CN101917768B - User fairness resource allocation method for orthogonal frequency division multiple access relay system - Google Patents
User fairness resource allocation method for orthogonal frequency division multiple access relay system Download PDFInfo
- Publication number
- CN101917768B CN101917768B CN2010102666095A CN201010266609A CN101917768B CN 101917768 B CN101917768 B CN 101917768B CN 2010102666095 A CN2010102666095 A CN 2010102666095A CN 201010266609 A CN201010266609 A CN 201010266609A CN 101917768 B CN101917768 B CN 101917768B
- Authority
- CN
- China
- Prior art keywords
- user
- via node
- subcarrier
- base station
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000013468 resource allocation Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000005562 fading Methods 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 13
- 239000000969 carrier Substances 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 abstract description 5
- 238000004422 calculation algorithm Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种正交频分多址接入中继系统的用户公平资源分配方法,特征是将中继选择、子载波分配和功率分配进行联合优化,为每个子载波选择最合适的中继,并将其分配给最优的中继-用户链路,同时基站和各中继在各个子载波上进行自适应功率分配,通过引入功率调整因子,经过若干次迭代,保证总功率收敛,以优化系统的吞吐量。在选择最优链路时以保证用户间公平性为目标,进行功率分配的时以用户的平均速率作为其中一个考察变量。本发明方法在优化系统吞吐量的同时,能够保证用户间具有近似严格的公平性。
The invention discloses a user fair resource allocation method for an OFDMA relay system, which is characterized in that relay selection, subcarrier allocation and power allocation are jointly optimized to select the most suitable medium for each subcarrier and distribute it to the optimal relay-user link. At the same time, the base station and each relay perform adaptive power allocation on each subcarrier. By introducing a power adjustment factor, after several iterations, the total power is guaranteed to converge. to optimize system throughput. When selecting the optimal link, the goal is to ensure fairness among users, and when power allocation is performed, the average rate of users is used as one of the variables investigated. The method of the invention can ensure approximately strict fairness among users while optimizing the system throughput.
Description
技术领域 technical field
本发明属于正交频分多址接入(OFDMA)移动通信技术领域,特别涉及OFDMA中继通信系统中保证用户公平性的资源分配方法。 The invention belongs to the technical field of Orthogonal Frequency Division Multiple Access (OFDMA) mobile communication, and particularly relates to a resource allocation method for ensuring user fairness in an OFDMA relay communication system. the
背景技术 Background technique
OFDMA技术能够根据不同用户信道衰落的独立性,充分利用多用户分集,提高频谱效率。另一方面,采用中继技术可以增大无线网络的覆盖范围,提高系统容量和可靠性。因此,OFDMA技术和中继技术是未来无线移动通信系统的核心技术。如何在OFDMA中继系统中进行合理的资源分配是一个越来越重要的研究课题。 OFDMA technology can make full use of multi-user diversity and improve spectrum efficiency according to the independence of channel fading of different users. On the other hand, the use of relay technology can increase the coverage of wireless networks and improve system capacity and reliability. Therefore, OFDMA technology and relay technology are the core technologies of future wireless mobile communication systems. How to allocate resources reasonably in OFDMA relay system is an increasingly important research topic. the
《国际电子与电气工程师协会通信选题杂志》(IEEE J.on Select Areas.Commun,Volume 17,No 10,1999,pp 1747-1758)中提到了一种OFDMA系统中的多用户自适应子载波、比特和功率分配算法。不过该算法应用场景为无中继节点的传统蜂窝小区,而在OFDMA中继系统中,对不同的用户要选择合适的中继节点传输数据,并且需要同时对基站和中继节点进行子载波和功率分配,因此该算法无法应用到OFDMA中继系统中。 "International Institute of Electronics and Electrical Engineers Communication Journal" (IEEE J.on Select Areas.Commun, Volume 17, No 10, 1999, pp 1747-1758) mentioned a multi-user adaptive subcarrier in OFDMA system , bit and power allocation algorithm. However, the application scenario of this algorithm is a traditional cell without a relay node. In an OFDMA relay system, it is necessary to select an appropriate relay node to transmit data for different users, and it is necessary to perform subcarrier summation on both the base station and the relay node at the same time. Power allocation, so this algorithm cannot be applied to OFDMA relay systems. the
在《国际电子与电气工程师协会通信选题杂志》(IEEE J.on Select Areas.Commun,Volume 25,No 2,2007,pp 328-339)中还提到了一种针对OFDMA中继系统的自适应子载波和功率分配算法,不过该算法的目标是最大化系统总效用,没有考虑用户间的公平性问题。而保证用户间的公平性、更好地为多用户服务,是未来无线通信系统的核心目标之一,因此保证用户间公平性的资源分配对未来无线通信系统具有重要意义。 In the "International Institute of Electronics and Electrical Engineers Communication Topic Selection Journal" (IEEE J.on Select Areas.Commun, Volume 25, No 2, 2007, pp 328-339) also mentioned an adaptive method for OFDMA relay system Subcarrier and power allocation algorithm, but the goal of this algorithm is to maximize the total utility of the system, without considering the issue of fairness among users. Ensuring fairness among users and better serving multiple users is one of the core goals of future wireless communication systems. Therefore, resource allocation that ensures fairness among users is of great significance to future wireless communication systems. the
发明内容 Contents of the invention
本发明的目的是提出一种正交频分多址接入中继系统的用户公平资源分配方法,该方法在优化系统吞吐量的同时,能够保证用户间具有近似严格的公平性。 The object of the present invention is to propose a user fair resource allocation method of an OFDMA relay system, which can ensure approximately strict fairness among users while optimizing system throughput. the
本发明正交频分多址接入中继系统的用户公平资源分配方法,基站根据输入的系统参数和信道参数,经以下处理步骤,由单片机输出得到的资源分配结果,其特征在于基站端依次执行以下步骤: The user fair resource allocation method of the OFDMA access relay system of the present invention, the base station, according to the input system parameters and channel parameters, through the following processing steps, the resource allocation result output by the single-chip microcomputer, is characterized in that the base station end sequentially Perform the following steps:
第一步:设时隙编号为t,对于系统中每一个用户m=1,...,M,以 表示在时隙t计算得到的用户m的平均速率,初始化在时隙t=0时用户m的平均速率 为非负值,M为系统中的总用户数; The first step: set the time slot number as t, for each user in the system m=1,...,M, with Indicates the average rate of user m calculated at time slot t, and initializes the average rate of user m at time slot t=0 is a non-negative value, and M is the total number of users in the system;
第二步:设迭代轮次为i,对于每一个中继节点k=1,...,K,以μk(i)表示中继节点k在迭代轮次i的功率调整因子,η(i)表示基站在迭代轮次i的功率调整因子,初始化中继节点k在迭代轮次i=0的功率调整因子μk(0)以及基站在迭代轮次i=0的功率调整因子η(0)为非负数,K为系统中的中继节点数; Second step: set the iteration round as i, for each relay node k=1,..., K, express the power adjustment factor of relay node k in iteration round i with μ k (i), η( i) represents the power adjustment factor of the base station in iteration round i, initializes the power adjustment factor μ k (0) of relay node k in iteration round i=0 and the power adjustment factor η( 0) is a non-negative number, and K is the number of relay nodes in the system;
基站s根据中继节点反馈的信道状态信息更新已存储的信息:对于所有的中继节点k=1,...,K,和用户m=1,...,M,更新基站到s中继节点k在子载波n上由小尺度衰落产生的信道增益更新中继节点k到用户m在子载波n上由小尺度衰落产生的信道增益更新基站s和中继节点k之间的路径损耗lsk,更新中继节点k和用户m之间的路径损耗lkm; The base station s updates the stored information according to the channel state information fed back by the relay node: for all relay nodes k=1,...,K, and users m=1,...,M, update the base station to s Channel gain due to small-scale fading at subcarrier n following node k Update channel gain from relay node k to user m on subcarrier n caused by small-scale fading Update the path loss l sk between the base station s and the relay node k, update the path loss l km between the relay node k and the user m;
第三步:记系统中子载波总数为N,对于每一个子载波n=1,...,N,根据当前各用户的平均速率基站功率调整因子η(i)、中继功率调整因子μk(i),和基站s到中继节点k在子载波n上由小尺度衰落产生的信道增益中继节点k到用户m在子载波n上由小尺度衰落产生的信道增益基站s和中继节点k之间的路径损耗lsk,中继节点k和用户m之间的路径损耗,分别计算当前在该载波上的功率分配结果以及该载波在链路上的分配结果; The third step: record the total number of subcarriers in the system as N, for each subcarrier n=1,...,N, according to the average rate of each user at present Base station power adjustment factor η(i), relay power adjustment factor μ k (i), and channel gain from base station s to relay node k on subcarrier n caused by small-scale fading Channel gain from relay node k to user m on subcarrier n caused by small-scale fading The path loss l sk between the base station s and the relay node k, the path loss between the relay node k and the user m, respectively calculate the current power allocation result on the carrier and the allocation result of the carrier on the link;
由下面所列的中继节点k到用户m在子载波n上的发射功率公式(1)得出功率分配结果: The power allocation result is obtained from the transmit power formula (1) of relay node k to user m on subcarrier n listed below:
式(1)中W为系统总带宽,被分为N个子载波,运算符[x]+=max{x,0},即表示取数值x和0中的较大值,前一个中间变量和后一个中间变量分别为 In formula (1), W is the total bandwidth of the system, which is divided into N subcarriers. The operator [x] + =max{x, 0} means to take the larger value of x and 0. The previous intermediate variable and the latter intermediate variable respectively
式(3)中N0为系统中的单边带噪声功率谱密度,信噪比间隙Γ是目标误比特率BER的函数,Γ=-ln(5BER)/1.5; In formula (3), N 0 is the SSB noise power spectral density in the system, and the signal-to-noise ratio gap Γ is a function of the target bit error rate BER, Γ=-ln(5BER)/1.5;
根据中继节点k到用户m在子载波n上的发射功率公式(1)求得的中继节点k到用户m在子载波n上的发射功率 的值,计算中继节点k到用户m在子载波n上的传输速率 The transmit power from relay node k to user m on subcarrier n calculated according to the transmit power formula (1) from relay node k to user m on subcarrier n The value of , calculate the transmission rate from relay node k to user m on subcarrier n
根据中继节点k到用户m在子载波n上的传输速率公式(4)求得的传输速率 进行子载波分配:对于某个子载波n,首先选取 最大的(k,m)组合,即 The transmission rate calculated according to the transmission rate formula (4) from relay node k to user m on subcarrier n Perform subcarrier allocation: For a certain subcarrier n, first select The largest (k,m) combination, i.e.
然后将子载波n分配给选取的(k*,m*),即分配给中继节点k*到用户m*的链路;定义表示载波分配的指示变量 表示将载波n分配给中继节点k到用户m的链路,否则,指示变量 对于中继节点k*到用户m*的链路,指示变量 而对于中继节点k*到用户m*以外的其他链路,即对于中继节点k≠k*到用户m≠m*的链路,指示变量 用公式表示为: Then assign the subcarrier n to the selected (k * , m * ), that is, assign to the link from the relay node k * to the user m * ; define the indicator variable representing the carrier assignment Indicates that carrier n is allocated to the link from relay node k to user m, otherwise, the indicator variable For a link from relay node k * to user m * , the indicator variable And for other links from relay node k * to user m * , that is, for the link from relay node k≠k * to user m≠m * , the indicator variable Expressed as:
则基站到中继节点k在子载波n上的发射功率由下式算出: Then the transmit power from base station to relay node k on subcarrier n is calculated by the following formula:
第四步:更新迭代轮次i=i+1,并采用下面的式子更新中继和基站功率调整因子 Step 4: Update iteration round i=i+1, and use the following formula to update relay and base station power adjustment factors
其中 表示中继节点k的最大功率约束, 表示基站的最大功率约束,α1(i)和α2(i)为迭代步长; in Denotes the maximum power constraint of relay node k, Indicates the maximum power constraint of the base station, α 1 (i) and α 2 (i) are the iteration step size;
第五步:根据第四步中的中继功率调整因子更新公式(8)和基站功率调整因子更新公式(9)的计算结果,判断发射功率是否收敛,如果不收敛,则返回第三步,如果收敛, 进入第六步; The fifth step: according to the calculation results of the relay power adjustment factor update formula (8) and the base station power adjustment factor update formula (9) in the fourth step, it is judged whether the transmission power converges, if not converged, then return to the third step, If convergent, enter the sixth step;
第六步:对于用户m=1,...,M,根据前面第三步到第五步迭代计算得到的载波和功率分配结果,按瞬时速率计算公式 Step 6: For users m=1,...,M, according to the carrier and power allocation results obtained through iterative calculations from the third to fifth steps above, calculate the formula according to the instantaneous rate
计算当前瞬时速率Rm(t),并按平均速率 计算公式 Calculate the current instantaneous rate R m (t), and calculate the average rate Calculation formula
更新平均速率 式中T为滑动窗口长度; update average rate where T is the length of the sliding window;
第七步:更新时隙t=t+1,返回第二步计算下一时隙的资源分配方案。 Step 7: update time slot t=t+1, return to step 2 to calculate the resource allocation scheme for the next time slot. the
与现有资源分配技术相比,本发明的资源分配针对的是未来通信中具有普遍意义的多用户、多中继系统,并且是在保证下行通信用户间公平性情况下进行的资源分配。本发明将资源分配过程中涉及到的中继选择、子载波分配和功率分配问题进行联合优化,并且基于分解理论和凸优化理论,给出了最优的资源分配方法。由于本发明为每个子载波选择最合适的中继,并将其分配给最优的中继-用户链路,同时基站和各中继在各个子载波上进行自适应功率分配,通过引入功率调整因子,经过若干次迭代,可以保证总功率收敛,因此可以优化系统的吞吐量。同时,本发明在进行中继选择和载波分配过程中在选择最优链路时是以保证用户间公平性为目标,同时进行功率分配的时候也以用户的平均速率作为其中一个考察变量,因此可以保证用户间资源分配近似严格的公平性。综上,本发明提出的资源分配方法不仅能够优化系统吞吐量,同时能够保证用户间具有近似严格的公平性。 Compared with the existing resource allocation technology, the resource allocation of the present invention is aimed at multi-user and multi-relay systems with universal significance in future communication, and is resource allocation under the condition of ensuring the fairness among downlink communication users. The invention jointly optimizes the relay selection, subcarrier allocation and power allocation problems involved in the resource allocation process, and provides the optimal resource allocation method based on the decomposition theory and the convex optimization theory. Since the present invention selects the most suitable relay for each subcarrier and assigns it to the optimal relay-user link, at the same time the base station and each relay perform adaptive power allocation on each subcarrier, by introducing power adjustment Factor, after several iterations, the total power can be guaranteed to converge, so the throughput of the system can be optimized. At the same time, the present invention aims to ensure fairness among users when selecting the optimal link in the process of relay selection and carrier allocation, and also uses the average rate of users as one of the investigation variables when performing power allocation, so Approximate strict fairness of resource allocation among users can be guaranteed. In summary, the resource allocation method proposed by the present invention can not only optimize system throughput, but also ensure approximately strict fairness among users. the
附图说明 Description of drawings
图1为本发明正交频分多址接入中继通信系统的资源分配方法的原理框图; Fig. 1 is the functional block diagram of the resource allocation method of OFDMA relay communication system of the present invention;
图2为本发明正交频分多址接入中继通信系统的资源分配方法的硬件实现系统图; Fig. 2 is the hardware realization system diagram of the resource allocation method of OFDMA access relay communication system of the present invention;
图3为两种算法下系统吞吐量对比图; Figure 3 is a comparison chart of system throughput under the two algorithms;
图4为两种算法下用户公平性对比图。 Figure 4 is a comparison of user fairness under the two algorithms. the
具体实施方式 Detailed ways
以下结合附图说明本发明的实施方案。 Embodiments of the present invention are described below in conjunction with the accompanying drawings. the
实施例1: Example 1:
本实施例采用下行OFDAM中继蜂窝网络,小区半径为1km,内环半径为0.6km,各中继节点均匀的分布在内环上,用户的位置随机产生,并且均匀地分布在内外环之间。具体仿真参数设置如表1所示。仿真统计1000次资源分配的平均结果,从系统吞吐量和用户公平性两方面来考察本专利提出的资源分配方法的性能。 This embodiment adopts the downlink OFDAM relay cellular network, the radius of the cell is 1km, and the radius of the inner ring is 0.6km. The relay nodes are evenly distributed on the inner ring, and the positions of users are randomly generated and evenly distributed between the inner and outer rings. . The specific simulation parameter settings are shown in Table 1. The average result of 1000 times of resource allocation is calculated by simulation, and the performance of the resource allocation method proposed in this patent is examined from two aspects of system throughput and user fairness. the
表1.参数设置 Table 1. Parameter settings
本实施例在基站端依次执行以下具体操作步骤: In this embodiment, the following specific operation steps are sequentially performed at the base station:
第一步:设时隙编号为t,对于系统中每一个用户m=1,...,M,以 表示在时隙t计算得到的用户m的平均速率,初始化在时隙t=0时用户m的平均速率 为非负值,M为系统中的总用户数; The first step: set the time slot number as t, for each user in the system m=1,...,M, with Indicates the average rate of user m calculated at time slot t, and initializes the average rate of user m at time slot t=0 is a non-negative value, and M is the total number of users in the system;
第二步:设迭代轮次为i,对于每一个中继节点k=1,...,K,以μk(i)表示中继节点k在迭代轮次i的功率调整因子,η(i)表示基站在迭代轮次i的功率调整因子,初始化中继节点k在迭代轮次i=0的功率调整因子μk(0)以及基站在迭代轮次i=0的功率调整因子η(0)为非负数,K为系统中的中继节点数; Second step: set the iteration round as i, for each relay node k=1,..., K, express the power adjustment factor of relay node k in iteration round i with μ k (i), η( i) represents the power adjustment factor of the base station in iteration round i, initializes the power adjustment factor μ k (0) of relay node k in iteration round i=0 and the power adjustment factor η( 0) is a non-negative number, and K is the number of relay nodes in the system;
基站根据中继节点反馈的信道状态信息更新已存储的信息:对于所有的中继节点k=1,...,K,和用户m=1,...,M,更新基站到中继节点k在子载波n上由小尺度衰落产生的信道增益 更新中继节点k到用户m在子载波n上由小尺度衰落产生的信道增益 更新基站和中继节点k之间的路径损耗lsk,更新中继节点k和用户m之间的路径损耗lkm; The base station updates the stored information according to the channel state information fed back by the relay node: for all relay nodes k=1,...,K, and users m=1,...,M, update the base station to the relay node k channel gain due to small-scale fading on subcarrier n Update channel gain from relay node k to user m on subcarrier n caused by small-scale fading Update the path loss l sk between the base station and relay node k, and update the path loss l km between relay node k and user m;
第三步:记系统中子载波总数为N,对于每一个子载波n=1,...,N,根据当前各用户的平均速率 基站功率调整因子η(i),中继功率调整因子μk(i),和基站到中继节点k在子载波n上由小尺度衰落产生的信道增益 中继节点k到用户m在子载波n上由小尺度衰落产生的信道增益 基站和中继节点k之间的路径损耗lsk,中继节点k和用户m之间的路径损耗,分别计算当前在该载波上的功率分配结果以及该载波在链路上的分配结果; The third step: record the total number of subcarriers in the system as N, for each subcarrier n=1,...,N, according to the average rate of each user at present Base station power adjustment factor η(i), relay power adjustment factor μ k (i), and channel gain from base station to relay node k on subcarrier n caused by small-scale fading Channel gain from relay node k to user m on subcarrier n caused by small-scale fading The path loss l sk between the base station and the relay node k, the path loss between the relay node k and the user m, respectively calculate the current power allocation result on the carrier and the allocation result of the carrier on the link;
由下式得出功率分配结果:中继节点k到用户m在子载波n上的发射功率 The power allocation result is obtained by the following formula: the transmit power from relay node k to user m on subcarrier n
式(1)中W为系统总带宽,被分为N个子载波,运算符[x]+=max{x,0},即表示取数值x和0中的较大值,前一个中间变量 和后一个中间变量 分别为 In formula (1), W is the total bandwidth of the system, which is divided into N subcarriers. The operator [x] + =max{x, 0} means to take the larger value of x and 0. The previous intermediate variable and the latter intermediate variable respectively
式(3)中N0为系统中的单边带噪声功率谱密度,信噪比间隙Γ是目标误比特率BER的函数,Γ=-ln(5BER)/1.5; In formula (3), N 0 is the SSB noise power spectral density in the system, and the signal-to-noise ratio gap Γ is a function of the target bit error rate BER, Γ=-ln(5BER)/1.5;
根据中继节点k到用户m在子载波n上的发射功率公式(1)求得的中继节点k到用户m在子载波n上的发射功率 的值,计算中继节点k到用户m在子载波n上的传输速率 The transmit power from relay node k to user m on subcarrier n calculated according to the transmit power formula (1) from relay node k to user m on subcarrier n The value of , calculate the transmission rate from relay node k to user m on subcarrier n
根据中继节点k到用户m在子载波n上的传输速率公式(4)求得的传输速率 进行子载波分配:对于某个子载波n,首先选取 最大的(k,m)组合,即 The transmission rate calculated according to the transmission rate formula (4) from relay node k to user m on subcarrier n Perform subcarrier allocation: For a certain subcarrier n, first select The largest (k,m) combination, i.e.
然后将子载波n分配给选取的(k*,m*),即分配给中继节点k*到用户m*的链路;定义表示载波分配的指示变量 表示将载波n分配给中继节点k到用户m的链路,否则,指示变量 对于中继节点k*到用户m*的链路,指示变量 而对于中继节点k*到用户m*以外的其他链路,即对于中继节点k≠k*到用户m≠m*的链路,指示变量 用公式表示如下: Then assign the subcarrier n to the selected (k * , m * ), that is, assign to the link from the relay node k * to the user m * ; define the indicator variable representing the carrier assignment Indicates that carrier n is allocated to the link from relay node k to user m, otherwise, the indicator variable For a link from relay node k * to user m * , the indicator variable And for other links from relay node k * to user m * , that is, for the link from relay node k≠k * to user m≠m * , the indicator variable The formula is as follows:
则基站到中继节点k在子载波n上的发射功率由下式算出: Then the transmit power from base station to relay node k on subcarrier n is calculated by the following formula:
第四步:更新迭代轮次i=i+1,并采用下面的式子更新中继和基站功率调整因子 Step 4: Update iteration round i=i+1, and use the following formula to update relay and base station power adjustment factors
其中 表示中继节点k的最大功率约束, 表示基站的最大功率约束,α1(i)和α2(i)为迭代步长; in Denotes the maximum power constraint of relay node k, Indicates the maximum power constraint of the base station, α 1 (i) and α 2 (i) are the iteration step size;
第五步:根据第四步中的中继功率调整因子更新公式(8)和基站功率调整因子更新公式(9)的计算结果,判断发射功率是否收敛,如果不收敛,则返回第三步,如果收敛,进入第六步; The fifth step: according to the calculation results of the relay power adjustment factor update formula (8) and the base station power adjustment factor update formula (9) in the fourth step, it is judged whether the transmission power converges, if not converged, then return to the third step, If it converges, go to the sixth step;
第六步:对于用户m=1,...,M,根据前面第三步到第五步迭代计算得到的载波和功率分配结果,按瞬时速率计算公式 Step 6: For users m=1,...,M, according to the carrier and power allocation results obtained through iterative calculations from the third to fifth steps above, calculate the formula according to the instantaneous rate
计算当前瞬时速率Rm(t),并按平均速率 计算公式 Calculate the current instantaneous rate R m (t), and calculate the average rate Calculation formula
更新平均速率 式中T为滑动窗口长度; update average rate where T is the length of the sliding window;
第七步:更新时隙t=t+1,返回第二步计算下一时隙的资源分配方案。 Step 7: update time slot t=t+1, return to step 2 to calculate the resource allocation scheme for the next time slot. the
附图1为本发明正交频分多址接入中继通信系统的资源分配方法的原理框图:在基站端,初始化步骤1在起始时刻初始化时隙编号t=0,初始化各用户的平均速率 为非负值;信道更新步骤2初始化迭代轮次i=0,初始化中继功率调整因子μk(0),k=1,...,K和基站功率调整因子η(0)为非负数,更新信道状态信息;资源分配步骤3对每个子载波,分别按照中继节点的发射功率计算公式(1)、前一个中间变量 的计算公式(2)、后一个中间变量 的计算公式(3)计算中继功率分配结果,之后按照传输速率公式(4)计算链路速率,并根据链路选取公式(5)、载波分配公式(6)求得该载波分配结果,最后由基站发射功率计算公式(7)得到基站功率分配结果;迭代步骤4更新迭代轮次i=i+1,并按照中继功率调整因子更新公式(8)、基站功率调整因子更新公式(9)分别更新中继和基站功率调整因子μk(i)和η(i);收敛判别步骤5判断发射功率是否收敛,如果不收敛,则返回资源分配步骤3,如果收敛,进入速率更新步骤6;速率更新步骤6根据资源分配步骤3到收敛判别步骤5迭代计算得到的载波和功率分配结果,按照瞬时速率计算公式(10)计算当前瞬时速率,并按照平均速率更新公式(11)更新平均速率;时隙更新步骤7更新时隙t=t+1,返回信道更新步骤2计算下一时隙的资源分配方案。 Accompanying drawing 1 is the functional block diagram of the resource allocation method of OFDMA relay communication system of the present invention: at base station end, initialization step 1 initializes time slot number t=0 at initial moment, initializes the average of each user rate Is a non-negative value; channel update step 2 initialization iteration round i=0, initialization relay power adjustment factor μ k (0), k=1,..., K and base station power adjustment factor η (0) are non-negative numbers , update the channel state information; resource allocation step 3 for each subcarrier, according to the transmit power calculation formula (1) of the relay node, the previous intermediate variable Calculation formula (2), the latter intermediate variable The calculation formula (3) calculates the relay power allocation result, and then calculates the link rate according to the transmission rate formula (4), and obtains the carrier allocation result according to the link selection formula (5) and the carrier allocation formula (6), and finally The base station power allocation result is obtained by base station transmission power calculation formula (7); iterative step 4 updates iteration round i=i+1, and updates formula (8) according to relay power adjustment factor and base station power adjustment factor update formula (9) Respectively update relay and base station power adjustment factors μ k (i) and η (i); Convergence discrimination step 5 judges whether the transmission power is convergent, if not convergent, then returns to resource allocation step 3, if convergent, enters rate update step 6; The rate update step 6 calculates the current instantaneous rate according to the instantaneous rate calculation formula (10) according to the carrier and power allocation results iteratively calculated from the resource allocation step 3 to the convergence judgment step 5, and updates the average rate according to the average rate update formula (11); The time slot update step 7 updates the time slot t=t+1, and returns to the channel update step 2 to calculate the resource allocation scheme for the next time slot.
图2为本发明正交频分多址接入中继通信系统的资源分配方法的硬件实现系统示意图,该实现系统包括MSC-51单片机A、外设接口RS-232C、可擦除可编程只读存储器EPROM和随机存取存储器RAM。将可擦除可编程只读存储器EPROM和随机存取存储器RAM连接到单片机A上,单片机A与外设接口RS-232C相互连接。实现系统的输入参数包括各系统参数B:有总带宽W、子载波数目N、信噪比间隙Γ、噪声功率谱密度N0、中继最大功率约束 基站最大功率约束 中继节点的数目K和用户数目M;还包括对于所有中继节点k=1,...,K和用户m=1,...,M,在各子载波n=1,...,N上的信道参数C:有基站到中继节点k在子载波n上由小尺度衰落产生的信道增益 中继节点k到用户m在子载波n上由小尺度衰落产生的信道增益 基站和中继节点k之间的路径损耗lsk以及中继节点k和用户m之间的路径损耗lkm。实现系 统的输出为对于所有中继节点k=1,...,K和用户m=1,...,M,在各子载波n=1,...,N上的资源分配结果D:有指示载波n是否分配给中继节点k到用户m链路的载波分配指示变量 中继节点k到用户m在子载波n上的发射功率 以及基站到中继节点k在子载波n上的发射功率 将系统参数B和信道参数C通过外设接口RS-232C输入到单片机A,经过运算处理得到资源分配结果D,结果由单片机A通过外设接口RS-232C输出。 Fig. 2 is the hardware implementation system diagram of the resource allocation method of OFDMA access relay communication system of the present invention, and this implementation system comprises MSC-51 single-chip microcomputer A, peripheral interface RS-232C, erasable programmable only Read memory EPROM and random access memory RAM. Connect the erasable programmable read-only memory EPROM and the random access memory RAM to the single-chip microcomputer A, and the single-chip microcomputer A and the peripheral interface RS-232C are connected to each other. The input parameters to realize the system include various system parameters B: the total bandwidth W, the number of subcarriers N, the signal-to-noise ratio gap Γ, the noise power spectral density N 0 , and the maximum relay power constraint Base station maximum power constraint The number of relay nodes K and the number of users M; also include for all relay nodes k=1,...,K and users m=1,...,M, in each subcarrier n=1,... , channel parameter C on N: channel gain from base station to relay node k on subcarrier n caused by small-scale fading Channel gain from relay node k to user m on subcarrier n caused by small-scale fading The path loss l sk between the base station and relay node k and the path loss l km between relay node k and user m. The output of the realization system is the resource allocation result D on each subcarrier n=1,...,N for all relay nodes k=1,...,K and users m=1,...,M : There is a carrier allocation indicator variable indicating whether carrier n is allocated to the link from relay node k to user m Transmit power from relay node k to user m on subcarrier n and the transmit power from base station to relay node k on subcarrier n Input the system parameter B and channel parameter C to the single-chip computer A through the peripheral interface RS-232C, and obtain the resource allocation result D after calculation and processing, and the result is output by the single-chip computer A through the peripheral interface RS-232C.
将本发明的资源分配方法的性能与常用的一种采用启发式算法的方法进行比较。在对比的方法中,每个用户选择与其距离最近的中继节点传输数据,采用贪婪算法进行子载波分配,即将每个子载波分配给在其上信道条件最好的用户,并且基站和各个中继在它们传输的各载波上平均分配功率。下面从系统吞吐量和用户公平性两方面来考察方法的性能。 The performance of the resource allocation method of the present invention is compared with a commonly used method using a heuristic algorithm. In the comparative method, each user selects the relay node with the closest distance to transmit data, and the greedy algorithm is used for subcarrier allocation, that is, each subcarrier is allocated to the user with the best channel condition on it, and the base station and each relay node Power is evenly distributed across the carriers on which they transmit. In the following, we examine the performance of the method from two aspects of system throughput and user fairness. the
附图3给出了两种算法下随用户数变化系统吞吐量的变化曲线。上面的曲线a为采用本发明的资源分配方法得到的曲线,下面的曲线b为采用对比方法得到的曲线。从图中可以看出,在不同用户数情况下,采用本发明的资源分配方法得到的系统吞吐量性能都超过对比方法。这是因为本发明的方法为每个载波选择合适的中继,并且进行自适应分配功率,提高了系统吞吐量。 Figure 3 shows the variation curves of the system throughput with the number of users under the two algorithms. The upper curve a is a curve obtained by using the resource allocation method of the present invention, and the lower curve b is a curve obtained by using a comparison method. It can be seen from the figure that in the case of different numbers of users, the system throughput performance obtained by adopting the resource allocation method of the present invention exceeds that of the comparison method. This is because the method of the present invention selects a suitable relay for each carrier, and performs adaptive power allocation, thereby improving system throughput. the
采用公平性因子来考察算法的公平性,定义公平性因子FI如下 The fairness factor is used to examine the fairness of the algorithm, and the fairness factor FI is defined as follows
其中 为用户m经过1000次资源分配的平均速率。当所有用户平均速率相等时,公平性因子的值为1。越接近1,说明用户间公平性越好。 in is the average rate of 1000 resource allocations for user m. When the average rate of all users is equal, the value of the fairness factor is 1. The closer to 1, the better the fairness among users.
附图4给出了两种算法在不同用户数下公平性因子变化曲线,其中上面的曲线c为采用本发明的资源分配方法得到的曲线,下面的曲线d为采用对比方法得到的曲线。可见,在不同用户数情况下,采用本发明的资源分配方法得到的用户公平性因子均非常接近1,说明当系统中具有不同数目用户时,本发明的方法均能够保证各用户的平均速率近似相等,具有近似严格的公平性。而从采用对比方法得到的公平性因子曲线中可以看出,随着用户数增加,公平性迅速下降。这是因为对比方法采用贪婪算法分配载波,当用户数增多时,一些处于小区边缘的用户由于信道状态差而一直无法获得载波资源。 Accompanying drawing 4 has given the change curve of the fairness factor of the two algorithms under different numbers of users, wherein the upper curve c is the curve obtained by using the resource allocation method of the present invention, and the lower curve d is the curve obtained by using the comparison method. It can be seen that in the case of different numbers of users, the user fairness factors obtained by using the resource allocation method of the present invention are all very close to 1, indicating that when there are different numbers of users in the system, the method of the present invention can ensure that the average rate of each user is approximately equal, with approximately strict fairness. From the fairness factor curve obtained by using the comparison method, it can be seen that as the number of users increases, the fairness decreases rapidly. This is because the comparison method uses a greedy algorithm to allocate carriers. When the number of users increases, some users at the edge of the cell have been unable to obtain carrier resources due to poor channel conditions. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102666095A CN101917768B (en) | 2010-08-25 | 2010-08-25 | User fairness resource allocation method for orthogonal frequency division multiple access relay system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102666095A CN101917768B (en) | 2010-08-25 | 2010-08-25 | User fairness resource allocation method for orthogonal frequency division multiple access relay system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101917768A CN101917768A (en) | 2010-12-15 |
CN101917768B true CN101917768B (en) | 2013-03-13 |
Family
ID=43325122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102666095A Expired - Fee Related CN101917768B (en) | 2010-08-25 | 2010-08-25 | User fairness resource allocation method for orthogonal frequency division multiple access relay system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101917768B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102164413B (en) * | 2010-12-21 | 2014-05-07 | 浙江大学 | Method for transmitting multi-user access single relay based on orthogonal frequency division multiple access |
CN102781101B (en) * | 2012-01-06 | 2015-01-07 | 宁波大学 | Resource distribution method in orthogonal frequency division multiple access (OFDMA) relay system |
CN103780532B (en) * | 2014-01-16 | 2018-01-05 | 广东省电信规划设计院有限公司 | Upgoing O FDM system subcarriers and power distribution method and system |
CN104244434A (en) * | 2014-09-10 | 2014-12-24 | 余凤莲 | Repeater system resource self-adaption scheduling method based on LTE |
CN104270792A (en) * | 2014-09-10 | 2015-01-07 | 余凤莲 | LTE-based repeater system resource adaptive scheduling system |
CN106211348B (en) * | 2015-05-07 | 2019-07-05 | 电信科学技术研究院 | A kind of method and device of multiple access access |
CN108128308B (en) * | 2017-12-27 | 2020-04-14 | 长沙理工大学 | A vehicle state estimation system and method for a distributed drive electric vehicle |
US20210204303A1 (en) * | 2019-12-26 | 2021-07-01 | Vinod Kristem | Transmit power allocation and modulation coding scheme for multi-user orthogonal frequency-division multiple access |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1870456A (en) * | 2006-06-17 | 2006-11-29 | 中国科学技术大学 | Real-time service resource distribution method of orthogonal frequency division multisystem |
CN1885748A (en) * | 2006-06-28 | 2006-12-27 | 中国科学技术大学 | Mixed service resource distributing method for OFDM system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006325632B2 (en) * | 2005-12-13 | 2009-10-08 | Lg Electronics Inc. | Communication method using relay station in mobile communication system |
KR20070080265A (en) * | 2006-02-07 | 2007-08-10 | 삼성전자주식회사 | An apparatus and method for opportunistic packet scheduling in a wireless access communication system using a multi-hop relay method |
-
2010
- 2010-08-25 CN CN2010102666095A patent/CN101917768B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1870456A (en) * | 2006-06-17 | 2006-11-29 | 中国科学技术大学 | Real-time service resource distribution method of orthogonal frequency division multisystem |
CN1885748A (en) * | 2006-06-28 | 2006-12-27 | 中国科学技术大学 | Mixed service resource distributing method for OFDM system |
Also Published As
Publication number | Publication date |
---|---|
CN101917768A (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101917768B (en) | User fairness resource allocation method for orthogonal frequency division multiple access relay system | |
JP5744746B2 (en) | Method and apparatus for power allocation in a multi-carrier system | |
Ksairi et al. | Resource allocation for downlink cellular OFDMA systems—part I: optimal allocation | |
Liu et al. | Hierarchical radio resource optimization for heterogeneous networks with enhanced inter-cell interference coordination (eICIC) | |
US20120002567A1 (en) | Cross-layer optimization for next-generation wifi systems | |
CN107613555A (en) | Non-orthogonal multiple access cellular and terminal direct access dense network resource management and control method | |
CN101483874A (en) | Uplink resource allocation method for distributed antenna MIMO-OFDM/SDMA system | |
Shin et al. | Can one achieve multiuser diversity in uplink multi-cell networks? | |
CN104703270A (en) | User access and power distribution method suitable for heterogeneous wireless cellular network | |
CN103188808B (en) | A kind of user fairness resource allocation method of heterogeneous wireless network | |
Zhong et al. | Joint optimal energy-efficient cooperative spectrum sensing and transmission in cognitive radio | |
CN101998612A (en) | Resource distribution method and device for two-hop multi-relay orthogonal frequency division multiplexing system | |
CN107734697A (en) | Low-complexity multi-user group technology based on NOMA systems | |
Haci | Non-orthogonal multiple access (NOMA) with asynchronous interference cancellation | |
El-Mokadem et al. | BER performance evaluation for the downlink NOMA system over different fading channels with different modulation schemes | |
CN105979589A (en) | Method and system for allocating energy efficient resources of heterogeneous network | |
CN111682915B (en) | A kind of spectrum resource self-allocation method | |
Shadmand et al. | Multi-user time-frequency downlink scheduling and resource allocation for LTE cellular systems | |
CN102752256B (en) | Multi-user collaborative ofdm system resource allocation methods and system | |
Hassan et al. | Resource allocation in multiuser OFDMA system: Feasibility and optimization study | |
Sastry et al. | A Novel Approach to the Resource Allocation for the Cell Edge Users in 5G. | |
CN103200690A (en) | Distributed resource allocation method of heterogeneous wireless network | |
Tehrani et al. | Resource allocation in heterogenous full-duplex OFDMA networks: Design and analysis | |
CN103491620B (en) | Based on the distributed uplink power control method of user-driven in a kind of heterogeneous network | |
Wang et al. | Dynamic fractional frequency reused proportional fair in time and frequency scheduling in OFDMA networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130313 Termination date: 20150825 |
|
EXPY | Termination of patent right or utility model |