CN101910564B - 涡轮叶片的冷却构造 - Google Patents
涡轮叶片的冷却构造 Download PDFInfo
- Publication number
- CN101910564B CN101910564B CN200980101865.4A CN200980101865A CN101910564B CN 101910564 B CN101910564 B CN 101910564B CN 200980101865 A CN200980101865 A CN 200980101865A CN 101910564 B CN101910564 B CN 101910564B
- Authority
- CN
- China
- Prior art keywords
- holes
- cooling
- temperature gas
- turbine blade
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 122
- 230000001737 promoting effect Effects 0.000 claims abstract description 21
- 239000011295 pitch Substances 0.000 claims description 38
- 238000012546 transfer Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 46
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
- F01D5/189—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/121—Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
本发明的涡轮叶片的冷却构造是通过温度低于高温气体(1)的低温的冷却空气(2)对暴露在高温气体中的涡轮叶片(10)进行冷却。涡轮叶片(10)具有:外表面(11),与外表面相对置的内表面(12),从内表面向外面喷出冷却空气来进行气膜冷却的多个气膜冷却孔(13),以及与内表面一体形成并向内侧突出的多个导热促进突起部(14)。另外,具备位于内表面的内侧、冷却空气供给到内部的中空筒形的插件(20),插件具有用于对内表面(12)进行冲击冷却的多个冲击孔(21)。
Description
技术领域
本发明涉及一种用于航空或者工业上的燃气涡轮中的涡轮叶片的冷却构造。
背景技术
用于航空或者工业上的燃气涡轮的涡轮叶片由于在运行中外表面暴露在高温气体(例如1000℃以上)中,所以为了防止涡轮叶片的过热,有时要在其内侧流通冷却气体(例如冷却用空气),从内侧对涡轮叶片进行冷却。
因此,为了提高涡轮叶片的冷却性能,已提出了各种方案(例如专利文献1~3)。
在专利文献1的燃气涡轮叶片中,如图1A、图1B、以及图1C所示,从叶片50内的管56供给冷却空气。管56的流路开口68朝向叶片内表面54送出冷却空气69。细长小片形态的突起部61设置在至少与与叶片内表面54的流路开口68相同的位置。管56和叶片内表面54之间的流路58的流路面积是在出口60一侧更大。
专利文献2的燃气涡轮叶片如图2A以及图2B所示,具有由前缘75和后缘76联结的第一侧面70以及第二侧面72,和在其间被隔壁分离的第一空洞77以及第二空洞78。后部桥架80沿着第一空洞77延伸,在此处具有出口孔84的列。隔壁88具有入口孔82的列。在第一空洞77的内侧以列状配置有紊流促进体86并从第一侧面朝向第二侧面延伸。紊流促进体86相对于入口孔82倾斜,进行多冲击冷却。
专利文献3的燃气涡轮叶片如图3所示,具有面对燃烧气体90的外表面91和冷却空气碰撞的内表面92。在内表面92上设有多个凸槽94和凹槽96,使冲击冷却的热传递增大。
专利文献1:美国专利第5352091号说明书、“GAS TURBINEAIRFOIL”
专利文献2:美国专利第6174134号说明书、“MULTIPLEIMPINGEMENT AIRFOIL COOLING”
专利文献3:美国专利第6142734号说明书、“INTERNALLY GROOVEDTURBINE WALL”
一般来说,燃气涡轮的涡轮叶片的前缘部由于其大的曲率而相对于暴露在高温气体中的高温侧面积而言,与冷却气体相接触的冷却侧面积要小。因此,在叶片前缘部仅通过冷却侧面处的对流冷却大多不能够获得必要的冷却效果,通常是设置多个从涡轮叶片的表面喷出冷却空气的气膜孔,通过孔处的吸热效果来进行冷却。
通过吸热效果来进行冷却要开出相当量的孔,另一方面,如果孔的开口面积过大则容易产生孔处的逆流。因此,到目前为止,是增加冲击孔的开口面积,确保相对于逆流适当的压力差。但是,在这种情况下,冷却空气流量增加,存在发动机性能降低的问题。
发明内容
本发明是鉴于上述问题而提出的。即,本发明的目的在于提供一种涡轮叶片的冷却构造,能够有效地对涡轮叶片(特别是叶片的前缘部)进行冷却,并且与以往相比能够削减冷却空气量。
根据本发明,提供一种通过温度低于高温气体的低温的冷却空气对暴露在高温气体中的涡轮叶片进行冷却的涡轮叶片的冷却构造,
前述涡轮叶片具有:暴露在高温气体中的外表面,与该外表面的内侧相对置并被前述冷却空气冷却的内表面,从前述内表面贯通到外表面并从内表面向外面喷出冷却空气来进行气膜冷却的多个气膜冷却孔,以及与内表面一体形成并向内侧突出的多个导热促进突起部,
具备位于涡轮叶片的前述内表面的内侧、冷却空气供给到内部的中空筒形的插件,该插件具有用于对前述内表面进行冲击冷却的多个冲击孔。
根据本发明的优选实施方式,前述导热促进突起部是圆筒形或者角部形成为圆弧状的圆筒形。
前述气膜冷却孔沿着高温气体的流向以所希望的间距P2设置,
前述冲击孔沿着高温气体的流向以所希望的间距P1设置在位于沿着高温气体的流向邻接的气膜冷却孔的中间,
前述导热促进突起部沿着高温气体的流向以所希望的间距P3设置在不与从冲击孔流向与其邻接的气膜冷却孔的流路干涉的位置。
而且,前述气膜冷却孔的间距P2是冲击孔的间P1的1~2倍,
前述导热促进突起部的间距P3是冲击孔的间距P1的一半以下,并且位于从冲击孔沿着高温气体的流向偏离半个间距以上的位置。
根据本发明的结构,通过冷却空气穿过插件的冲击孔而与涡轮叶片的内表面碰撞,能够对涡轮叶片的内表面进行冲击冷却。
而且,从气膜冷却孔向涡轮叶片的外表面喷出冷却空气,通过吸热效果对孔进行冷却,同时能够对外表面进行气膜冷却。
另外,由于导热促进突起部是与涡轮叶片的内表面一体形成并向内侧突出,所以能够相应地扩大内表面(冷却一侧的面)的导热面积,削减气膜孔的必要数量。
因此,能够有效地对涡轮叶片(特别是叶片的前缘部)进行冷却,并且与以往相比能够削减冷却空气量。
而且,根据后述的冷却性能试验确认了通过前述气膜冷却孔沿着高温气体的流向以所希望的间距P2设置,前述冲击孔沿着高温气体的流向以所希望的间距P1设置在位于沿着高温气体的流向邻接的气膜冷却孔的中间,前述导热促进突起部沿着高温气体的流向以所希望的间距P3设置在不与从冲击孔流向与其邻接的气膜冷却孔的流路干涉的位置这样一种结构,能够扩大涡轮叶片的内表面的导热面积,并且能够抑制为了前述导热促进突起部不妨碍冷却空气从冲击孔流向与其邻接的气膜冷却孔的压力损失的增大。
附图说明
图1A是专利文献1的燃气涡轮叶片的示意图。
图1B是专利文献1的燃气涡轮叶片的其他示意图。
图1C是专利文献1的燃气涡轮叶片的其他示意图。
图2A是专利文献2的燃气涡轮叶片的示意图。
图2B是专利文献2的燃气涡轮叶片的后缘部分的放大图。
图3是专利文献3的燃气涡轮叶片的示意图。
图4是构成本发明的冷却构造的涡轮叶片的剖视图。
图5是图4的A部放大图。
图6A是从涡轮叶片10的内表面看到的示意图。
图6B是图6A中B-B线处剖视图。
图7A是试验结果的冷却效率。
图7B是试验结果的冷却空气量。
具体实施方式
以下,参照附图对本发明的优选实施方式进行说明。另外,在各图中,对于通用的部分赋予相同的附图标记而省略其重复的说明。
图4是构成本发明的冷却构造的涡轮叶片的剖视图,图5是图4的A部放大图。
本发明的冷却构造是通过对暴露在高温气体1中的涡轮叶片10以温度低于高温气体1的冷却空气2进行冷却的涡轮叶片的冷却构造。
如图4和图5所示,涡轮叶片10具有外表面11、内表面12、多个气膜冷却孔13、以及多个导热促进突起部14。
外表面11暴露在高温气体1中,通过来自高温气体1的热传递而被加热。
内表面12与外表面11的内侧相对向,被嵌件20(后述)供给的温度低于高温气体1的冷却空气2冷却。
多个气膜冷却孔13从内表面12贯通到外表面11,从内表面12向外面喷出冷却空气2,对外表面11进行气膜冷却。
多个导热促进突起部14一体地形成在内表面12上,增大向内侧突出的内表面的导热面积。
本发明的冷却构造还具备中空筒形的插件20,其位于涡轮叶片10的内表面12的内侧,冷却空气2供给到其内部。
该插件20具有用于对涡轮叶片10的内表面12进行冲击冷却的多个冲击孔21。涡轮叶片20的内表面12与插件20的外表面隔有间隙。
图6A是将本发明的冷却构造展开成平面,从涡轮叶片10的内表面一侧看到的示意图,图6B是其B-B线处的剖视图。
在图6A中,气膜冷却孔13与冲击孔21位于沿着高温气体1的流向整合的位置,在该例中,气膜冷却孔13与冲击孔21的高温气体1的流动方向的间隔为Px。
而且,气膜冷却孔13与冲击孔21分别在相同的平面内以规定的间距Py沿着与高温气体1的流向正交的方向(在该图中为上下方向)排列。
进而,导热促进突起部14在该例中是相对于气膜冷却孔12和冲击孔21的间距2位于向与高温气体1的流向正交的方向(在该图中为上下方向)偏离Py/2的间距的位置。
在图6A和图6B中,气膜冷却孔13是直径为d1的贯通孔,沿着顺延于外表面11的高温气体1的流向以所希望的间距P2设置。
气膜冷却孔13的间距P2在该例中是气膜冷却孔13与冲击孔21的间距Px的2倍,与冲击孔21的间距P1相一致。另外,本发明并不仅限于此,气膜冷却孔13的间距P2也可以是冲击孔21的间距P1的1~2倍。
而且,冲击孔21是直径为d2的贯通孔,沿着高温气体1的流向以所希望的间距P1设置在位于沿着顺延于外表面1的高温气体1的流向邻接的气膜冷却孔13的中间。间距P1在该例中为间隔Px的2倍,与气膜冷却孔13的间距P2相一致。
进而,导热促进突起部14沿着高温气体1的流向以所希望的间距P3设在不与从冲击孔21流向与其邻接的气膜冷却孔13的流路干涉的位置。间距P3在该例中与间距Px相同,为冲击孔21的间距P1的一半以下。
而且,导热促进突起部14从冲击孔21沿着高温气体1的流向偏离半个间距以上。
如图6B所示,导热促进突起部14是直径为d3、高度为h的圆筒形或者角部形成为圆弧状的圆筒形。高度h形成为与涡轮叶片10的内表面12和插件20的外表面之间的间隔H相同或者比其稍低。
另外,导热促进突起部14的形状并不仅限于该例,只要是与内表面12一体形成并向内侧突出,也可以是其他的形状,例如圆锥形、金字塔形、平板形等。
实施例
在图6A和图6B的结构中,针对Px=10mm,Py=10mm,d1=4mm,d2=4mm,d3=4mm,h=H的情况实施了冷却性能试验。冷却性能试验是在燃烧气体中设置具备冷却构造的试验片,使冷却空气流通,通过红外线摄像机计量表面温度,通过流量计计量冷却空气量。
图7A和图7B是表示该试验结果的附图,图7A为冷却效率,图7B为冷却空气量。
在图7A中,横轴表示冷却空气/高温气体的质量流束比Mi,纵轴表示有效冷却效率η,图中的实线是本发明,虚线是没有导热促进突起部14的比较例。
而且,在图7B中,横轴表示冷却空气/高温气体的压力比Pc.in/Pg,纵轴表示冷却空气量Wc(10-2kg/s),图中的实线是本发明,虚线是没有导热促进突起部14的比较例。
根据这些结果可知,本发明与没有导热促进突起部14的比较例相比,尽管同一压力比下的冷却空气量基本上相同,但冷却效率却大幅度提高。而且,由于同一压力比下的冷却空气量几乎不变,所以可知压力损失基本上未增加。
因此,在使冷却效率相同的情况下,能够大幅度降低必要的冷却空气量,根据本发明的冷却构造,能够有效地对涡轮叶片(特别是叶片的前缘部)进行冷却,并且与以往相比能够削减冷却空气量。
如上所述,根据本发明的结构,通过冷却空气2穿过插件20的冲击孔21而与涡轮叶片10的内表面碰撞能够对内表面进行冲击冷却,进而从气膜冷却孔13向涡轮叶片的外表面11喷出冷却空气2,能够通过吸热效果对孔进行冷却并对外表面进行气膜冷却。
而且,由于导热促进突起部14与涡轮叶片的内表面12一体形成并向内侧突出,所以能够相应地扩大内表面12(冷却一侧的面)的导热面积,削减气膜孔的必要数量。
因此,能够有效地对涡轮叶片10(特别是叶片的前缘部)进行冷却,并且与以往相比能够削减冷却空气量。
而且,如上所述,通过试验确认了通过沿着高温气体1的流向以所希望的间距P2设置气膜冷却孔13,沿着高温气体1的流向以所希望的间距P1将冲击孔21设置在位于沿着高温气体1的流向邻接的气膜冷却孔13的中间,沿着高温气体1的流向以所希望的间距P 3将导热促进突起部14设置在不与从冲击孔21流向与其邻接的气膜冷却孔13的流路干涉的位置的这样一种结构,能够扩大涡轮叶片10的内表面12的导热面积,并且抑制压力损失的增大。
另外,本发明并不仅限于上述的实施方式,不言而喻,能够在不脱离本发明的要旨的范围内进行各种变更。
例如,也可以与上述的例子不同而是如下的结构。
(1)配置导热促进突起部14的内表面12并不仅限于涡轮叶片10的前缘部,也可以与各个设计相匹配地配置在前缘部以外。
(2)导热促进突起部14的形状优选地是圆筒形,但也可以根据制造上的制约而取为适当的倒角R(圆角),圆筒的轴向也可以并非一定相对于内表面12垂直。
(3)而且,冷却对象优选地是涡轮叶片,但并不仅限于此,也能够适用于传送带、护罩面的冷却。
Claims (3)
1.一种涡轮叶片的冷却构造,通过温度低于高温气体的低温的冷却空气对暴露在高温气体中的涡轮叶片进行冷却,其特征在于,
前述涡轮叶片具有:暴露在高温气体中的外表面,与该外表面的内侧相对置并被前述冷却空气冷却的内表面,从前述内表面贯通到外表面并从内表面向外表面喷出冷却空气来进行气膜冷却的多个气膜冷却孔,以及与内表面一体形成并向内侧突出的多个导热促进突起部,
具备位于涡轮叶片的前述内表面的内侧、冷却空气供给到内部的中空筒形的插件,该插件具有用于对前述内表面进行冲击冷却的多个冲击孔,
前述多个导热促进突起部形成为比前述涡轮叶片的前述内表面与前述插件的外表面的间隔稍低且是圆筒形或者角部形成为圆弧状的圆筒形,
前述气膜冷却孔和前述冲击孔位于沿着高温气体的流向整合的位置,前述气膜冷却孔沿着高温气体的流向以间距P2设置,前述冲击孔沿着高温气体的流向以间距P1设置在位于沿着高温气体的流向邻接的气膜冷却孔的中间,
前述气膜冷却孔与前述冲击孔在相同平面内分别以间距Py沿着与高温气体的流向正交的方向排列,前述导热促进突起部位于相对于前述气膜冷却孔和冲击孔在与高温气体的流向正交的方向上偏离Py/2的间距的位置。
2.如权利要求1所述的涡轮叶片的冷却构造,其特征在于,
前述导热促进突起部沿着高温气体的流向以所希望的间距P3设置在不与从冲击孔流向与其邻接的气膜冷却孔的流路干涉的位置。
3.如权利要求1所述的涡轮叶片的冷却构造,其特征在于,
前述气膜冷却孔的间距P2是冲击孔的间距P1的1~2倍,
前述导热促进突起部的间距P3是冲击孔的间距P1的一半以下,并且前述导热促进突起部位于从冲击孔沿着高温气体的流向偏离间距P3的一半以上的位置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-000912 | 2008-01-08 | ||
JP2008000912A JP2009162119A (ja) | 2008-01-08 | 2008-01-08 | タービン翼の冷却構造 |
PCT/JP2009/050113 WO2009088031A1 (ja) | 2008-01-08 | 2009-01-08 | タービン翼の冷却構造 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101910564A CN101910564A (zh) | 2010-12-08 |
CN101910564B true CN101910564B (zh) | 2015-04-29 |
Family
ID=40853143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980101865.4A Expired - Fee Related CN101910564B (zh) | 2008-01-08 | 2009-01-08 | 涡轮叶片的冷却构造 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9133717B2 (zh) |
EP (1) | EP2233693B1 (zh) |
JP (1) | JP2009162119A (zh) |
KR (1) | KR20100097718A (zh) |
CN (1) | CN101910564B (zh) |
WO (1) | WO2009088031A1 (zh) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100239409A1 (en) * | 2009-03-18 | 2010-09-23 | General Electric Company | Method of Using and Reconstructing a Film-Cooling Augmentation Device for a Turbine Airfoil |
US8052378B2 (en) * | 2009-03-18 | 2011-11-08 | General Electric Company | Film-cooling augmentation device and turbine airfoil incorporating the same |
US9347324B2 (en) * | 2010-09-20 | 2016-05-24 | Siemens Aktiengesellschaft | Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles |
US20120070302A1 (en) * | 2010-09-20 | 2012-03-22 | Ching-Pang Lee | Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles |
JP5696566B2 (ja) * | 2011-03-31 | 2015-04-08 | 株式会社Ihi | ガスタービンエンジン用燃焼器及びガスタービンエンジン |
US8915712B2 (en) * | 2011-06-20 | 2014-12-23 | General Electric Company | Hot gas path component |
EP2584145A1 (en) | 2011-10-20 | 2013-04-24 | Siemens Aktiengesellschaft | A cooled turbine guide vane or blade for a turbomachine |
US9151173B2 (en) * | 2011-12-15 | 2015-10-06 | General Electric Company | Use of multi-faceted impingement openings for increasing heat transfer characteristics on gas turbine components |
JP5834876B2 (ja) * | 2011-12-15 | 2015-12-24 | 株式会社Ihi | インピンジ冷却機構、タービン翼及び燃焼器 |
US8572983B2 (en) * | 2012-02-15 | 2013-11-05 | United Technologies Corporation | Gas turbine engine component with impingement and diffusive cooling |
US9267381B2 (en) * | 2012-09-28 | 2016-02-23 | Honeywell International Inc. | Cooled turbine airfoil structures |
US9169733B2 (en) * | 2013-03-20 | 2015-10-27 | General Electric Company | Turbine airfoil assembly |
KR101465048B1 (ko) * | 2013-03-21 | 2014-11-26 | 두산중공업 주식회사 | 터빈용 블레이드 |
US20160370008A1 (en) * | 2013-06-14 | 2016-12-22 | United Technologies Corporation | Conductive panel surface cooling augmentation for gas turbine engine combustor |
US10487667B2 (en) * | 2013-07-01 | 2019-11-26 | United Technologies Corporation | Airfoil, and method for manufacturing the same |
US9810071B2 (en) * | 2013-09-27 | 2017-11-07 | Pratt & Whitney Canada Corp. | Internally cooled airfoil |
KR101906948B1 (ko) * | 2013-12-19 | 2018-10-11 | 한화에어로스페이스 주식회사 | 터빈용 날개 |
US20150198050A1 (en) * | 2014-01-15 | 2015-07-16 | Siemens Energy, Inc. | Internal cooling system with corrugated insert forming nearwall cooling channels for airfoil usable in a gas turbine engine |
EP2902589A1 (de) * | 2014-01-29 | 2015-08-05 | Siemens Aktiengesellschaft | Prallgekühltes Bauteil für eine Gasturbine |
WO2015157780A1 (en) * | 2014-04-09 | 2015-10-15 | Siemens Aktiengesellschaft | Internal cooling system with insert forming nearwall cooling channels in an aft cooling cavity of a gas turbine airfoil including heat dissipating ribs |
CA2949538A1 (en) * | 2014-05-29 | 2015-12-03 | General Electric Company | Angled impingement insert with discrete cooling features |
WO2016025054A2 (en) | 2014-05-29 | 2016-02-18 | General Electric Company | Engine components with cooling features |
US10422235B2 (en) | 2014-05-29 | 2019-09-24 | General Electric Company | Angled impingement inserts with cooling features |
US9957816B2 (en) | 2014-05-29 | 2018-05-01 | General Electric Company | Angled impingement insert |
EP3189214A1 (en) * | 2014-09-04 | 2017-07-12 | Siemens Aktiengesellschaft | Internal cooling system with insert forming nearwall cooling channels in midchord cooling cavities of a gas turbine airfoil |
CN106661945A (zh) | 2014-09-04 | 2017-05-10 | 西门子公司 | 带有在燃气涡轮翼型的尾部冷却腔中形成近壁冷却通道的插入件的内部冷却系统 |
EP3023696B1 (en) * | 2014-11-20 | 2019-08-28 | Ansaldo Energia Switzerland AG | Lobe lance for a gas turbine combustor |
US10746403B2 (en) * | 2014-12-12 | 2020-08-18 | Raytheon Technologies Corporation | Cooled wall assembly for a combustor and method of design |
US10641099B1 (en) * | 2015-02-09 | 2020-05-05 | United Technologies Corporation | Impingement cooling for a gas turbine engine component |
US9850763B2 (en) * | 2015-07-29 | 2017-12-26 | General Electric Company | Article, airfoil component and method for forming article |
US10605170B2 (en) * | 2015-11-24 | 2020-03-31 | General Electric Company | Engine component with film cooling |
US10053990B2 (en) * | 2016-05-12 | 2018-08-21 | General Electric Company | Internal rib with defined concave surface curvature for airfoil |
US11162370B2 (en) | 2016-05-19 | 2021-11-02 | Rolls-Royce Corporation | Actively cooled component |
US10344619B2 (en) | 2016-07-08 | 2019-07-09 | United Technologies Corporation | Cooling system for a gaspath component of a gas powered turbine |
US20180149028A1 (en) | 2016-11-30 | 2018-05-31 | General Electric Company | Impingement insert for a gas turbine engine |
CN106703997B (zh) * | 2016-12-19 | 2018-08-24 | 北京航空航天大学 | 前倾缝发动机支板热气防冰结构 |
US10494948B2 (en) * | 2017-05-09 | 2019-12-03 | General Electric Company | Impingement insert |
CN107449308A (zh) * | 2017-07-13 | 2017-12-08 | 西北工业大学 | 一种带有圆弧形曲面凸台的冲击冷却系统 |
US20190024520A1 (en) * | 2017-07-19 | 2019-01-24 | Micro Cooling Concepts, Inc. | Turbine blade cooling |
US11408302B2 (en) * | 2017-10-13 | 2022-08-09 | Raytheon Technologies Corporation | Film cooling hole arrangement for gas turbine engine component |
US10570751B2 (en) | 2017-11-22 | 2020-02-25 | General Electric Company | Turbine engine airfoil assembly |
GB201806821D0 (en) * | 2018-04-26 | 2018-06-13 | Rolls Royce Plc | Coolant channel |
CN109538304B (zh) * | 2018-11-14 | 2021-04-20 | 哈尔滨工程大学 | 一种微型交错肋与气膜孔相结合的涡轮叶片混合冷却结构 |
CN109441557B (zh) * | 2018-12-27 | 2024-06-11 | 哈尔滨广瀚动力技术发展有限公司 | 一种带有冷却结构的船用燃气轮机的高压涡轮导叶 |
KR102178956B1 (ko) | 2019-02-26 | 2020-11-16 | 두산중공업 주식회사 | 터빈 베인 및 링세그먼트와 이를 포함하는 가스 터빈 |
US11280201B2 (en) * | 2019-10-14 | 2022-03-22 | Raytheon Technologies Corporation | Baffle with tail |
US11085374B2 (en) * | 2019-12-03 | 2021-08-10 | General Electric Company | Impingement insert with spring element for hot gas path component |
US11248479B2 (en) | 2020-06-11 | 2022-02-15 | General Electric Company | Cast turbine nozzle having heat transfer protrusions on inner surface of leading edge |
KR102502652B1 (ko) * | 2020-10-23 | 2023-02-21 | 두산에너빌리티 주식회사 | 물결 형태 유로를 구비한 배열 충돌제트 냉각구조 |
CN114412580B (zh) * | 2022-02-09 | 2024-02-09 | 北京全四维动力科技有限公司 | 涡轮叶片气膜冷却结构及采用该冷却结构的燃气轮机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6142734A (en) * | 1999-04-06 | 2000-11-07 | General Electric Company | Internally grooved turbine wall |
JP2002174102A (ja) * | 2000-12-07 | 2002-06-21 | Ishikawajima Harima Heavy Ind Co Ltd | タービン翼のトランスピレーション冷却伝熱促進構造 |
CN1717534A (zh) * | 2003-11-21 | 2006-01-04 | 三菱重工业株式会社 | 燃气涡轮发动机的冷却叶片 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE755567A (fr) * | 1969-12-01 | 1971-02-15 | Gen Electric | Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe |
US3891348A (en) * | 1972-04-24 | 1975-06-24 | Gen Electric | Turbine blade with increased film cooling |
US3806276A (en) * | 1972-08-30 | 1974-04-23 | Gen Motors Corp | Cooled turbine blade |
US4118146A (en) * | 1976-08-11 | 1978-10-03 | United Technologies Corporation | Coolable wall |
JPS5390509A (en) * | 1977-01-20 | 1978-08-09 | Koukuu Uchiyuu Gijiyutsu Kenki | Structure of air cooled turbine blade |
FR2473621A1 (fr) * | 1980-01-10 | 1981-07-17 | Snecma | Aube de distributeur de turbine |
JPS5979009A (ja) * | 1982-10-27 | 1984-05-08 | Agency Of Ind Science & Technol | ガスタ−ビンの翼 |
JPS6163401A (ja) | 1984-09-04 | 1986-04-01 | ハマシウセイ株式会社 | 集成材 |
JPS61187501A (ja) * | 1985-02-15 | 1986-08-21 | Hitachi Ltd | 流体冷却構造 |
JPH0660740B2 (ja) * | 1985-04-05 | 1994-08-10 | 工業技術院長 | ガスタービンの燃焼器 |
JPH0663442B2 (ja) * | 1989-09-04 | 1994-08-22 | 株式会社日立製作所 | タービン翼 |
US5328331A (en) * | 1993-06-28 | 1994-07-12 | General Electric Company | Turbine airfoil with double shell outer wall |
JP3110227B2 (ja) * | 1993-11-22 | 2000-11-20 | 株式会社東芝 | タービン冷却翼 |
JP3651490B2 (ja) * | 1993-12-28 | 2005-05-25 | 株式会社東芝 | タービン冷却翼 |
US5352091A (en) | 1994-01-05 | 1994-10-04 | United Technologies Corporation | Gas turbine airfoil |
DE4430302A1 (de) * | 1994-08-26 | 1996-02-29 | Abb Management Ag | Prallgekühltes Wandteil |
US5516260A (en) * | 1994-10-07 | 1996-05-14 | General Electric Company | Bonded turbine airfuel with floating wall cooling insert |
DE19612840A1 (de) * | 1996-03-30 | 1997-10-02 | Abb Research Ltd | Vorrichtung und Verfahren zur Kühlung einer einseitig von Heissgas umgebenen Wand |
EP0889201B1 (de) * | 1997-07-03 | 2003-01-15 | ALSTOM (Switzerland) Ltd | Prallanordnung für ein konvektives Kühl-oder Heizverfahren |
DE19737845C2 (de) * | 1997-08-29 | 1999-12-02 | Siemens Ag | Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel |
US6238182B1 (en) * | 1999-02-19 | 2001-05-29 | Meyer Tool, Inc. | Joint for a turbine component |
US6174134B1 (en) * | 1999-03-05 | 2001-01-16 | General Electric Company | Multiple impingement airfoil cooling |
GB2350867B (en) * | 1999-06-09 | 2003-03-19 | Rolls Royce Plc | Gas turbine airfoil internal air system |
GB2365932B (en) * | 2000-08-18 | 2004-05-05 | Rolls Royce Plc | Vane assembly |
-
2008
- 2008-01-08 JP JP2008000912A patent/JP2009162119A/ja active Pending
-
2009
- 2009-01-08 KR KR1020107014304A patent/KR20100097718A/ko active Search and Examination
- 2009-01-08 CN CN200980101865.4A patent/CN101910564B/zh not_active Expired - Fee Related
- 2009-01-08 WO PCT/JP2009/050113 patent/WO2009088031A1/ja active Application Filing
- 2009-01-08 US US12/812,227 patent/US9133717B2/en active Active
- 2009-01-08 EP EP09700222.4A patent/EP2233693B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6142734A (en) * | 1999-04-06 | 2000-11-07 | General Electric Company | Internally grooved turbine wall |
JP2002174102A (ja) * | 2000-12-07 | 2002-06-21 | Ishikawajima Harima Heavy Ind Co Ltd | タービン翼のトランスピレーション冷却伝熱促進構造 |
CN1717534A (zh) * | 2003-11-21 | 2006-01-04 | 三菱重工业株式会社 | 燃气涡轮发动机的冷却叶片 |
Also Published As
Publication number | Publication date |
---|---|
US9133717B2 (en) | 2015-09-15 |
EP2233693A4 (en) | 2011-03-16 |
KR20100097718A (ko) | 2010-09-03 |
US20110027102A1 (en) | 2011-02-03 |
CN101910564A (zh) | 2010-12-08 |
JP2009162119A (ja) | 2009-07-23 |
EP2233693B1 (en) | 2019-03-13 |
EP2233693A1 (en) | 2010-09-29 |
WO2009088031A1 (ja) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101910564B (zh) | 涡轮叶片的冷却构造 | |
JP6526166B2 (ja) | ベーンの冷却構造 | |
US8066484B1 (en) | Film cooling hole for a turbine airfoil | |
US8192146B2 (en) | Turbine blade dual channel cooling system | |
JP4845957B2 (ja) | インピンジメント冷却構造 | |
US7766606B2 (en) | Turbine airfoil cooling system with platform cooling channels with diffusion slots | |
US9347324B2 (en) | Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles | |
US8057179B1 (en) | Film cooling hole for turbine airfoil | |
US20100221121A1 (en) | Turbine airfoil cooling system with near wall pin fin cooling chambers | |
US7510367B2 (en) | Turbine airfoil with endwall horseshoe cooling slot | |
US20070128031A1 (en) | Turbine airfoil with outer wall cooling system and inner mid-chord hot gas receiving cavity | |
US9631499B2 (en) | Turbine airfoil cooling system for bow vane | |
US11414998B2 (en) | Turbine blade and gas turbine | |
EP0852285A1 (en) | Turbulator configuration for cooling passages of rotor blade in a gas turbine engine | |
KR101509385B1 (ko) | 스월링 냉각 채널을 구비한 터빈 블레이드 및 그 냉각 방법 | |
US20180045059A1 (en) | Internal cooling system with insert forming nearwall cooling channels in an aft cooling cavity of a gas turbine airfoil including heat dissipating ribs | |
JP2006283762A (ja) | テーパ形状の後縁部ランドを有するタービンエーロフォイル | |
US20060153678A1 (en) | Cooling system with internal flow guide within a turbine blade of a turbine engine | |
CN106471212A (zh) | 具有前缘冲击冷却系统和近壁冲击系统的涡轮机翼型件冷却系统 | |
CN106661945A (zh) | 带有在燃气涡轮翼型的尾部冷却腔中形成近壁冷却通道的插入件的内部冷却系统 | |
KR20150063949A (ko) | 인접 벽 마이크로회로 에지 냉각 수단을 구비한 터빈 블레이드 | |
JP2017015091A (ja) | ガスタービンブレード | |
US9551229B2 (en) | Turbine airfoil with an internal cooling system having trip strips with reduced pressure drop | |
US10900361B2 (en) | Turbine airfoil with biased trailing edge cooling arrangement | |
JP7224928B2 (ja) | タービン動翼及びガスタービン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: Tokyo, Japan Patentee after: IHI Corp. Patentee after: JAPAN AEROSPACE EXPLORATION AGENCY Address before: Tokyo, Japan Patentee before: IHI Corp. Patentee before: JAPAN AEROSPACE EXPLORATION AGENCY |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150429 |
|
CF01 | Termination of patent right due to non-payment of annual fee |