾压一碳纳米管阵列获得。所述碳纳米管碾压膜中的碳纳米管与形成碳纳米管阵列的生长基底的表面形成一夹角β,其中,β大于等于0度且小于等于15度(0≤β≤15°),该夹角β与施加在碳纳米管阵列上的压力有关,压力越大,该夹角越小,优选地,该碳纳米管碾压膜中的碳纳米管平行于该生长基底排列。该碳纳米管碾压膜为通过碾压一碳纳米管阵列获得,依据碾压的方式不同,该碳纳米管碾压膜中的碳纳米管具有不同的排列形式。当沿不同方向碾压时,碳纳米管沿不同方向择优取向排列。当沿同一方向碾压时,碳纳米管沿一固定方向择优取向排列。另外,当碾压方向为垂直该碳纳米管阵列表面时,该碳纳米管可以无序排列。该碳纳米管碾压膜中碳纳米管的长度大于50微米。
该碳纳米管碾压膜的面积和厚度不限,可根据实际需要选择。该碳纳米管碾压膜的面积与碳纳米管阵列的尺寸基本相同。该碳纳米管碾压膜厚度与碳纳米管阵列的高度以及碾压的压力有关,可为1微米~1毫米。可以理解,碳纳米管阵列的高度越大而施加的压力越小,则制备的碳纳米管碾压膜的厚度越大;反之,碳纳米管阵列的高度越小而施加的压力越大,则制备的碳纳米管碾压膜的厚度越小。所述碳纳米管碾压膜之中的相邻的碳纳米管之间具有一定间隙,从而在碳纳米管碾压膜中形成多个孔隙,孔隙的孔径约小于10微米。
请参阅图5,所述碳纳米管絮化膜包括多个相互缠绕且均匀分布的碳纳米管。碳纳米管的长度大于10微米,优选为200~900微米,从而使所述碳纳米管相互缠绕在一起。所述碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构,以形成一自支撑的碳纳米管絮化膜。所述碳纳米管絮化膜各向同性。所述碳纳米管絮化膜中的碳纳米管为均匀分布,无规则排列,形成大量的孔隙结构,孔隙孔径约小于10微米。所述碳纳米管絮化膜的长度和宽度不限。由于在碳纳米管絮化膜中,碳纳米管相互缠绕,因此该碳纳米管絮化膜具有很好的柔韧性,且为一自支撑结构,可以弯曲折叠成任意形状而不破裂。所述碳纳米管絮化膜的面积及厚度均不限,厚度为1微米~1毫米,优选为100微米。
本实施例中,所述碳纳米管膜结构12包括多个碳纳米管拉膜,该多个碳纳米管拉膜平行重叠铺设于所述柔性高分子基体14的表面,所述多个碳纳米管拉膜中的碳纳米管的轴向排列方向基本相同,基本沿着柔性高分子基体14的长边排列。从而形成一具有非对称结构的电致伸缩材料10。
所述电致伸缩复合材料10在应用时,将电压施加于该电致伸缩复合材料10的碳纳米管膜结构12的两端,电流可通过上述碳纳米管122所形成的导电网络进行传输。由于碳纳米管122的热导率很高,从而使得所述电致伸缩复合材料10的温度快速升高,热量从所述电致伸缩复合材料10中碳纳米管122的周围快速地向整个电致伸缩复合材料10扩散,即碳纳米管膜结构12可迅速加热柔性高分子基体14。由于热膨胀量与材料的体积及热膨胀系数成正比,且本实施例的电致伸缩复合材料10由两层具有不同热膨胀系数的碳纳米管膜结构12和柔性高分子基体14复合而成,从而使得加热后的电致伸缩复合材料10将向热膨胀系数小的碳纳米管膜结构12弯曲。此外,由于碳纳米管122具有导电性好、热容小的特点,所以使该电致伸缩复合材料10的热响应速率快。
请参阅图6,另外,本实施例中通过导线将电源电压施加于所述电致伸缩复合材料10的两端的电极16,并对所述的电致伸缩复合材料10进行伸缩特性测量。本实施例中的电致伸缩复合材料10为长34毫米,宽5毫米,厚度0.7毫米的长方体片材。施加一40伏特的电压2分钟后,在垂直于电流延伸的方向上,所述电致伸缩复合材料10的位移ΔS为16毫米左右。
可以理解,本发明实施例所提供的电致伸缩复合材料的制动方式不仅仅局限于通电加热后膨胀,只要是能够使该电致伸缩复合材料受热升温的方法均可以应用于该电致伸缩复合材料。如,将该电致伸缩复合材料直接放置于温控平台,通过热传递使之升温,从而实现其弯曲膨胀。另外,还可以采用近红外激光照射,进行光致加热使其升温,从而实现其弯曲膨胀。
请参阅图7及图8,本发明实施例提供一种采用所述电致伸缩复合材料10的电致伸缩元件20,其包括:一电致伸缩复合材料10、一第一电极22以及一第二电极24。所述第一电极22与第二电极24间隔设置,并与所述电致伸缩复合材料10电连接。所述电致伸缩复合材料10为具有一定厚度的片材。
所述第一电极22及第二电极24间隔设置,并于所述电致伸缩复合材料10中的碳纳米管膜结构12电连接。所述第一电极22及第二电极24为长条形金属,其可以间隔设置于电致伸缩复合材料10中,也可以间隔设置于所述电致伸缩复合材料10两端。本实施例中,所述电致伸缩复合材料10为为长34毫米,宽5毫米,厚度0.7毫米的长方体片材,所述第一电极22及第二电极24为铜片,所述铜片设置于所述电致伸缩复合材料10两端。
具体应用时,将电压施加于该电致伸缩元件20中的碳纳米管膜结构12的两端的第一电极22及第二电极24,电流可通过碳纳米管膜结构12所形成的导电网络进行传输。由于碳纳米管122的热导率很高,从而使得所述电致伸缩复合材料10的温度快速升高,热量从所述电致伸缩复合材料10中碳纳米管122的周围快速地向整个电致伸缩复合材料10扩散,即碳纳米管膜结构12可迅速加热柔性高分子基体14。由于热膨胀量与材料的体积及热膨胀系数成正比,且本实施例的电致伸缩复合材料10由两层具有不同热膨胀系数的碳纳米管膜结构12和柔性高分子基体14复合而成,从而使得加热后的电致伸缩元件20将向热膨胀系数小的碳纳米管膜结构12弯曲。此外,由于碳纳米管122具有导电性好、热容小的特点,所以使该电致伸缩元件20的热响应速率快。
本发明实施例所述的电致伸缩复合材料及电致伸缩元件具有以下优点:本发明提供的电致伸缩复合材料及电致伸缩元件,其包括柔性高分子基体,以及设置于柔性高分子基体表面的碳纳米管膜结构,其结构简单,制备工艺简单、成本低。由于碳纳米管膜结构包括多个间隙,高分子基体材料浸润入间隙当中,使得碳纳米管膜结构与柔性高分子基体之间具有较好的结合性,增加了该电致伸缩复合材料及电致伸缩元件使用寿命。由于碳纳米管膜结构与柔性高分子基体具有不同的热膨胀系数,且所述碳纳米管膜结构仅设置于柔性高分子基体的表面,使得所述电致伸缩复合材料具有非对称的结构,从而使得该电致伸缩复合材料及电致伸缩元件在受热时会向一面弯曲。该电致伸缩复合材料及电致伸缩元件热膨胀具有可弯曲性,从而可以应用于精确控制器件中。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (13)

1.一种电致伸缩复合材料,包括一片状柔性高分子基体以及一碳纳米管膜结构,其特征在于,所述碳纳米管膜结构设置在所述柔性高分子基体一表面,并与所述柔性高分子基体具有不同的热膨胀系数,所述碳纳米管膜结构为多个碳纳米管通过范德华力结合而成。
2.如权利要求1所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜结构包括至少一个碳纳米管膜。
3.如权利要求2所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜结构包括多个碳纳米管膜层叠铺设于所述柔性高分子基体的表面。
4.如权利要求2所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜包括多个碳纳米管,该碳纳米管膜中的多个碳纳米管通过范德华力首尾相连,所述多个碳纳米管的轴向基本沿同一方向择优取向排列。
5.如权利要求2所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜包括均匀分布的碳纳米管,所述碳纳米管无序,沿同一方向或不同方向择优取向排列。
6.如权利要求2所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜包括多个碳纳米管,该多个碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。
7.如权利要求1所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜结构的热膨胀率小于所述柔性高分子基体的热膨胀率。
8.如权利要求7所述的电致伸缩复合材料,其特征在于,所述电致伸缩复合材料在受热膨胀时,向碳纳米管膜结构的一侧弯曲。
9.如权利要求1所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜结构中的多个碳纳米管之间存在间隙,所述柔性高分子基体的材料渗透进入所述间隙当中,使得柔性高分子基体与碳纳米管膜结构紧密结合。
10.如权利要求1所述的电致伸缩复合材料,其特征在于,所述碳纳米管膜结构与柔性高分子基体接触的表面部分包埋于柔性高分子基体中。
11.如权利要求1所述的电致伸缩复合材料,其特征在于,所述柔性高分子基体的材料为硅橡胶、聚甲基丙烯酸甲酯、聚氨脂、环氧树脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩中的一种或几种的组合。
12.一种电致伸缩元件,其包括:
一电致伸缩复合材料;以及
一第一电极与一第二电极,所述第一电极与第二电极间隔设置于所述电致伸缩复合材料,并与所述电致伸缩复合材料电连接;
其特征在于,所述电致伸缩复合材料为权利要求1至11中任意一项所述的电致伸缩复合材料。
13.如权利要求12所述的电致伸缩元件,其特征在于,所述第一电极及第二电极分别与所述碳纳米管膜结构电连接。
CN2009101103127A 2009-10-22 2009-10-22 电致伸缩复合材料及电致伸缩元件 Pending CN102044627A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009101103127A CN102044627A (zh) 2009-10-22 2009-10-22 电致伸缩复合材料及电致伸缩元件
US12/795,867 US8536767B2 (en) 2009-10-22 2010-06-08 Electrostrictive composite and electrostrictive element using the same
JP2010227507A JP5539837B2 (ja) 2009-10-22 2010-10-07 電歪複合構造体及びアクチュエータ
US13/972,895 US9341166B2 (en) 2009-10-22 2013-08-21 Electrostrictive composite and electrostrictive element using the same
US15/099,509 US10038135B2 (en) 2009-10-22 2016-04-14 Electrostrictive composite and electrostrictive element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101103127A CN102044627A (zh) 2009-10-22 2009-10-22 电致伸缩复合材料及电致伸缩元件

Publications (1)

Publication Number Publication Date
CN102044627A true CN102044627A (zh) 2011-05-04

Family

ID=43897203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101103127A Pending CN102044627A (zh) 2009-10-22 2009-10-22 电致伸缩复合材料及电致伸缩元件

Country Status (3)

Country Link
US (3) US8536767B2 (zh)
JP (1) JP5539837B2 (zh)
CN (1) CN102044627A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206738A (zh) * 2015-10-26 2015-12-30 福建师范大学 电致动材料及电致动器
CN105765668A (zh) * 2013-11-28 2016-07-13 阪东化学株式会社 伸缩性电极、感测片、及静电电容式传感器
CN106633806A (zh) * 2016-09-30 2017-05-10 无锡市明盛强力风机有限公司 一种电致伸缩性复合材料及其制备方法和应用
CN107297929A (zh) * 2017-06-16 2017-10-27 福建师范大学 致动材料和双向弯曲型致动器及其制备方法
CN108891108A (zh) * 2018-07-20 2018-11-27 四川大学 一种高驱动应变的电致驱动弹性体及其制备方法
CN109088563A (zh) * 2018-09-30 2018-12-25 中国地质大学(武汉) 碳纳米管纤维复合结构型电磁致动器
CN109843577A (zh) * 2016-10-20 2019-06-04 马丁·胡贝尔 双层部件、用于制造双层部件的方法和具有多个双层部件的热机
CN110573307A (zh) * 2017-05-10 2019-12-13 罗伯特·博世有限公司 机器人肢体
CN112126217A (zh) * 2020-10-12 2020-12-25 广东工业大学 一种富勒烯/碳纳米管/热塑性树脂复合薄膜、其制备方法及应用
CN113370244A (zh) * 2021-06-30 2021-09-10 合肥工业大学 一种可编程操纵柔性执行器及其制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2914568C (en) 2006-12-11 2018-05-01 Vermeer Manufacturing Company Apparatus for converting a wheeled vehicle to a tracked vehicle
US8245800B2 (en) 2008-12-09 2012-08-21 Vermeer Manufacturing Company Apparatus for converting a wheeled vehicle to a tracked vehicle
CN101814577B (zh) * 2009-02-24 2013-06-05 清华大学 电致伸缩材料及其制备方法以及电热式致动器
CN102044627A (zh) * 2009-10-22 2011-05-04 清华大学 电致伸缩复合材料及电致伸缩元件
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
CN101913130B (zh) * 2010-08-25 2012-10-10 清华大学 电致动夹持器
US9170288B2 (en) * 2010-10-18 2015-10-27 Auckland Uniservices Limited Dielectric elastomer self-sensing using plane approximation
CN102061101A (zh) * 2010-10-29 2011-05-18 清华大学 碳纳米管复合材料
CN102038569B (zh) * 2010-12-31 2012-08-29 清华大学 热理疗器
US9745965B2 (en) 2012-04-11 2017-08-29 Arizona Board Of Regents On Behalf Of Arizona State University Printed actuators and uses thereof
JP5745589B2 (ja) * 2013-10-07 2015-07-08 Towa株式会社 培養装置入り細胞培養プレート
CN105336843B (zh) * 2014-07-23 2018-10-02 清华大学 电热致动器
CN105336841B (zh) * 2014-07-23 2018-08-17 清华大学 电热致动器
CN105336844B (zh) * 2014-07-23 2018-10-02 清华大学 电热致动器的制备方法
CN105336846B (zh) * 2014-07-23 2018-11-09 清华大学 电热致动复合材料及电热致动器
US10020439B2 (en) * 2015-05-28 2018-07-10 Honda Motor Co., Ltd. Electrostrictive element
US10020440B2 (en) * 2015-05-28 2018-07-10 Honda Motor Co., Ltd. Electrostrictive element and manufacturing method therefor
CN107946451B (zh) 2016-10-12 2019-07-12 清华大学 一种温度感测系统
JP6483212B2 (ja) * 2016-10-12 2019-03-13 ツィンファ ユニバーシティ アクチュエータ及びその製造方法
CN107934904B (zh) 2016-10-12 2019-07-12 清华大学 一种基于碳纳米管的致动器以及致动系统
CN107932475B (zh) 2016-10-12 2019-07-12 清华大学 一种仿生手臂及采用该仿生手臂的机器人
CN107933911B (zh) * 2016-10-12 2019-07-12 清华大学 一种仿生昆虫
DE102018203801A1 (de) * 2018-03-13 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Rad für ein Fahrzeug
DE102018203796A1 (de) * 2018-03-13 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Faserverbundbelüftungsklappe für ein Fahrzeug sowie Rad für ein Fahrzeug
DE102018109338B4 (de) * 2018-04-19 2022-08-18 Martin Huber Patent UG (haftungsbeschränkt) Wärmemotor mit einem Endlosband, Endlosband und Verfahren zur Herstellung eines Endlosbands
CN109135286B (zh) * 2018-07-09 2020-10-02 合肥工业大学 基于石墨烯/纳米银-乳胶膜的电热相变执行器及其制作方法
CN112657057A (zh) * 2019-10-15 2021-04-16 北京富纳特创新科技有限公司 面膜式美容仪的使用方法
US11930565B1 (en) * 2021-02-05 2024-03-12 Mainstream Engineering Corporation Carbon nanotube heater composite tooling apparatus and method of use
CA3199903A1 (en) * 2021-10-06 2023-04-13 James W. Spenceley Electrothermic compositions and related composite materials and methods

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555945B1 (en) * 1999-02-25 2003-04-29 Alliedsignal Inc. Actuators using double-layer charging of high surface area materials
US20020048632A1 (en) * 2000-08-24 2002-04-25 Smalley Richard E. Polymer-wrapped single wall carbon nanotubes
US6764628B2 (en) 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same
AU2003294588A1 (en) * 2002-12-09 2004-06-30 Rensselaer Polytechnic Institute Embedded nanotube array sensor and method of making a nanotube polymer composite
JP2005072209A (ja) * 2003-08-22 2005-03-17 Fuji Xerox Co Ltd 抵抗素子、その製造方法およびサーミスタ
JP4277103B2 (ja) * 2004-02-03 2009-06-10 国立大学法人信州大学 カーボンナノファイバーを用いる高分子アクチュエータ
WO2005117170A2 (en) * 2004-03-09 2005-12-08 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer electroactive polymer composite material
US7402264B2 (en) * 2004-03-09 2008-07-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same
US20080292840A1 (en) * 2004-05-19 2008-11-27 The Regents Of The University Of California Electrically and thermally conductive carbon nanotube or nanofiber array dry adhesive
CN105696139B (zh) * 2004-11-09 2019-04-16 得克萨斯大学体系董事会 纳米纤维纱线、带和板的制造和应用
US7834527B2 (en) * 2005-05-05 2010-11-16 SmartMotion Technologies, Inc. Dielectric elastomer fiber transducers
JP4732798B2 (ja) 2005-05-19 2011-07-27 株式会社日立製作所 アクチュエーターおよびアクチュエーターモジュール
JP4412275B2 (ja) 2005-11-29 2010-02-10 株式会社デンソー 圧縮着火式の多気筒内燃機関の制御装置
JP4732876B2 (ja) 2005-11-30 2011-07-27 株式会社日立製作所 アクチュエータ、アクチュエータモジュールおよびアクチュエータモジュール製造方法
EP1845124A1 (en) 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
CN101090586B (zh) * 2006-06-16 2010-05-12 清华大学 纳米柔性电热材料及包括该纳米柔性电热材料的加热装置
US20080280085A1 (en) * 2006-06-25 2008-11-13 Oren Livne Dynamically Tunable Fibrillar Structures
US9095639B2 (en) * 2006-06-30 2015-08-04 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
WO2008049015A2 (en) * 2006-10-17 2008-04-24 Purdue Research Foundation Electrothermal interface material enhancer
US20110001398A1 (en) * 2006-11-08 2011-01-06 Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon Nanotube Film Electrode and an Electroactive Device Fabricated with the Carbon Nanotube Film Electrode and a Method for Making Same
AU2007332084A1 (en) 2006-12-14 2008-06-19 University Of Wollongong Nanotube and carbon layer nanostructured composites
JP2008151818A (ja) 2006-12-14 2008-07-03 Hitachi Ltd 表示装置
US20080166563A1 (en) * 2007-01-04 2008-07-10 Goodrich Corporation Electrothermal heater made from thermally conducting electrically insulating polymer material
CN101239712B (zh) 2007-02-09 2010-05-26 清华大学 碳纳米管薄膜结构及其制备方法
TWI327177B (en) 2007-02-12 2010-07-11 Hon Hai Prec Ind Co Ltd Carbon nanotube film and method for making same
CN101381071B (zh) 2007-09-07 2011-05-04 清华大学 碳纳米管复合薄膜及其制备方法
US8211969B2 (en) * 2007-10-10 2012-07-03 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom
CN101425380B (zh) * 2007-11-02 2013-04-24 清华大学 超级电容器及其制备方法
CN101462391B (zh) 2007-12-21 2013-04-24 清华大学 碳纳米管复合材料的制备方法
US8586961B2 (en) * 2008-05-09 2013-11-19 The Board Of Trustees Of The University Of Illinois Resistive changing device
CN101604727B (zh) * 2008-06-13 2011-01-26 鸿富锦精密工业(深圳)有限公司 电致伸缩复合材料及其制备方法
CN101814577B (zh) * 2009-02-24 2013-06-05 清华大学 电致伸缩材料及其制备方法以及电热式致动器
IT1394220B1 (it) * 2009-05-15 2012-06-01 Univ Padova Procedimento per la produzione di un manufatto di materiale plastico flessibile e trasparente con bassa resistenza elettrica superficiale e manufatto di materiale plastico ottenuto con questo procedimento.
CN101958394B (zh) 2009-07-17 2011-11-30 清华大学 电致伸缩复合材料及电致伸缩元件
US8568027B2 (en) * 2009-08-26 2013-10-29 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
EP2478545A4 (en) * 2009-09-18 2013-03-13 Univ Akron DEVICES AND METHODS FOR FIELD EMISSION OF CARBON NANOTUBES
CN102044627A (zh) * 2009-10-22 2011-05-04 清华大学 电致伸缩复合材料及电致伸缩元件

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184779B2 (en) 2013-11-28 2019-01-22 Bando Chemical Industries, Ltd. Stretchable electrode, sensor sheet and capacitive sensor
CN105765668A (zh) * 2013-11-28 2016-07-13 阪东化学株式会社 伸缩性电极、感测片、及静电电容式传感器
CN105206738A (zh) * 2015-10-26 2015-12-30 福建师范大学 电致动材料及电致动器
CN105206738B (zh) * 2015-10-26 2017-11-07 福建师范大学 电致动材料及电致动器
CN106633806A (zh) * 2016-09-30 2017-05-10 无锡市明盛强力风机有限公司 一种电致伸缩性复合材料及其制备方法和应用
CN109843577A (zh) * 2016-10-20 2019-06-04 马丁·胡贝尔 双层部件、用于制造双层部件的方法和具有多个双层部件的热机
CN110573307A (zh) * 2017-05-10 2019-12-13 罗伯特·博世有限公司 机器人肢体
CN107297929A (zh) * 2017-06-16 2017-10-27 福建师范大学 致动材料和双向弯曲型致动器及其制备方法
CN107297929B (zh) * 2017-06-16 2019-03-08 福建师范大学 致动材料和双向弯曲型致动器及其制备方法
CN108891108A (zh) * 2018-07-20 2018-11-27 四川大学 一种高驱动应变的电致驱动弹性体及其制备方法
CN108891108B (zh) * 2018-07-20 2020-06-26 四川大学 一种高驱动应变的电致驱动弹性体及其制备方法
CN109088563A (zh) * 2018-09-30 2018-12-25 中国地质大学(武汉) 碳纳米管纤维复合结构型电磁致动器
CN112126217A (zh) * 2020-10-12 2020-12-25 广东工业大学 一种富勒烯/碳纳米管/热塑性树脂复合薄膜、其制备方法及应用
CN112126217B (zh) * 2020-10-12 2022-09-16 广东工业大学 一种富勒烯/碳纳米管/热塑性树脂复合薄膜、其制备方法及应用
CN113370244A (zh) * 2021-06-30 2021-09-10 合肥工业大学 一种可编程操纵柔性执行器及其制备方法

Also Published As

Publication number Publication date
US20110094217A1 (en) 2011-04-28
US9341166B2 (en) 2016-05-17
US8536767B2 (en) 2013-09-17
US10038135B2 (en) 2018-07-31
US20130333374A1 (en) 2013-12-19
JP5539837B2 (ja) 2014-07-02
JP2011091994A (ja) 2011-05-06
US20160233415A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
CN102044627A (zh) 电致伸缩复合材料及电致伸缩元件
CN101913130B (zh) 电致动夹持器
CN102201532B (zh) 电致动材料及电致动元件
CN102038569B (zh) 热理疗器
US9863406B2 (en) Electrothermal actuators
CN101958394B (zh) 电致伸缩复合材料及电致伸缩元件
US9890770B2 (en) Electrothermal actuators
US9869304B2 (en) Electrothermal composite material and electrothermal actuator using the same
US9862155B2 (en) Method for making electrothermal actuators
TWI441366B (zh) 電致動材料及電致動元件
US8533885B2 (en) Cleaning device incorporating carbon nanotubes
TWI394303B (zh) 電致伸縮複合材料及電致伸縮元件
WO2009132653A1 (en) A transducer comprising a composite material with fiber arranged in a pattern to provide anisotropic compliance
TWI387516B (zh) 電致動夾持器
TW201228649A (en) Heat device
TW201104938A (en) Electrostrictive material and actuator using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110504