CN101955356A - Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof - Google Patents
Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof Download PDFInfo
- Publication number
- CN101955356A CN101955356A CN 201010501164 CN201010501164A CN101955356A CN 101955356 A CN101955356 A CN 101955356A CN 201010501164 CN201010501164 CN 201010501164 CN 201010501164 A CN201010501164 A CN 201010501164A CN 101955356 A CN101955356 A CN 101955356A
- Authority
- CN
- China
- Prior art keywords
- dielectric material
- based composite
- adjustable
- tio
- composite silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003989 dielectric material Substances 0.000 title claims abstract description 55
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229910052454 barium strontium titanate Inorganic materials 0.000 title description 6
- 239000000919 ceramic Substances 0.000 claims abstract description 73
- 229910052788 barium Inorganic materials 0.000 claims abstract description 48
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 24
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 34
- 239000000843 powder Substances 0.000 claims description 34
- 239000002994 raw material Substances 0.000 claims description 20
- 238000000498 ball milling Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- 239000004677 Nylon Substances 0.000 claims description 10
- 229920001778 nylon Polymers 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims 1
- 239000012776 electronic material Substances 0.000 abstract description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 54
- 239000000463 material Substances 0.000 description 21
- 239000012071 phase Substances 0.000 description 20
- 239000011777 magnesium Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 10
- 229940068984 polyvinyl alcohol Drugs 0.000 description 10
- 238000013329 compounding Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000011805 ball Substances 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 101150102441 ACO3 gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 101100433922 Solanum lycopersicum ACO4 gene Proteins 0.000 description 1
- 101100161758 Yarrowia lipolytica (strain CLIB 122 / E 150) POX3 gene Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明属于电子材料与器件技术领域,公开了一种介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料及其制备。本发明的介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料的组分通式为:(1-m%)Ba1-zSrzTiO3+m%(Sr1-xAx)2(Zn1-yBy)Si2O7;其中,A选自Ba或Ca,B选自Co、Mg、Mn或Ni;x的取值范围为0≤x≤1;y的取值范围为0≤y≤1;z的取值范围为0.4≤z≤0.6;m的取值范围为0wt%<m%<100wt%。本发明的介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料具有高的Q值,低的介电常数,同时具有很高的介电可调率,可以广泛应用于制备电调谐微波谐振器、滤波器以及微波介质天线等可调微波元器件。
The invention belongs to the technical field of electronic materials and devices, and discloses a strontium barium titanate-based composite silicate ceramic dielectric material with adjustable dielectric and its preparation. The compositional formula of the dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material of the present invention is: (1-m%)Ba 1-z Sr z TiO 3 +m%(Sr 1-x A x ) 2 (Zn 1-y By y )Si 2 O 7 ; wherein, A is selected from Ba or Ca, B is selected from Co, Mg, Mn or Ni; the range of x is 0≤x≤1; y The value range is 0≤y≤1; the value range of z is 0.4≤z≤0.6; the value range of m is 0wt%<m%<100wt%. The dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material of the present invention has a high Q value, a low dielectric constant, and a high dielectric adjustable rate, and can be widely used in the preparation of electrical tuning Tunable microwave components such as microwave resonators, filters, and microwave dielectric antennas.
Description
技术领域technical field
本发明属于电子材料与器件技术领域,具体涉及一种介电可调的钛酸锶钡基复合硅酸盐微波介质材料及其制备。The invention belongs to the technical field of electronic materials and devices, and in particular relates to a dielectrically adjustable strontium barium titanate-based composite silicate microwave dielectric material and its preparation.
背景技术Background technique
具有高介电常数、低介电损耗、介电常数非线性可调以及其Curie温度可调的钙钛矿结构钛酸锶钡铁电材料在作为微波可调器件方面(如移相器、滤波器、可变电容器以及延迟线等)得到日益广泛关注,尤其在作为微波移相器方面更是目前研究的热点。但具有高介电常数的BST陶瓷材料很难满足其与激励源内部阻抗匹配和高功率的要求,这大大限制了其在微波可调器件领域的应用。Q值是衡量电感器件的主要参数,Q值是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。钛酸锶钡BST材料的介电常数随外加直流电场的变化而变化,当电压从V(0)变到V(app)时,介电常数将产生一增量Δεr=[εr(0)-εr(app)],这个增量与εr(0)的比值的百分数成为可调性,即用Tunability(简写为T)=[εr(0)-εr(app)]/εr(0)×100%来表示。而同时施加一特殊频率的光(微波)时将会产生相应的差相移,达到改变相位的目的。具有这种特性的材料成为电光材料。移相器改变相位角的能力主要由可调性来决定,所以高的可调性对于移相器材料来说是非常必要的。The ferroelectric material with perovskite structure strontium barium titanate with high dielectric constant, low dielectric loss, non-linear tunable dielectric constant and tunable Curie temperature is used as a microwave tunable device (such as phase shifter, filter devices, variable capacitors and delay lines, etc.) have received increasing attention, especially as a microwave phase shifter is a current research hotspot. However, the BST ceramic material with high dielectric constant is difficult to meet the requirements of internal impedance matching and high power of the excitation source, which greatly limits its application in the field of microwave tunable devices. The Q value is the main parameter to measure the inductance device. The Q value refers to the ratio of the inductive reactance presented by the inductor to its equivalent loss resistance when the inductor operates under an AC voltage of a certain frequency. The higher the Q value of an inductor, the smaller its losses and the higher its efficiency. The dielectric constant of barium strontium titanate BST material changes with the change of the external DC electric field. When the voltage changes from V(0) to V(app), the dielectric constant will produce an increment Δεr=[ εr(0) -ε r(app) ], the percentage of the ratio of this increment to ε r(0) becomes adjustable, that is, Tunability (abbreviated as T)=[ε r(0) -ε r(app) ]/ε r(0) × 100% to represent. At the same time, when light (microwave) of a special frequency is applied, a corresponding difference phase shift will be generated to achieve the purpose of changing the phase. Materials with this property are called electro-optic materials. The ability of the phase shifter to change the phase angle is mainly determined by the tunability, so high tunability is very necessary for the phase shifter material.
因此,如何制备出既具有低介电常数、高Q值,高介电可调特性的材料体系是一个技术难点。Therefore, how to prepare a material system with low dielectric constant, high Q value, and high dielectric tunable characteristics is a technical difficulty.
陶瓷复合一直以来都是电子陶瓷材料改性最为常用和最为行之有效的手段之一,通过不同质量比的材料复合,以不同程度和不同方式进入晶体材料的晶格结构中,引起材料微观结构的改变,从而有效地调整和改进材料的相关性能。现有技术中,有研究人员采用MgO、MgAl2O6等与不同质量比钛酸锶钡复合,研制得到具有低介电常数、高Q值和一定介电可调特性的陶瓷介质材料体系。同济大学的Xiujian Chou等人对不同量比钛酸锶钡复合钛酸镁进行了系统的研究,获得微波陶瓷介质材料(εr=190,Q=189,T=18.1)。然而,该体系的综合性能还有待于进一步提高。钛酸锶钡复合硅酸盐材料的微波介电可调特性研究尚未见相关报道。Ceramic compounding has always been one of the most commonly used and most effective means of modifying electronic ceramic materials. Through the compounding of materials with different mass ratios, they enter the lattice structure of crystal materials in different degrees and in different ways, causing the microstructure of materials to change. In order to effectively adjust and improve the relevant properties of materials. In the prior art, some researchers used MgO, MgAl 2 O 6 , etc. to compound strontium barium titanate with different mass ratios, and developed a ceramic dielectric material system with low dielectric constant, high Q value and certain dielectric tunable characteristics. Xiujian Chou et al. from Tongji University conducted systematic research on magnesium titanate composited with strontium barium titanate at different molar ratios, and obtained microwave ceramic dielectric materials ( εr = 190, Q = 189, T = 18.1). However, the overall performance of the system needs to be further improved. There are no related reports on the microwave dielectric tunable properties of barium strontium titanate composite silicate materials.
发明内容Contents of the invention
本发明的目的是提供一种介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料及其制备,该介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料具有高Q值以及介电可调的特性。The object of the present invention is to provide a kind of strontium barium titanate-based composite silicate ceramic dielectric material with adjustable dielectric and its preparation. The dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material has high Q value and dielectric tunable characteristics.
本发明的介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料,其组分的化学通式为:(1-m%)Ba1-zSrzTiO3+m%(Sr1-xAx)2(Zn1-yBy)Si2O7;其中,A选自Ba或Ca,B选自Co、Mg、Mn或Ni;x的取值范围为0≤x≤1;y的取值范围为0≤y≤1;z的取值范围为0.4≤z≤0.6;m的取值范围为0wt%<m%<100wt%。The dielectrically adjustable barium strontium titanate-based composite silicate ceramic dielectric material of the present invention has a general chemical formula of its components: (1-m%)Ba 1-z Sr z TiO 3 +m%(Sr 1 -x A x ) 2 (Zn 1-y By )Si 2 O 7 ; wherein, A is selected from Ba or Ca, B is selected from Co, Mg, Mn or Ni; the value range of x is 0≤x≤1 The value range of y is 0≤y≤1; the value range of z is 0.4≤z≤0.6; the value range of m is 0wt%<m%<100wt%.
优选的,x的取值范围为0.1≤x≤0.6;0≤y≤0.5;0.4≤z≤0.6;40wt%≤m%≤60wt%。Preferably, the value range of x is 0.1≤x≤0.6; 0≤y≤0.5; 0.4≤z≤0.6; 40wt%≤m%≤60wt%.
更优选的,所述0.1≤x≤0.6,y=0,z=0.5,m%=60wt%;即所述介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料的组分通式为:40%Ba0.5Sr0.5TiO3+60%(Sr1-xBax)2ZnSi2O7。More preferably, the 0.1≤x≤0.6, y=0, z=0.5, m%=60wt%; that is, the composition of the dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material is generally The formula is: 40% Ba 0.5 Sr 0.5 TiO 3 +60% (Sr 1-x Ba x ) 2 ZnSi 2 O 7 .
所述介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料的组分通式中,元素右下角的数字代表各对应元素的摩尔数;m%代表以所述钛酸锶钡基复合硅酸盐陶瓷介质材料的总质量计,所述(Sr1-xAx)2(Zn1-yBy)Si2O7的质量百分比;(1-m)%代表以所述钛酸锶钡基复合硅酸盐陶瓷介质材料的总质量计,所述Ba1-zSrzTiO3的质量百分比。In the general composition formula of the dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material, the number in the lower right corner of the element represents the mole number of each corresponding element; Based on the total mass of the composite silicate ceramic dielectric material, the mass percent of (Sr 1-x A x ) 2 (Zn 1-y By ) Si 2 O 7 ; (1-m)% represents the titanium The mass percent of Ba 1-z Sr z TiO 3 is based on the total mass of strontium barium acid-based composite silicate ceramic dielectric material.
本发明的介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料的制备方法,具体包括如下步骤:The preparation method of the dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material specifically comprises the following steps:
1)采用固相合成法制备混合粉料,具体步骤为:1) The mixed powder is prepared by solid-phase synthesis method, and the specific steps are:
选用BaCO3粉体、SrCO3粉体、TiO2粉体、SiO2粉体、ZnO粉体、ACO3粉体和B的氧化物或碳酸盐粉体作为主要原料,按照(1-m%)Ba1-zSrzTiO3+m%(Sr1-xAx)2(Zn1-yBy)Si2O7中Ba、Sr、Ti、Si、Zn、A和B的化学计量比配料,将配好的原料置于尼龙球磨罐中,加入氧化锆球和球磨介质后进行球磨,出料烘干后经预烧及研磨后得到混合粉料;Choose BaCO3 powder, SrCO3 powder, TiO2 powder, SiO2 powder, ZnO powder, ACO3 powder and B oxide or carbonate powder as the main raw materials, according to (1-m%) Ba The stoichiometric ratio of Ba, Sr, Ti, Si, Zn, A and B in 1-z Sr z TiO 3 +m%(Sr 1-x A x ) 2 (Zn 1-y By y )Si 2 O 7 , put the prepared raw materials in a nylon ball mill tank, add zirconia balls and ball milling media, and then carry out ball milling, and then pre-calcine and grind the mixed powder to obtain the mixed powder after drying;
较佳的,所述预烧温度为1000℃~1300℃,预烧时间为2~4小时;进一步的,所述预烧温度为1000~1200℃。Preferably, the pre-burning temperature is 1000°C-1300°C, and the pre-burning time is 2-4 hours; further, the pre-burning temperature is 1000-1200°C.
2)在步骤1)中制得的混合粉料中加入氧化锆球和球磨介质球磨,出料烘干后过筛;2) Add zirconia balls and ball milling media to the mixed powder prepared in step 1), and sieve the discharged material after drying;
较佳的,所述筛子的目数为100~300目,进一步的,所述筛子的目数为200目。Preferably, the mesh of the sieve is 100-300 mesh, further, the mesh of the sieve is 200 mesh.
3)采用粘结剂对步骤2)中过筛后的粉料进行造粒,在10MPa~100MPa压力下压制成陶瓷生坯片;3) Using a binder to granulate the powder sieved in step 2), and press it under a pressure of 10MPa to 100MPa to form a ceramic green sheet;
较佳的,所述粘结剂为质量百分比为8%~10%的聚乙烯醇(PVA)水溶液。Preferably, the binder is an aqueous solution of polyvinyl alcohol (PVA) with a mass percentage of 8% to 10%.
4)将步骤3)中制得的陶瓷生坯片经过排粘处理后进行烧结,得到所述钛酸锶钡基复合硅酸盐陶瓷介质材料。4) Sintering the ceramic green sheet obtained in step 3) after debonding treatment to obtain the strontium barium titanate-based composite silicate ceramic dielectric material.
较佳的,步骤4)中所述排粘处理的温度为550℃~600℃,保温时间为4~10h;所述烧结的温度为1200℃~1500℃,烧结时间为4~10小时。进一步的,所述排粘处理的温度为550℃;所述烧结的温度为1230℃~1380℃。Preferably, the debonding treatment temperature in step 4) is 550°C-600°C, and the holding time is 4-10 hours; the sintering temperature is 1200°C-1500°C, and the sintering time is 4-10 hours. Further, the temperature of the debonding treatment is 550°C; the sintering temperature is 1230°C-1380°C.
优选的,所述步骤1)和步骤2)中的球磨的时间为20~24小时,球磨介质均选自无水乙醇或去离子水。Preferably, the time of ball milling in step 1) and step 2) is 20-24 hours, and the ball milling media are all selected from absolute ethanol or deionized water.
优选的,所述步骤1)和步骤2)中的球磨过程中,氧化锆球与球磨料的质量比为1.2~1.5∶1;球磨介质与球磨料的质量比为1.5~3.0∶1。Preferably, during the ball milling process in step 1) and step 2), the mass ratio of zirconia balls to ball milling material is 1.2-1.5:1; the mass ratio of ball milling media to ball milling material is 1.5-3.0:1.
所述球磨料是指球磨的原料,在步骤1)中球磨的原料是由CaCO3粉体、Co2O3粉体、MgO粉体、MnCO3粉体、NiO粉体、BaCO3、SrCO3和TiO2粉体组成的混合原料,步骤2)中球磨的原料是预烧过的混合粉料。The ball milling material refers to the raw material for ball milling, and the raw material for ball milling in step 1) is CaCO 3 powder, Co 2 O 3 powder, MgO powder, MnCO 3 powder, NiO powder, BaCO 3 , SrCO 3 and TiO The mixed raw material of powder composition, the raw material of ball milling in step 2) is the mixed powder of pre-burning.
本发明采用传统的电子陶瓷制备工艺,按照Ba1-zSrzTiO3与(Sr1-xAx)2(Zn1-yBy)Si2O7的质量比进行复合,研制得到可用于可调微波器件的高Q值、高介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料,且本发明的介电可调的钛酸锶钡基复合硅酸盐陶瓷介质材料具有以下主要特点:The present invention adopts the traditional preparation technology of electronic ceramics, according to the mass ratio of Ba 1-z Sr z TiO 3 and (Sr 1-x A x ) 2 (Zn 1-y By ) Si 2 O 7 to compound, develop and obtain usable The high-Q, high-dielectric adjustable strontium barium titanate-based composite silicate ceramic dielectric material for adjustable microwave devices, and the dielectrically adjustable strontium barium titanate-based composite silicate ceramic dielectric material of the present invention Has the following main features:
(1)该陶瓷材料体系的居里温度可随Ba/Sr、Ca/Sr和(1-m%)Ba1-zSrzTiO3+m%(Sr1-xAx)2(Zn1-yBy)Si2O7(A=Ba或Ca;B=Co,Mg,Mn或Ni;x=0~1;y=0~1;z=0.4~0.6;0wt%<m%<100wt%)质量比在很宽的范围内连续可调,可以根据所设计的可调微波器件的工作温度要求调整材料体系的结构和性能;(1) The Curie temperature of the ceramic material system can vary with Ba/Sr, Ca/Sr and (1-m%) Ba 1-z Sr z TiO 3 +m% (Sr 1-x A x ) 2 (Zn 1 -yB y ) Si 2 O 7 (A=Ba or Ca; B=Co, Mg, Mn or Ni; x=0~1; y=0~1; z=0.4~0.6; 0wt%<m%< 100wt%) mass ratio is continuously adjustable in a wide range, and the structure and performance of the material system can be adjusted according to the working temperature requirements of the designed adjustable microwave device;
(2)通过Ba/Sr、Ca/Sr和(1-m%)Ba1-zSrzTiO3+m%(Sr1-xAx)2(Zn1-yBy)Si2O7(A=Ba或Ca;B=Co,Mg,Mn或Ni;x=0~1;y=0~1;z=0.4~0.6;m%=5wt%~80wt%)组分比例的变化,陶瓷介质材料的介电常数可连续可调,可以得到介电常数系列化的材料体系,拓宽了材料的应用范围;(2) Through Ba/Sr, Ca/Sr and (1-m%) Ba 1-z Sr z TiO 3 +m% (Sr 1-x A x ) 2 (Zn 1-y By ) Si 2 O 7 (A=Ba or Ca; B=Co, Mg, Mn or Ni; x=0~1; y=0~1; z=0.4~0.6; m%=5wt%~80wt%) the change of component ratio, The dielectric constant of the ceramic dielectric material can be continuously adjusted, and a material system with a serialized dielectric constant can be obtained, which broadens the application range of the material;
(3)具有高Q值(低介电损耗)(Q值可达417)、低的介电常数(152),较高的可调率(可调率可达16%),并且介电常数系列化(即:介电常数可通过改变m的数值调节组分的质量百分比以及随x、z值的变化调节Ca、Sr比以及Ba、Sr比来达到介电常数的可控性)。(3) It has high Q value (low dielectric loss) (Q value can reach 417), low dielectric constant (152), high adjustable rate (adjustable rate can reach 16%), and the dielectric constant Serialization (that is, the dielectric constant can be controlled by changing the value of m to adjust the mass percentage of the component and adjusting the ratio of Ca, Sr and Ba, Sr with the change of x and z values to achieve the controllability of the dielectric constant).
(4)其成分以Ba1-zSrzTiO3相和(Sr1-xAx)2(Zn1-yBy)Si2O7相共存,具有优异的微波介电性能;(4) Its composition coexists with Ba 1-z Sr z TiO 3 phase and (Sr 1-x A x ) 2 (Zn 1-y By y ) Si 2 O 7 phase, and has excellent microwave dielectric properties;
(5)采用传统的电子陶瓷制备工艺,工艺简单,成本低,材料体系环保无毒副作用,性能优异,适用于电调谐微波谐振器、滤波器以及微波介质天线等可调微波元器件的材料。(5) The traditional electronic ceramic preparation technology is adopted, the process is simple, the cost is low, the material system is environmentally friendly, non-toxic and side effects, and the performance is excellent. It is suitable for materials for adjustable microwave components such as electrically tuned microwave resonators, filters, and microwave dielectric antennas.
附图说明Description of drawings
图1是40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7可调微波陶瓷介质材料的X射线衍射分析图谱。Fig. 1 is an X-ray diffraction analysis pattern of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 tunable microwave ceramic dielectric material.
图2是40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7可调微波陶瓷介质材料的介电常数和损耗与温度的关系曲线。Fig. 2 is the relationship curve of dielectric constant and loss with temperature of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 tunable microwave ceramic dielectric material.
图3是40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7可调微波陶瓷介质材料的介电常数与电场强度的关系曲线。Fig. 3 is the relationship curve between the dielectric constant and the electric field intensity of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 tunable microwave ceramic dielectric material.
图4是60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7可调微波陶瓷介质材料的X射线衍射分析图谱。Fig. 4 is an X-ray diffraction analysis spectrum of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 tunable microwave ceramic dielectric material.
图5是60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7可调微波陶瓷介质材料的介电常数和损耗与温度的关系曲线。Fig. 5 is the relationship curve of dielectric constant and loss with temperature of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 tunable microwave ceramic dielectric material.
图6是60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7可调微波陶瓷介质材料的介电常数与电场强度的关系曲线。Fig. 6 is a graph showing the relationship between the dielectric constant and the electric field intensity of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 tunable microwave ceramic dielectric material.
具体实施方式Detailed ways
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。The present invention will be further described below in conjunction with specific examples. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the protection scope of the present invention.
实施例1制备高Q值、介电可调的40%Ba0.5Sr0.5TiO3+60%(Sr0.5Ba0.5)2ZnSi2O7陶瓷介质材料Example 1 Preparation of 40% Ba 0.5 Sr 0.5 TiO 3 +60% (Sr 0.5 Ba 0.5 ) 2 ZnSi 2 O 7 ceramic dielectric material with high Q value and adjustable dielectric
分别按照40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7的摩尔配比,称取BaCO3、SrCO3、TiO2和ZnO、SiO2的原料(如表1所示)。The raw materials of BaCO 3 , SrCO 3 , TiO 2 , ZnO and SiO 2 were weighed according to the molar ratio of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 (as shown in Table 1).
原料来源:BaCO3(99.8%,Alfa Aesar China LTD.)、SrCO3(99.0%,Alfa Aesar China LTD.)、TiO2(99.9%,佛山高新无机材料有限公司)和ZnO(99.99%,国药集团化学试剂有限公司)、SiO2(99.9%,国药集团化学试剂有限公司)。Raw material sources: BaCO 3 (99.8%, Alfa Aesar China LTD.), SrCO 3 (99.0%, Alfa Aesar China LTD.), TiO 2 (99.9%, Foshan Gaoxin Inorganic Materials Co., Ltd.) and ZnO (99.99%, Sinopharm Chemical Reagent Co., Ltd.), SiO 2 (99.9%, Sinopharm Chemical Reagent Co., Ltd.).
表1.40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7陶瓷介质材料的原料配比Table 1. Raw material ratio of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 ceramic dielectric material
将上述粉料按照Ba0.5Sr0.5TiO3和BaSrZnSi2O7分别配料后置于尼龙球磨罐中,加入氧化锆球和无水乙醇或去离子水,球磨24小时,出料烘干后分别在1200℃和1000℃的温度下预烧4小时,研磨后的粉料置于尼龙球磨罐中,加入氧化锆球(氧化锆球与球磨料的质量比为1.2∶1)和去离子水(去离子水与球磨料的质量比为3.0∶1),球磨24小时,出料烘干后粉体过200目筛;按照传统电子陶瓷制备工艺,采用8%的聚乙烯醇(PVA)作为粘结剂进行造粒,在10MPa压力下,干法压制成直径生坯片和10mm×5mm、12mm×6mm、15mm×7mm、18mm×8mm的圆柱体,经过550℃排粘处理10小时后,样品在空气气氛下,烧结温度为1230℃,保温4小时后,得到40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7陶瓷样品。将制得的陶瓷样品先进行物相和微结构分析,然后对其两面抛光、被银,烧银后进行介电性能测试,其相关介电性能见表2。Mix the above powders according to Ba 0.5 Sr 0.5 TiO 3 and BaSrZnSi 2 O 7 respectively and place them in a nylon ball mill jar, add zirconia balls and absolute ethanol or deionized water, and ball mill for 24 hours. Pre-fired at 1200°C and 1000°C for 4 hours, the ground powder was placed in a nylon ball mill jar, and zirconia balls were added (the mass ratio of zirconia balls to ball grinding material was 1.2:1) and deionized water (deionized The mass ratio of ionized water to ball abrasive is 3.0:1), ball milled for 24 hours, and the powder passed through a 200-mesh sieve after discharging and drying; according to the traditional electronic ceramic preparation process, 8% polyvinyl alcohol (PVA) was used as the bonding agent. The agent is granulated, and under the pressure of 10MPa, it is dry pressed into a diameter Green sheets and cylinders of 10mm×5mm, 12mm×6mm, 15mm×7mm, and 18mm×8mm were subjected to debonding treatment at 550°C for 10 hours, and the samples were sintered in an air atmosphere at a temperature of 1230°C for 4 hours. A 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 ceramic sample was obtained. The phase and microstructure of the prepared ceramic samples were first analyzed, and then the dielectric properties were tested on both sides of the ceramic samples after being polished, silvered, and silver fired. The relevant dielectric properties are shown in Table 2.
表2.40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7介电可调微波陶瓷介质材料的相关介电性能Table 2. Relative dielectric properties of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 dielectrically tunable microwave ceramic dielectric materials
本实施例中,40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7介电可调微波陶瓷介质材料的X射线衍射分析图谱如图1所示。图1中的结果显示:其成分以Ba0.5Sr0.5TiO3相和BaSrZnSi2O7相结构共存。In this embodiment, the X-ray diffraction analysis pattern of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 dielectrically tunable microwave ceramic dielectric material is shown in FIG. 1 . The results in Figure 1 show that its composition coexists in Ba 0.5 Sr 0.5 TiO 3 phase and BaSrZnSi 2 O 7 phase structure.
本实施例中,40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7介电可调微波陶瓷介质材料的介电常数和损耗与温度的关系曲线如图2所示,图2中的结果显示化学计量比复合BaSrZnSi2O7的居里峰不随着复合量的增加继续向低温方向移动。损耗在较长的温度范围内保持非常小。In this embodiment, the relationship curves of dielectric constant, loss and temperature of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 dielectrically adjustable microwave ceramic dielectric materials are shown in Figure 2, and the results in Figure 2 It shows that the Curie peak of the stoichiometric composite BaSrZnSi 2 O 7 does not continue to move to the low temperature direction with the increase of the composite amount. Losses remain very small over a long temperature range.
本实施例中,40%Ba0.5Sr0.5TiO3+60%BaSrZnSi2O7介电可调微波陶瓷介质材料的介电常数与电场强度的关系曲线如图3所示,图3中的测试结果表明随BaSrZnSi2O7的复合存在较高的介电可调性。复合后获得非常理想的综合微波介电性能。In this embodiment, the relationship curve between the dielectric constant and the electric field intensity of 40% Ba 0.5 Sr 0.5 TiO 3 +60% BaSrZnSi 2 O 7 dielectrically adjustable microwave ceramic dielectric material is shown in Figure 3, and the test results in Figure 3 It shows that there is a higher dielectric tunability with the recombination of BaSrZnSi 2 O 7 . After compounding, very ideal comprehensive microwave dielectric properties are obtained.
实施例2制备高Q值、介电可调的60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7陶瓷介质材料Example 2 Preparation of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 Ceramic Dielectric Material with High Q Value and Adjustable Dielectric
分别按照60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7的摩尔计量比,称取BaCO3、SrCO3、TiO2和ZnO、Co2O3、SiO2原料(具体质量如表3所示)。According to the molar ratio of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 , weigh BaCO 3 , SrCO 3 , TiO 2 and ZnO, Co 2 O 3 and SiO 2 raw materials (the specific quality is shown in Table 3).
原料来源:BaCO3(99.8%,Alfa Aesar China LTD.)、SrCO3(99.0%,Alfa Aesar China LTD.)、TiO2(99.9%,佛山高新无机材料有限公司)和ZnO(99.9%,国药集团化学试剂有限公司)、Co2O3(99.9%,国药集团化学试剂有限公司)、SiO2(99.9%,国药集团化学试剂有限公司)。Raw material sources: BaCO 3 (99.8%, Alfa Aesar China LTD.), SrCO 3 (99.0%, Alfa Aesar China LTD.), TiO 2 (99.9%, Foshan Gaoxin Inorganic Materials Co., Ltd.) and ZnO (99.9%, Sinopharm Group Chemical Reagent Co., Ltd.), Co 2 O 3 (99.9%, Sinopharm Chemical Reagent Co., Ltd.), SiO 2 (99.9%, Sinopharm Chemical Reagent Co., Ltd.).
表3.60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7陶瓷介质材料的原料配比Table 3. Raw material ratio of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 ceramic dielectric material
将上述粉料按照Ba0.4Sr0.6TiO3和(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7分别配料后置于尼龙球磨罐中,加入氧化锆球和无水乙醇或去离子水,球磨24小时,出料烘干后分别在1100℃和1000℃的温度下预烧4小时,研磨后的粉料置于尼龙球磨罐中,加入氧化锆球(氧化锆球与球磨料的质量比为1.5∶1)和无水乙醇或去离子水(水乙醇或去离子水与球磨料的质量比为1.5∶1),球磨24小时,出料烘干后粉体过200目筛;按照传统电子陶瓷制备工艺,采用10%的聚乙烯醇(PVA)作为粘结剂进行造粒,在100MPa压力下,干法压制成直径 生坯片和10mm×5mm、12mm×6mm、15mm×7mm、18mm×8mm的圆柱体,经过550℃排粘处理10小时后,样品在空气气氛下,烧结温度为1350℃,保温6小时后,得到60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7陶瓷样品。将制得的陶瓷样品先进行物相和微结构分析,然后对其两面抛光、被银,烧银后进行介电性能测试,其相关介电性能见表4。Mix the above powders according to Ba 0.4 Sr 0.6 TiO 3 and (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 respectively and place them in a nylon ball mill jar, add zirconia balls and absolute ethanol or deionized water, ball milled for 24 hours, and after the discharge was dried, it was pre-fired at 1100°C and 1000°C for 4 hours respectively. The ground powder was placed in a nylon ball mill jar, and zirconia balls (the mixture of zirconia balls and ball mill materials) were added. The mass ratio is 1.5:1) and absolute ethanol or deionized water (the mass ratio of water ethanol or deionized water to the ball mill is 1.5:1), ball milled for 24 hours, and the powder is passed through a 200-mesh sieve after discharging and drying; According to the traditional electronic ceramic preparation process, 10% polyvinyl alcohol (PVA) is used as a binder for granulation, and under a pressure of 100MPa, it is dry-pressed into a diameter Green sheets and cylinders of 10mm×5mm, 12mm×6mm, 15mm×7mm, and 18mm×8mm were subjected to debonding treatment at 550°C for 10 hours, and the samples were sintered in an air atmosphere at a temperature of 1350°C for 6 hours. A 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 ceramic sample was obtained. The phase and microstructure of the prepared ceramic samples were firstly analyzed, and then the dielectric properties were tested on both sides after polishing, silvering, and silver burning. The relevant dielectric properties are shown in Table 4.
表4.60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7介电可调微波陶瓷介质材料的相关介电性能Table 4. Relative dielectric properties of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 dielectrically tunable microwave ceramic dielectric materials
本实施例中,60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7介电可调微波陶瓷介质材料的X射线衍射分析图谱如图4所示。图4中的结果显示:其成分以Ba0.4Sr0.6TiO3相和(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7相结构共存。In this example, the X-ray diffraction analysis pattern of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 dielectrically tunable microwave ceramic dielectric material is shown in Figure 4 shown. The results in Fig. 4 show that its composition coexists in Ba 0.4 Sr 0.6 TiO 3 phase and (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 phase structure.
本实施例中,60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7介电可调微波陶瓷介质材料的介电常数和损耗与温度的关系曲线如图5所示,图5中的结果显示化学计量比复合体系中居里峰不随着复合量的增加继续向低温方向移动。损耗在较长的温度范围内保持非常小。In this example, 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 dielectric constant and loss versus temperature The relationship curve is shown in Figure 5, and the results in Figure 5 show that the Curie peak in the stoichiometric composite system does not continue to move to the low temperature direction with the increase of the composite amount. Losses remain very small over a long temperature range.
本实施例中,60%Ba0.4Sr0.6TiO3+40%(Sr0.4Ba0.6)2(Zn0.95Co0.05)Si2O7介电可调微波陶瓷介质材料的介电常数与电场强度的关系曲线如图6所示,图6中的测试结果表明本复合体系中保持较高的介电可调性。复合后获得非常理想的综合微波介电性能。In this embodiment, the relationship between the dielectric constant and electric field intensity of 60% Ba 0.4 Sr 0.6 TiO 3 +40% (Sr 0.4 Ba 0.6 ) 2 (Zn 0.95 Co 0.05 ) Si 2 O 7 dielectrically adjustable microwave ceramic dielectric material The curve is shown in Figure 6, and the test results in Figure 6 show that the composite system maintains high dielectric tunability. After compounding, very ideal comprehensive microwave dielectric properties are obtained.
实施例3制备高Q电可调50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7陶瓷介质材料。Example 3 A high-Q electrically tunable 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 ceramic dielectric material was prepared.
分别按照50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7的摩尔配比,称取BaCO3、SrCO3、TiO2和ZnO、MgO、SiO2原料(如表5所示)。 Weigh BaCO 3 , SrCO 3 , TiO 2 and ZnO , MgO , SiO 2 raw materials (as shown in Table 5).
原料来源:BaCO3(99.8%,Alfa Aesar China LTD.)、SrCO3(99.0%,Alfa Aesar China LTD.)、TiO2(99.9%,佛山高新无机材料有限公司)和ZnO(99.99%,国药集团化学试剂有限公司)、MgO(99.9%,国药集团化学试剂有限公司)、SiO2(99.9%,国药集团化学试剂有限公司)。Raw material sources: BaCO 3 (99.8%, Alfa Aesar China LTD.), SrCO 3 (99.0%, Alfa Aesar China LTD.), TiO 2 (99.9%, Foshan Gaoxin Inorganic Materials Co., Ltd.) and ZnO (99.99%, Sinopharm Chemical Reagent Co., Ltd.), MgO (99.9%, Sinopharm Chemical Reagent Co., Ltd.), SiO 2 (99.9%, Sinopharm Chemical Reagent Co., Ltd.).
表5.50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7陶瓷介质材料的原料配比Table 5. Raw material ratio of 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 ceramic dielectric material
将上述粉料按照Ba0.5Sr0.5TiO3和(Sr0.9Ca0.1)2(Zn0.5Mg0.5)分别配料后置于尼龙球磨罐中,加入氧化锆球和无水乙醇或去离子水,球磨24小时,出料烘干后分别在1200℃和1000℃的温度下预烧的预烧2小时,研磨后的粉料置于尼龙球磨罐中,加入氧化锆球(氧化锆球与球磨料的质量比为1.2)和去离子水(去离子水与球磨料的质量比为3.0),球磨24小时,出料烘干后粉体过200目筛;按照传统电子陶瓷制备工艺,采用8%的聚乙烯醇(PVA)作为粘结剂进行造粒,在10MPa压力下,干法压制成直径生坯片和10mm×5mm、12mm×6mm、15mm×7mm、18mm×8mm的圆柱体,经过550℃排粘处理10小时后,样品在空气气氛下,烧结温度为1380℃,保温10小时后,得到50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7陶瓷样品。将制得的陶瓷样品先进行物相和微结构分析,然后对其两面抛光、被银,烧银后进行介电性能测试,其相关介电性能见表6。Mix the above powders according to Ba 0.5 Sr 0.5 TiO 3 and (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) respectively and place them in a nylon ball mill jar, add zirconia balls and absolute ethanol or deionized water, and ball mill for 24 Hours, after discharging and drying, pre-fired at a temperature of 1200°C and 1000°C for 2 hours, the ground powder was placed in a nylon ball mill jar, and zirconia balls were added (the mass of zirconia balls and ball mills Ratio is 1.2) and deionized water (the mass ratio of deionized water and ball mill is 3.0), ball milled for 24 hours, and the powder body passed through a 200 mesh sieve after discharging and drying; according to the traditional electronic ceramic preparation process, 8% poly Vinyl alcohol (PVA) is used as a binder for granulation, and under a pressure of 10MPa, it is dry-pressed into a diameter Green sheets and cylinders of 10mm×5mm, 12mm×6mm, 15mm×7mm, and 18mm×8mm were subjected to debonding treatment at 550°C for 10 hours, and the samples were sintered in an air atmosphere at a temperature of 1380°C for 10 hours. A 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 ceramic sample was obtained. The phase and microstructure of the prepared ceramic samples were firstly analyzed, and then the dielectric properties were tested on both sides after polishing, silvering, and silver firing. The relevant dielectric properties are shown in Table 6.
表6.50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7介电可调微波陶瓷介质材料的相关介电性能Table 6.50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 Correlated dielectric properties of dielectrically tunable microwave ceramic dielectric materials
本实施例中,50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7介电可调微波陶瓷介质材料的成分以Ba0.5Sr0.5TiO3相和(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7相结构共存。In this example, 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 dielectrically adjustable microwave ceramic dielectric material is composed of Ba 0.5 Sr 0.5 TiO 3 phase and (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 phase structure coexist.
本实施例中,50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7复合体系中居里峰不随着复合量的增加继续向低温方向移动。损耗在较长的温度范围内保持非常小。In this example, the Curie peak in the composite system of 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 does not continue to move to the low temperature direction with the increase of the composite amount. Losses remain very small over a long temperature range.
本实施例中,50%Ba0.5Sr0.5TiO3+50%(Sr0.9Ca0.1)2(Zn0.5Mg0.5)Si2O7复合体系中保持较高的介电可调性。复合后获得非常理想的综合微波介电性能。In this embodiment, the 50% Ba 0.5 Sr 0.5 TiO 3 +50% (Sr 0.9 Ca 0.1 ) 2 (Zn 0.5 Mg 0.5 ) Si 2 O 7 composite system maintains high dielectric tunability. After compounding, very ideal comprehensive microwave dielectric properties are obtained.
实施例4制备高Q值、介电可调的45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7陶瓷介质材料Example 4 Preparation of 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 Ceramic Dielectric Material with High Q Value and Adjustable Dielectric
分别按照45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7的摩尔计量比,称取BaCO3、SrCO3、TiO2和ZnO、MnCO3、SiO2原料(具体质量如表7所示)。According to the molar ratio of 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 , weigh BaCO 3 , SrCO 3 , TiO 2 and ZnO, MnCO 3 , SiO 2 raw material (concrete quality is as shown in table 7).
原料来源:BaCO3(99.8%,Alfa Aesar China LTD.)、SrCO3(99.0%,Alfa Aesar China LTD.)、TiO2(99.9%,佛山高新无机材料有限公司)和ZnO(99.9%,国药集团化学试剂有限公司)、MnCO3(99.9%,国药集团化学试剂有限公司)、SiO2(99.9%,国药集团化学试剂有限公司)。Raw material sources: BaCO 3 (99.8%, Alfa Aesar China LTD.), SrCO 3 (99.0%, Alfa Aesar China LTD.), TiO 2 (99.9%, Foshan Gaoxin Inorganic Materials Co., Ltd.) and ZnO (99.9%, Sinopharm Group Chemical Reagent Co., Ltd.), MnCO 3 (99.9%, Sinopharm Chemical Reagent Co., Ltd.), SiO 2 (99.9%, Sinopharm Chemical Reagent Co., Ltd.).
表7.45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7陶瓷介质材料的原料配比Table 7. Raw material ratio of 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 ceramic dielectric material
将上述粉料按照45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7分别配料后置于尼龙球磨罐中,加入氧化锆球和无水乙醇或去离子水,球磨24小时,出料烘干后分别在1200℃和1000℃的温度下预烧4小时,研磨后的粉料置于尼龙球磨罐中,加入氧化锆球(氧化锆球与球磨料的质量比为1.5∶1)和无水乙醇或去离子水(水乙醇或去离子水与球磨料的质量比为1.5∶1),球磨24小时,出料烘干后粉体过200目筛;按照传统电子陶瓷制备工艺,采用10%的聚乙烯醇(PVA)作为粘结剂进行造粒,在100MPa压力下,干法压制成直径 生坯片和10mm×5mm、12mm×6mm、15mm×7mm、18mm×8mm的圆柱体,经过550℃排粘处理10小时后,样品在空气气氛下,烧结温度为1350℃,保温6小时后,得到45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7陶瓷样品。将制得的陶瓷样品先进行物相和微结构分析,然后对其两面抛光、被银,烧银后进行介电性能测试,其相关介电性能见表4。The above powders were mixed according to 45% Ba 0.6 Sr 0.4 TiO 3 + 55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 respectively, and then placed in a nylon ball mill jar, adding zirconia balls and anhydrous Ethanol or deionized water, ball milled for 24 hours, pre-fired at 1200°C and 1000°C for 4 hours after the discharge was dried, and the ground powder was placed in a nylon ball mill jar, and zirconia balls (zirconia balls The mass ratio to the ball mill is 1.5: 1) and absolute ethanol or deionized water (the mass ratio of water ethanol or deionized water to the ball mill is 1.5: 1), ball milled for 24 hours, and the powder is dried after discharging 200 mesh sieve; according to the traditional electronic ceramic preparation process, use 10% polyvinyl alcohol (PVA) as a binder for granulation, and dry press it into diameter under 100MPa pressure Green sheets and cylinders of 10mm×5mm, 12mm×6mm, 15mm×7mm, and 18mm×8mm were subjected to debonding treatment at 550°C for 10 hours, and the samples were sintered in an air atmosphere at a temperature of 1350°C for 6 hours. A 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 ceramic sample was obtained. The phase and microstructure of the prepared ceramic samples were firstly analyzed, and then the dielectric properties were tested on both sides after polishing, silvering, and silver burning. The relevant dielectric properties are shown in Table 4.
表8.45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7介电可调微波陶瓷介质材料的相关介电性能Table 8.45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 Correlated dielectric properties of dielectric tunable microwave ceramic dielectric materials
本实施例中,45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7介电可调微波陶瓷介质材料的X射线衍射分析图谱如图4所示。图4中的结果显示:其成分以Ba0.4Sr0.6TiO3相和(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7相结构共存。In this example, the X-ray diffraction analysis pattern of 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn0.1) Si 2 O 7 dielectrically adjustable microwave ceramic dielectric material is shown in the figure 4. The results in Fig. 4 show that its composition coexists in Ba 0.4 Sr 0.6 TiO 3 phase and (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 phase structure.
本实施例中,45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7介电可调微波陶瓷介质材料的介电常数和损耗与温度的关系曲线如图5所示,图5中的结果显示化学计量比复合体系中居里峰不随着复合量的增加继续向低温方向移动。损耗在较长的温度范围内保持非常小。In this embodiment, 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 dielectric constant and loss versus temperature of dielectrically adjustable microwave ceramic dielectric material The relationship curve is shown in Figure 5, and the results in Figure 5 show that the Curie peak in the stoichiometric composite system does not continue to move to the low temperature direction with the increase of the composite amount. Losses remain very small over a long temperature range.
本实施例中,45%Ba0.6Sr0.4TiO3+55%(Sr0.5Ba0.5)2(Zn0.9Mn0.1)Si2O7复合体系中保持较高的介电可调性。复合后获得非常理想的综合微波介电性能。In this example, the composite system of 45% Ba 0.6 Sr 0.4 TiO 3 +55% (Sr 0.5 Ba 0.5 ) 2 (Zn 0.9 Mn 0.1 ) Si 2 O 7 maintains high dielectric tunability. After compounding, very ideal comprehensive microwave dielectric properties are obtained.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010501164 CN101955356B (en) | 2010-10-09 | 2010-10-09 | Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010501164 CN101955356B (en) | 2010-10-09 | 2010-10-09 | Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101955356A true CN101955356A (en) | 2011-01-26 |
CN101955356B CN101955356B (en) | 2012-12-05 |
Family
ID=43482979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010501164 Expired - Fee Related CN101955356B (en) | 2010-10-09 | 2010-10-09 | Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101955356B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102381884A (en) * | 2011-09-14 | 2012-03-21 | 南京工业大学 | A method for preparing porous insulation material by microwave heating alkali metal silicate |
CN103771842A (en) * | 2014-01-10 | 2014-05-07 | 电子科技大学 | LTCC (Low Temperature Co-fired Ceramics) microwave ceramic material with low cost, low dielectric constant and low loss and preparation method thereof |
CN108249902A (en) * | 2018-02-06 | 2018-07-06 | 华中科技大学 | Low dielectric microwave media ceramic of a kind of silicate-base and preparation method thereof |
CN111763082A (en) * | 2019-04-01 | 2020-10-13 | 中国科学院上海硅酸盐研究所 | A kind of barium strontium titanate based dielectric ceramic material and its preparation method and application |
CN115925401A (en) * | 2022-11-10 | 2023-04-07 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN115947587A (en) * | 2022-09-30 | 2023-04-11 | 郴州功田电子陶瓷技术有限公司 | Microwave dielectric ceramic with low dielectric constant, and preparation method and application thereof |
CN117486609A (en) * | 2024-01-02 | 2024-02-02 | 中国科学院上海硅酸盐研究所 | Single-phase composite perovskite ceramic powder, microwave dielectric ceramic material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1699275A (en) * | 2005-05-13 | 2005-11-23 | 中国科学院上海硅酸盐研究所 | A kind of barium strontium titanate based electro-optical composite material and preparation method thereof |
CN101007736A (en) * | 2007-01-18 | 2007-08-01 | 同济大学 | Ba1-xSrxTiO3-Mg2TiO4 two-phase composite ceramic material and its preparing process |
CN101723664A (en) * | 2009-12-08 | 2010-06-09 | 华中科技大学 | Method for preparing dielectric tunable medium ceramic material |
-
2010
- 2010-10-09 CN CN 201010501164 patent/CN101955356B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1699275A (en) * | 2005-05-13 | 2005-11-23 | 中国科学院上海硅酸盐研究所 | A kind of barium strontium titanate based electro-optical composite material and preparation method thereof |
CN101007736A (en) * | 2007-01-18 | 2007-08-01 | 同济大学 | Ba1-xSrxTiO3-Mg2TiO4 two-phase composite ceramic material and its preparing process |
CN101723664A (en) * | 2009-12-08 | 2010-06-09 | 华中科技大学 | Method for preparing dielectric tunable medium ceramic material |
Non-Patent Citations (2)
Title |
---|
《Journal of the American Ceramic Society》 20100131 Tony Joseph et al. Microwave Dielectric Properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 Ceramics (A=Ca,Ba,and B=Co,Mg,Mn,Ni) 第147页摘要,第148页第5段,第152页第16段 1-9 第93卷, 第1期 * |
《绝缘材料》 20091231 王军等 钛酸锶钡薄膜性能优化研究 第48页至第51页 1-9 第42卷, 第5期 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102381884A (en) * | 2011-09-14 | 2012-03-21 | 南京工业大学 | A method for preparing porous insulation material by microwave heating alkali metal silicate |
CN102381884B (en) * | 2011-09-14 | 2012-07-25 | 南京工业大学 | Method for preparing porous heat-insulating material by heating alkali metal silicate with microwave |
CN103771842A (en) * | 2014-01-10 | 2014-05-07 | 电子科技大学 | LTCC (Low Temperature Co-fired Ceramics) microwave ceramic material with low cost, low dielectric constant and low loss and preparation method thereof |
CN103771842B (en) * | 2014-01-10 | 2015-05-27 | 电子科技大学 | LTCC (Low Temperature Co-fired Ceramics) microwave ceramic material with low cost, low dielectric constant and low loss and preparation method thereof |
CN108249902A (en) * | 2018-02-06 | 2018-07-06 | 华中科技大学 | Low dielectric microwave media ceramic of a kind of silicate-base and preparation method thereof |
CN108249902B (en) * | 2018-02-06 | 2020-06-02 | 华中科技大学 | Silicate-based low-dielectric microwave dielectric ceramic and preparation method thereof |
CN111763082A (en) * | 2019-04-01 | 2020-10-13 | 中国科学院上海硅酸盐研究所 | A kind of barium strontium titanate based dielectric ceramic material and its preparation method and application |
CN111763082B (en) * | 2019-04-01 | 2021-08-31 | 中国科学院上海硅酸盐研究所 | A kind of barium strontium titanate based dielectric ceramic material and its preparation method and application |
CN115947587A (en) * | 2022-09-30 | 2023-04-11 | 郴州功田电子陶瓷技术有限公司 | Microwave dielectric ceramic with low dielectric constant, and preparation method and application thereof |
CN115947587B (en) * | 2022-09-30 | 2024-02-02 | 郴州功田电子陶瓷技术有限公司 | Microwave dielectric ceramic and preparation method thereof |
CN115925401A (en) * | 2022-11-10 | 2023-04-07 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN115925401B (en) * | 2022-11-10 | 2023-07-25 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN117486609A (en) * | 2024-01-02 | 2024-02-02 | 中国科学院上海硅酸盐研究所 | Single-phase composite perovskite ceramic powder, microwave dielectric ceramic material and preparation method thereof |
CN117486609B (en) * | 2024-01-02 | 2024-04-12 | 中国科学院上海硅酸盐研究所 | Single-phase composite perovskite ceramic powder, microwave dielectric ceramic material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101955356B (en) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100434392C (en) | Ba1-xSrxTiO3-Mg2TiO4 two-phase composite ceramic material and its preparing process | |
CN101955356B (en) | Tunable dielectric barium strontium titanate based composite silicate microwave dielectric material and preparation thereof | |
CN105198416B (en) | A kind of low sintering high energy storage density anti-ferroelectric ceramic material and preparation method thereof | |
CN109665839B (en) | High-energy-storage-density PLZT-based antiferroelectric ceramic material and preparation method and application thereof | |
CN102515746A (en) | Microwave dielectrically-adjustable material of barium strontium titanate composite molybdate and preparation method for same | |
CN101928139B (en) | Bismuth calcium titanate-based luminous piezoelectric ceramic material and preparation method | |
CN102976748B (en) | High-density barium strontium titanate ceramics and preparation method thereof | |
CN101172850B (en) | A Dielectric Adjustable Composite Ceramic Material | |
CN101337814B (en) | Low temperature sintering lithium antimonite doped quinary system piezoelectric ceramics material and method for preparing same | |
CN108046795B (en) | High-dielectric adjustable barium strontium titanate-based composite aluminosilicate ceramic dielectric material | |
CN101486569B (en) | Low temperature sintering microwave ceramic material and preparation thereof | |
CN101665353B (en) | Dielectric tunable barium-strontium titanate-based composite tungstate microwave dielectric material and preparation thereof | |
CN107244912B (en) | A new type of BCZT-based energy storage ceramic material and its preparation method and application | |
CN109456058B (en) | A kind of composite capacitor ceramic material of barium zirconate titanate and barium niobate zincate and preparation method thereof | |
CN110386815A (en) | A kind of compound zinc aluminate ceramic material of barium strontium titanate that can be practical with higher adjustable rate low-loss | |
CN101486571B (en) | A high-Q electrically tunable Ba1-xSrxTi1-yMnyO3 ceramic dielectric material and its preparation | |
CN100434395C (en) | Barium zirconate titanate dielectric tunable ceramic material modified by rare earth ion doping and preparation method thereof | |
CN114436643A (en) | A kind of giant dielectric constant, low dielectric loss ceramic and preparation method thereof | |
CN101891463B (en) | Dielectric adjustable transition metal element compound doped barium-strontium titanate compound-barium tungstate ceramic-dielectric material and preparation method thereof | |
CN101492294B (en) | Dielectric adjustable microwave ceramic dielectric material and method of producing the same | |
CN102633500B (en) | Dielectric-adjustable low-temperature co-firing ceramic material and preparation method thereof | |
CN101265085B (en) | Ba1-xSrxTiO3-MgAl2O4 two-phase composite microwave ceramic material with adjustable dielectric and its preparation method | |
CN113683410B (en) | Bismuth titanate-based bismuth layer-structured lead-free piezoelectric ceramic with negative charge-trapping effect and preparation method thereof | |
CN101723662A (en) | Dielectric adjustable BST-MB two-phase compound microwave ceramic material and method for preparing same | |
CN110386816B (en) | Barium strontium titanate composite zinc gallate ceramic material with high adjustable rate and low loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121205 Termination date: 20151009 |
|
EXPY | Termination of patent right or utility model |