CN101895952B - Multi-route establishment method and parallel data transmission method of wireless sensor network - Google Patents
Multi-route establishment method and parallel data transmission method of wireless sensor network Download PDFInfo
- Publication number
- CN101895952B CN101895952B CN2010102283238A CN201010228323A CN101895952B CN 101895952 B CN101895952 B CN 101895952B CN 2010102283238 A CN2010102283238 A CN 2010102283238A CN 201010228323 A CN201010228323 A CN 201010228323A CN 101895952 B CN101895952 B CN 101895952B
- Authority
- CN
- China
- Prior art keywords
- route
- node
- routing
- destination node
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000005540 biological transmission Effects 0.000 title claims abstract description 59
- 238000012790 confirmation Methods 0.000 claims abstract description 4
- 230000004044 response Effects 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 14
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种无线传感器网络的多路由建立方法及并行数据传输方法,更具体的说,尤其涉及一种在网络层实现的无线传感器网络低延时传输的多路由方法,以及一种利用上述多路由实现数据并行传输的方法。The present invention relates to a multi-routing establishment method of a wireless sensor network and a parallel data transmission method, more specifically, to a multi-routing method for low-delay transmission of a wireless sensor network implemented at the network layer, and a method utilizing the above-mentioned A method for parallel transmission of data by multiple routes.
背景技术 Background technique
无线传感器网络是通过把具有感知能力的节点采用分布式方式部署在需要感知或监控的场所,需要进行感知或监控的物理量通常采用无线、多跳的方式传递给汇聚节点,从而实现对周围环境无线感知目的的短距离无线通信技术。The wireless sensor network deploys nodes with perception capabilities in a distributed manner in places that need to be sensed or monitored, and the physical quantities that need to be sensed or monitored are usually transmitted to the aggregation node in a wireless and multi-hop manner, thereby realizing wireless monitoring of the surrounding environment. Short-range wireless communication technology for perception purposes.
无线传感器网络技术的核心是通信协议栈的设计。目前无论在国际上还是在国内多数具体应用的通信协议栈都是采用基于IEEE 802.15.4标准和ZigBee标准相结合的方式进行设计。IEEE 802.15.4标准是对应无线传感器的物理层和MAC层的协议栈设计;而ZigBee标准是对应网络层和应用层的协议栈设计。其中,网络层协议栈的作用是:组建一个网络、提供设备加入和离开网络的管理机制、路由发现和路由维护、一跳邻居的发现和相邻节点信息的保存、网络层传输数据的机制等。The core of wireless sensor network technology is the design of communication protocol stack. At present, most of the communication protocol stacks for specific applications both in the world and in China are designed based on the combination of IEEE 802.15.4 standard and ZigBee standard. The IEEE 802.15.4 standard is a protocol stack design corresponding to the physical layer and MAC layer of wireless sensors; and the ZigBee standard is a protocol stack design corresponding to the network layer and application layer. Among them, the role of the network layer protocol stack is to establish a network, provide management mechanisms for devices to join and leave the network, route discovery and route maintenance, discovery of one-hop neighbors and storage of adjacent node information, mechanisms for network layer data transmission, etc. .
其中,现有的路由发现和路由维护、一跳邻居的发现以及传输数据的机制都是支持单路由建立和单路由数据传输,因为这样可以使得在当前激活路由中的节点保持工作状态,而不在当前激活路由中的节点保持休眠状态,从而可以节省节点的功耗,提高节点的使用寿命。虽然从源节点到目的节点之间的转发节点也保存多路由信息,但是这是为了在当前路由出现故障时能尽快建立最新的路由,从本质上看,还是单路由数据传输模式。当从源节点到目的节点中间的转发节点数量较多时,网络传输延时就会很大,这就无法满足有些应用场景的低延时传输要求,比如入侵检测、报警数据的传输等,就很难满足其低延时、实时性的数据传输要求。Among them, the existing route discovery and route maintenance, the discovery of one-hop neighbors, and the mechanism of data transmission all support single-route establishment and single-route data transmission, because this can keep the nodes in the current active route The nodes in the currently active route remain in a dormant state, thereby saving the power consumption of the nodes and improving the service life of the nodes. Although the forwarding node between the source node and the destination node also saves multi-route information, this is to establish the latest route as soon as possible when the current route fails. In essence, it is still a single-route data transmission mode. When the number of forwarding nodes between the source node and the destination node is large, the network transmission delay will be very large, which cannot meet the low-latency transmission requirements of some application scenarios, such as intrusion detection, alarm data transmission, etc. It is difficult to meet its low-latency, real-time data transmission requirements.
发明内容 Contents of the invention
本发明为了克服上述技术问题的缺点,提供了一种在网络层实现的无线传感器网络低延时传输的多路由建立方法及一种基于该多路由的并行数据传送方法。In order to overcome the disadvantages of the above-mentioned technical problems, the present invention provides a multi-routing establishment method for wireless sensor network low-latency transmission realized at the network layer and a parallel data transmission method based on the multi-routing.
本发明的无线传感器网络多路由建立方法,所述的无线传感器网络采用应答方式建立网络层的传输模式,其特别之处在于,所述的多路由建立方法包括以下步骤:In the wireless sensor network multi-routing establishment method of the present invention, the wireless sensor network adopts a response mode to establish a transmission mode of the network layer, and its special feature is that the multi-routing establishment method includes the following steps:
a.由需要发送数据的源节点,向其周围的转发节点发送到目的节点的路由请求命令;a. The source node that needs to send data sends a routing request command to the destination node to the forwarding nodes around it;
b.转发节点对是否存在到达目的节点的已有路由进行判断;如果存在已有路由,则执行步骤c;如果不存在已有路由,则执行步骤g;b. The forwarding node judges whether there is an existing route to the destination node; if there is an existing route, then perform step c; if there is no existing route, then perform step g;
c.把判断出的已有路由作为从源节点到目的节点的多路由中的一部分进行保留;执行判断的转发节点向其上一级节点发送路由应答命令,进行双向路由确认;然后,执行下述步骤d;c. Retain the existing route judged as part of the multi-routing from the source node to the destination node; the forwarding node that executes the judgment sends a routing response command to its upper node for two-way routing confirmation; then, execute the following Step d;
d.转发节点对是否存在到达目的节点的新的路由进行判断;如果判断存在新的路由,则执行步骤e;如果判断不存在新的路由则执行步骤f;d. the forwarding node judges whether there is a new route to the destination node; if it is judged that there is a new route, then step e is executed; if it is judged that there is no new route, then step f is executed;
e.新的路由作为从源节点到目的节点的多路由的一部分进行保留;e. The new route is retained as part of the multi-route from the source node to the destination node;
f.取消对该转发节点其他新的路由建立,进行下一级的路由请求;f. Cancel the establishment of other new routes for the forwarding node, and make a next-level routing request;
g.转发节点对是否存在到达目的节点的新的路由进行判断;如果判断存在新的路由,则执行步骤h;如果判断不存在新的路由则执行步骤i;g. the forwarding node judges whether there is a new route to the destination node; if it is judged that there is a new route, then step h is executed; if it is judged that there is no new route, then step i is executed;
h.新的路由作为从源节点到目的节点的多路由的一部分进行保留;h. The new route is retained as part of the multi-route from the source node to the destination node;
i.取消对该转发节点的路由建立。i. Cancel the establishment of the route to the forwarding node.
上述方法中所述的转发节点是源节点周围的节点,即与源节点直接通信的节点。在路由建立的过程中,源节点周围的转发节点发送到目的节点的路由请求命令之后,转发节点首先进行是否有已有路由的判断,然后再进行是否有新的路由的判断。在源节点与目的节点之间建立多条路由,可实现数据从源节点到目的节点的低延时传输。The forwarding nodes mentioned in the above method are the nodes around the source node, that is, the nodes that directly communicate with the source node. In the process of route establishment, after the forwarding nodes around the source node send the route request command to the destination node, the forwarding node first judges whether there is an existing route, and then judges whether there is a new route. Establishing multiple routes between the source node and the destination node can realize low-latency transmission of data from the source node to the destination node.
进一步地,本发明的无线传感器网络多路由建立方法,步骤d和步骤g中所述的转发节点是否存在新的路由的判断方法包括以下步骤:Further, in the wireless sensor network multi-route establishment method of the present invention, the method for judging whether there is a new route in the forwarding node described in step d and step g includes the following steps:
1)转发节点向其周围的下一级转发节点发送到目的节点的路由请求命令;1) The forwarding node sends a routing request command to the destination node to the next level of forwarding nodes around it;
2)判断转发节点是否在预先设定的时间间隔内接到下一级节点的路由应答命令,如果在预先设定的时间间隔内接到路由应答命令,则存在到达目的节点的路由;如果在预先设定的时间间隔内没有接到路由应答命令,则不存在到达目的节点的路由;2) Judging whether the forwarding node receives the routing response command of the next-level node within the preset time interval, if it receives the routing response command within the preset time interval, then there is a route to the destination node; If no routing response command is received within the preset time interval, there is no route to the destination node;
所述的源节点与目的节点之间的转发节点到目的节点路由的建立方法与权利要求1中所述的从源节点到目的节点路由的建立方法相同。The method for establishing the route from the forwarding node to the destination node between the source node and the destination node is the same as the method for establishing the route from the source node to the destination node described in
上述对技术方案的进一步限定,给出了转发节点是否有新的路由的判断方法,使得从源节点到目的节点路由的建立方法更完善。在源节点到目的节点之间的转发节点比较多的情况下,规定源节点与目的节点之间的转发节点到目的节点路由的建立方法与源节点到目的节点路由的建立方法相同,可依据相同的方法,在源节点与目的节点之间建立起多条路由。在源节点到目的节点的路由建立过程中,源节点向其周围的转发节点发送路由请求命令,该转发节点首先判断是否有已有路由存在,再向其下级转发节点发送路由请求命令;下级转发节点首先判断是否已有路由存在,再向其下级转发节点发送路由请求命令,并按照这种方法依次进行下去;直至路由请求命令发送到目的节点或与目的节点没有联系的转发节点;当目的节点接收到路由请求命令后,直接给路由中的最后一个转发节点发送路由应答命令,然后转发节点再逐次把路由应答命令向上级转发节点发送;如果最终接收路由请求命令的节点为与目的节点没有联系的转发节点,则目的节点不会对该转发节点发送路由应答命令,该转发节点也不会对其上级节点发送路由应答命令。The above-mentioned further limitation of the technical solution provides a method for judging whether the forwarding node has a new route, so that the method for establishing the route from the source node to the destination node is more perfect. In the case that there are many forwarding nodes between the source node and the destination node, it is stipulated that the establishment method of the route from the forwarding node to the destination node between the source node and the destination node is the same as the establishment method of the route from the source node to the destination node, and can be based on the same A method to establish multiple routes between the source node and the destination node. During the establishment of the route from the source node to the destination node, the source node sends a route request command to its surrounding forwarding nodes. The forwarding node first judges whether there is an existing route, and then sends a route request command to its subordinate forwarding nodes; The node first judges whether there is a route, and then sends a route request command to its subordinate forwarding node, and proceeds in this way; until the route request command is sent to the destination node or a forwarding node that has no connection with the destination node; when the destination node After receiving the routing request command, send the routing response command directly to the last forwarding node in the route, and then the forwarding node sends the routing response command to the upper forwarding node one by one; if the node that finally receives the routing request command is not in contact with the destination node Forwarding node, the destination node will not send a routing reply command to the forwarding node, and the forwarding node will not send a routing reply command to its superior node.
进一步地,本发明的无线传感器网络多路由建立方法,如果所述的源节点与目的节点之间的转发节点为目的节点,则相应的转发节点直接向其上一级节点发送路由应答命令,不进行是否有到达目的节点路由的判断。Further, in the wireless sensor network multi-routing establishment method of the present invention, if the forwarding node between the source node and the destination node is the destination node, the corresponding forwarding node directly sends a routing response command to its upper node, without It is judged whether there is a route to the destination node.
进一步地,本发明的无线传感器网络多路由建立方法,所述的多路由建立方法中网络层的命令格式基于ZigBee网络层命令建立,将ZigBee网络层命令的帧控制格式中的比特6和比特7的组合值定义为路由发现标志,将ZigBee网络层命令的帧控制格式中的比特13、比特14和比特15的组合定义为发现的多路由的路由号;将路由请求命令格式中的比特0定义为路由请求标志,用于标记是单路由请求还是多路由请求;将路由响应命令中的命令选择域字段的比特0、比特1和比特2的组合定义为路由号,用于表示当前的路由响应是从哪条路由返回的。所述的帧控制格式中的比特6和比特7,帧控制格式中的比特13、比特14和比特15,路由请求命令格式中的比特0,以及路由响应命令中的命令选择域字段的比特0、比特1和比特2均为现有命令的保留位,对这些没有定义的保留位进行定义,而其它各位的定义都保持不变,并没有增加新的命令,这就保证了很好的与现有ZigBee标准的兼容。Further, wireless sensor network multi-routing establishment method of the present invention, the command format of network layer in the described multi-routing establishment method is established based on ZigBee network layer command, bit 6 and bit 7 in the frame control format of ZigBee network layer command The combination value of is defined as the routing discovery flag, and the combination of bit 13, bit 14 and bit 15 in the frame control format of the ZigBee network layer command is defined as the routing number of the multi-routing found; the bit 0 in the routing request command format is defined as It is a routing request flag, which is used to mark whether it is a single routing request or a multi-routing request; the combination of bit 0,
进一步地,本发明的无线传感器网络多路由建立方法,所述的帧控制格式中的比特6和比特7的组合为00、01、10或11时代表的意义分别为禁止路由发现、允许路由发现、允许多路由发现、保留;所述的路由请求命令格式中的比特0为1表示多路由请求,为0表示单路由请求。Further, in the wireless sensor network multi-route establishment method of the present invention, when the combination of bit 6 and bit 7 in the frame control format is 00, 01, 10 or 11, the meanings are respectively prohibiting route discovery and allowing route discovery , allowing multiple routes to be discovered and reserved; bit 0 in the route request command format is 1 to indicate a multi-route request, and 0 to indicate a single-route request.
本发明的基于无线传感器网络多路由并行数据传输方法,不妨设由源节点到目的节点所建立的总的路由条数为m条,需要传输的数据包为n个,其特别之处征在于:所述的并行数据传输方法包括以下步骤:The multi-routing parallel data transmission method based on the wireless sensor network of the present invention may wish to set the total number of routes established by the source node to the destination node as m, and the data packets to be transmitted are n, and its special features are: The described parallel data transmission method comprises the following steps:
A.从m条路由中选取j条包含节点数最少的路由;A. Select j routes containing the least number of nodes from m routes;
B.将要发送的n个数据包中的1号数据包到j号数据包分别通过1号路由到j号路由发送;B. Send the No. 1 data packet to the No. j data packet in the n data packets to be sent through the No. 1 route to the No. j route respectively;
C.源节点检测1号路由到j号路由的状态,检测哪条路由先空闲出来,并把待发送的数据包沿着先空闲出来的路由发送到目的节点;C. The source node detects the status of
D.重复步骤C,直至n个数据包全部发送完毕;D. Repeat step C until all n data packets are sent;
E.目的节点将接收到的n个数据包按照包裹号依次拼接,即可恢复为源节点所要发送的数据。E. The destination node splices the received n data packets in order according to the package number, and then restores the data to be sent by the source node.
上面所述的基于无线传感器网络多路由的数据传输方法与现有的传输方法相比较,具有低延时的优点。因为现有无线传感器网络中的数据传输中只通过一条路由来进行数据传送,而本发明中的基于无线传感器网络多路由的数据传输方法依靠多条路由来进行数据的传送,对于相同数量的待传数据来说,利用本发明的数据传送方法在较少的时间内即可完成数据传送,使得其可满足许多低延时传输要求的场合。Compared with the existing transmission methods, the above-mentioned data transmission method based on the multi-routing of the wireless sensor network has the advantage of low delay. Because the data transmission in the existing wireless sensor network only transmits data through one route, but the data transmission method based on multiple routes in the wireless sensor network in the present invention relies on multiple routes for data transmission, for the same number of waiting For data transmission, the data transmission method of the present invention can be used to complete data transmission in less time, so that it can meet many occasions requiring low-latency transmission.
进一步地,本发明的基于无线传感器网络多路由的数据传输方法,假设Nmax为m条路由中最长的路由包含的节点数,从源节点到目的节点允许的最大平均传输延迟时间为T,每个转发节点处理一个数据包的最大处理延迟时间为τmax,其特征在于:所述j的数值可通过下式来确定:Further, in the wireless sensor network multi-routing data transmission method of the present invention, it is assumed that N max is the number of nodes included in the longest route among the m routes, and the maximum average transmission delay time allowed from the source node to the destination node is T, The maximum processing delay time for each forwarding node to process a data packet is τ max , which is characterized in that: the value of j can be determined by the following formula:
通过上式计算后,如果上述不等式右端的值小于m的值,则j取满足上述不等式条件的最小整数值;如果上述不等式右端的值大于或等于m的值,则j的取值为m。上述不等式给出了从源节点到目的节点路由条数j的取值计算方法,通过上式计算取得的路由在进行数据传输时,可实现数据传输的低延时要求。After calculation through the above formula, if the value of the right end of the above inequality is less than the value of m, then j takes the smallest integer value that satisfies the conditions of the above inequality; if the value of the right end of the above inequality is greater than or equal to the value of m, then the value of j is m. The above inequality gives the value calculation method of the number j of routes from the source node to the destination node. The route obtained through the above formula calculation can realize the low delay requirement of data transmission during data transmission.
本发明的有益效果是:利用本发明的多路由建立方法,可在源节点与目的节点之间建立起多条路由,从而使得从源节点到目的节点的数据可沿多条路由进行并行传输,有利于实现数据的低延时传输;本发明的路由建立方法中,转发节点到目的地节点的路由建立包括已有路由和新的路由两个建立过程,使得路由的建立过程更加的方便。本发明的基于无线传感器网络多路由的数据并行传输方法,所述的数据可通过选取的多条路由同时进行传输,实现了从源节点到目的节点数据的低延时传输。The beneficial effects of the present invention are: using the multi-route establishment method of the present invention, multiple routes can be established between the source node and the destination node, so that the data from the source node to the destination node can be transmitted in parallel along multiple routes, It is beneficial to realize low-latency transmission of data; in the routing establishment method of the present invention, the establishment of the route from the forwarding node to the destination node includes two establishment processes of an existing route and a new route, which makes the establishment process of the route more convenient. In the data parallel transmission method based on multiple routes of the wireless sensor network of the present invention, the data can be transmitted simultaneously through multiple selected routes, realizing the low-delay transmission of data from the source node to the destination node.
附图说明 Description of drawings
图1为本发明的多路由建立过程示意图;Fig. 1 is the schematic diagram of multi-route establishment process of the present invention;
图2为本发明利用多路由进行数据并行传输的原理示意图;Fig. 2 is the schematic diagram of the principle of the present invention utilizing multiple routes to carry out data parallel transmission;
图3为本发明的多路由建立过程的程序原理图。Fig. 3 is a program principle diagram of the multi-routing establishment process of the present invention.
具体实施方式Detailed ways
下面结合附图与实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1和图2所示的实线箭头RREQ表示路由请求命令,虚线箭头RREP表示路由应答命令。The solid line arrow RREQ shown in Fig. 1 and Fig. 2 indicates a routing request command, and the dotted line arrow RREP indicates a routing reply command.
图1和图3分别给出了本发明的路由建立过程示意图和路由建立的程序图,图3概括性地给出了路由建立过程的流程图,由图3可得出路由建立的过程包括以下步骤:a.由需要发送数据的源节点,向其周围的转发节点发送到目的节点的路由请求命令;b.转发节点对是否存在到达目的节点的已有路由进行判断;如果存在已有路由,则执行步骤c;如果不存在已有路由,则执行步骤g;c.把判断出的已有路由作为从源节点到目的节点的多路由中的一部分进行保留;执行判断的转发节点向其上一级节点发送路由应答命令,进行双向路由确认;然后,执行下述步骤d;d.转发节点对是否存在到达目的节点的新的路由进行判断;如果判断存在新的路由,则执行步骤e;如果判断不存在新的路由则执行步骤f;e.新的路由作为从源节点到目的节点的多路由的一部分进行保留;f.取消对该转发节点新的路由建立,进行下一级的路由请求;g.转发节点对是否存在到达目的节点的新的路由进行判断;如果判断存在新的路由,则执行步骤h;如果判断不存在新的路由则执行步骤i;h.新的路由作为从源节点到目的节点的多路由的另一部分进行保留;i.取消对该转发节点的路由建立。当源节点与目的节点之间的转发节点为目的节点时,相应的转发节点直接向其上级节点进行路由应答命令确认。步骤d和步骤g中所述的转发节点是否存在新的路由的判断方法包括以下步骤:1)转发节点向其周围的下级转发节点发送到目的节点的路由请求命令;2)判断转发节点是否在预先设定的时间间隔内接到下一级节点的路由应答命令,如果在预先设定的时间间隔内接到路由应答命令,则存在到达目的节点的路由;如果在预先设定的时间间隔内没有接到路由应答命令,则不存在到达目的节点的路由;所述的源节点与目的节点之间的转发节点到目的节点路由的建立方法与权利要求1中所述的从源节点到目的节点路由的建立方法相同。Fig. 1 and Fig. 3 have respectively provided the schematic diagram of route establishment process of the present invention and the procedure figure that route establishes, and Fig. 3 has generally provided the flow chart of route establishment process, can draw that the process of route establishment comprises following by Fig. 3 Steps: a. The source node that needs to send data sends a route request command to the forwarding node around it to the destination node; b. The forwarding node judges whether there is an existing route to the destination node; if there is an existing route, Then execute step c; if there is no existing route, then execute step g; c. retain the existing route judged as part of the multi-routes from the source node to the destination node; The first-level node sends a route response command to confirm the two-way route; then, perform the following step d; d. The forwarding node judges whether there is a new route to the destination node; if it is judged that there is a new route, then execute step e; If it is judged that there is no new route, then step f is performed; e. the new route is reserved as part of the multi-route from the source node to the destination node; f. cancel the establishment of a new route for the forwarding node, and carry out the routing of the next level Request; g. the forwarding node judges whether there is a new route to the destination node; if it is judged that there is a new route, then execute step h; if it is judged that there is no new route, then execute step i; h. The other part of the multi-route from the source node to the destination node is reserved; i. Cancel the establishment of the route to the forwarding node. When the forwarding node between the source node and the destination node is the destination node, the corresponding forwarding node directly confirms the routing response command to its superior node. The judging method of whether there is a new route in the forwarding node described in step d and step g comprises the following steps: 1) the forwarding node sends a routing request command to the destination node to its surrounding subordinate forwarding nodes; 2) judges whether the forwarding node is in Receive the routing response command of the next-level node within the preset time interval, if the routing response command is received within the preset time interval, there is a route to the destination node; if within the preset time interval Have not received the routing response command, then there is no route to the destination node; the method for establishing the route from the forwarding node to the destination node between the described source node and the destination node is the same as that described in
以上所述的路由建立方法,概括地给出了从源节点到目的节点的多路由建立方法,下面结合图1具体的说明路由建立的过程。The method for establishing routes described above generally provides a method for establishing multiple routes from a source node to a destination node. The process of establishing routes will be specifically described below in conjunction with FIG. 1 .
如图1所示,图1中包括9个节点,其中,1号节点为源节点,用于发起初始的路由请求命令;6号节点为目的节点,只能发起路由应答命令;余下的节点为从源节点到目的节点之间的转发节点。As shown in Figure 1, there are 9 nodes in Figure 1, among which, the No. 1 node is the source node, which is used to initiate the initial routing request command; the No. 6 node is the destination node, which can only initiate the routing response command; the remaining nodes are A forwarding node from a source node to a destination node.
当建立由源节点到目的节点路由过程中,首先源节点1向其周围的2号节点和8号节点发送路由请求命令RREQ,当8号节点接收到此命令后,先查找是否有到达6号节点的已有路由存在;由于没有已有路由存在,8号节点继续向9号节点发送路由请求命令,看是否有新的路由存在;由于当前9号节点没有到达目的节点的已有路由存在,9号节点继续向前发送路由请求命令RREQ进行寻路;由于目的节点6无法向9号节点发送路由应答命令RREP,9号节点在预先设定的时间间隔内无法接收到路由应答命令RREP,所以9号节点也无法向8号节点发回路由应答命令RREP进行双向路由确认;进而,1号节点在预先设定的时间间隔内无法从8号节点接收到路由应答命令RREP,就会取消8号节点到目的节点6这条路由的建立。When establishing a route from the source node to the destination node, first the
假设2-3-5-6为已经建立起来的从2号节点到目的节点6的已有路由,当2号节点接收到来自源节点1的路由请求命令RREQ后,转发节点2对是否存在已有路由进行判断,由于有已有路由2-3-5-6存在,则2号节点向源节点1发回路由应答命令RREP,这样从1号节点到2号节点的双向路由就建立起来,同时将2-3-5-6已有路由作为从源节点1到目的节点6的一部分路由进行保留和存储。然后,2号节点继续向前发送路由请求命令RREQ,寻找是否还有其它的到达6号目的节点的新的路由存在,如图1所示,2-4-7-6为从2号节点到6号目的节点的新的路由,且4号节点和7号节点不存在到达目的节点6的已有路由,故2号节点会接收到从4号节点发回的路由应答命令RREP,则2-4-7-6这条新的路由将作为从源节点1到目的节点6的另一部分路由进行保留和存储。Assuming that 2-3-5-6 is the established route from
假设从2号节点到目的节点6没有已有路由存在,则2号节点同时向3号节点和4号节点发起路由请求RREQ,在预先设定的时间间隔内从3号节点和4号节点各返回一条路由应答命令RREP,这样2号节点在预先设定的时间间隔内会从3号节点和4号节点中各收到一条路由应答命令RREP,2号节点将到达3号节点和4号节点的链路都作为新找到的双向路由进行保留和存储。Assuming that there is no existing route from
源节点1与目的节点6之间的其他转发节点的路由建立过程相同,经过这样的路由建立过程之后,从源节点到达目的节点的多条路由就建立起来了。The route establishment process of other forwarding nodes between the
下面结合图2,叙述基于建立起来的多路由进行并行数据传输的方法:Below in conjunction with Figure 2, the method for parallel data transmission based on the established multi-routes is described:
如图2所示,不妨设从源节点到目的节点所建立起来的总的路由数为m条,需要传输的数据包括n个数据包,按照以下步骤进行数据的并行传输:As shown in Figure 2, it is advisable to assume that the total number of routes established from the source node to the destination node is m, and the data to be transmitted includes n data packets, and the parallel transmission of data is performed according to the following steps:
首先,按照下面的不等式(1)确定进行数据传输的j(j≤m)条路由;First, determine j (j≤m) routes for data transmission according to the following inequality (1);
其中,Nmax为m条路由中最长的路由包含的节点数,T为允许的最大平均传输延迟时间,τmax为每个节点处理一个数据包的最大处理延迟时间。当不等式(1)右端的值小于m时,j取满足不等式(1)的最小整数值;当不等式(1)右端的值大于或等于m时,j的值取m。Among them, N max is the number of nodes contained in the longest route among the m routes, T is the maximum average transmission delay time allowed, and τ max is the maximum processing delay time for each node to process a data packet. When the value at the right end of inequality (1) is less than m, j takes the smallest integer value that satisfies inequality (1); when the value at the right end of inequality (1) is greater than or equal to m, the value of j takes m.
当然,为了简便起见,路由条数j值的确定,还可在m条路由中取包含节点数最少的j条路由进行数据传输。Of course, for the sake of simplicity, the determination of the value of the number of routes j may also select the j route containing the least number of nodes among the m routes for data transmission.
然后,将待发送的n包数据包中的1号数据包到j号数据包同时沿着1号路由到j号路由发送到目的节点;同时,源节点对1号路由到j号路由的状态进行检测,判断哪条路由先空闲出来,并把待发送的数据包沿着先空闲出来的路由发送到目的节点,直至n个数据包全部发送完毕。Then, send the No. 1 data packet to the No. j data packet in the n packets of data packets to be sent to the destination node along the No. 1 route to the No. Perform detection to determine which route is free first, and send the data packets to be sent to the destination node along the first free route until all n data packets are sent.
最后,目的节点将接收到的n个数据包按照包裹号依次拼接,就可恢复为源节点所要发送的数据。Finally, the destination node splices the received n data packets in order according to the package numbers, and then restores the data to be sent by the source node.
这样既可保证所有要传输的n个数据包在规定的时间内传送到目的节点,又可使数据传输消耗的总的节点能量不太大。This can not only ensure that all n data packets to be transmitted are transmitted to the destination node within a specified time, but also make the total node energy consumed by data transmission not too large.
相应地,如果设定某些参数量,还可给出利用多路由进行数据传输的网络平均传输延迟时间的数学表达式。假定从源节点到目的节点之间共有m条路由,当前源节点选择了其中的j条路由进行从源节点到目的节点的数据传输,源节点共有n个数据包需要发送,1号路由包含N1个节点,2号路由包含N2个节点,…,j号路由包含Nj个节点,节点i的处理延时为τi,并假定通过各条路由发送的数据包数量相等,则发送n个数据包需要的平均网络延迟时间可通过下面的式子(2)来表示,其中E表示均值,Correspondingly, if certain parameters are set, the mathematical expression of the average transmission delay time of the network using multiple routes for data transmission can also be given. Assume that there are m routes from the source node to the destination node, and the current source node selects j routes among them for data transmission from the source node to the destination node. There are n data packets to be sent by the source node, and
上面的表达式也可表示为 The above expression can also be expressed as
而对于采用单路由传输的情况而言,如果选定的是l号路由(1≤l≤j)进行数据包的传输,该路由包含Nl个节点,则发送n个数据包需要的网络延迟时间可由下面的(3)式表示,For the case of single-route transmission, if the route l (1≤l≤j) is selected for data packet transmission, and the route contains N l nodes, the network delay required to send n data packets The time can be expressed by the following equation (3),
如果(2)式中的均值为则(2)式可以表示为(4)式,If the mean in (2) is Then (2) formula can be expressed as (4) formula,
通过比较(3)式和(4)式,可以得到选择的路由条数j越大,从源节点到目的节点数据传输所用的平均网络传输延迟时间越少。选取的路由条数j越大,参与数据传输的转发节点数量就越多,消耗的能量相对来说就会越多。By comparing (3) and (4), it can be obtained that the greater the number of selected routes j, the less the average network transmission delay time used for data transmission from the source node to the destination node. The larger the number j of selected routes is, the more forwarding nodes will participate in data transmission, and the more energy will be consumed.
本发明基于ZigBee的网络层命令还建立了网络层的命令格式,其利用了现有格式的保留位,而其它的各位的定义都保持不变,没有增加新的命令,很好地实现了与现有ZigBee标准的兼容性。The present invention has also set up the command format of the network layer based on the network layer order of ZigBee, and it has utilized the reserved bit of existing format, and the definition of other each each remains unchanged, does not increase new order, has realized and Compatibility with existing ZigBee standards.
如表1所示,将ZigBee网络层命令的帧控制格式中的比特6和比特7的组合值10定义为允许多路由发现标志,比特6和比特7的组合定义如表2所示;将ZigBee网络层命令的帧控制格式中的比特13、比特14和比特15的组合定义为发现的多路由的路由号。As shown in table 1, the combination value 10 of bit 6 and bit 7 in the frame control format of ZigBee network layer command is defined as allowing multi-route discovery flag, and the combination definition of bit 6 and bit 7 is as shown in table 2; ZigBee The combination of bit 13, bit 14 and bit 15 in the frame control format of the network layer command is defined as the routing number of the discovered multi-routing.
表1帧控制格式(比特)Table 1 frame control format (bit)
表2帧控制格式中6、7比特的定义Definition of 6 and 7 bits in the frame control format of Table 2
将路由请求命令格式中的比特0定义为路由请求标志,用于标志是单路请求还是多路请求,比特0为1表示多路由请求,比特0为0表示单路由请求,如表3所示;将路由响应命令中的命令选择域字段的比特0、比特1和比特2的组合定义为路由号,用于表示当前的路由响应是从哪条路由返回的,如表4所示。Define bit 0 in the routing request command format as a routing request flag, which is used to mark whether it is a single-path request or a multi-path request. Bit 0 is 1 to indicate a multi-routing request, and bit 0 is 0 to indicate a single-routing request, as shown in Table 3 ; The combination of bit 0,
表3路由请求命令格式(比特)Table 3 routing request command format (bits)
表4命令选择域字段格式(比特)Table 4 command selection domain field format (bits)
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102283238A CN101895952B (en) | 2010-07-16 | 2010-07-16 | Multi-route establishment method and parallel data transmission method of wireless sensor network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102283238A CN101895952B (en) | 2010-07-16 | 2010-07-16 | Multi-route establishment method and parallel data transmission method of wireless sensor network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101895952A CN101895952A (en) | 2010-11-24 |
CN101895952B true CN101895952B (en) | 2012-09-12 |
Family
ID=43104973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102283238A Expired - Fee Related CN101895952B (en) | 2010-07-16 | 2010-07-16 | Multi-route establishment method and parallel data transmission method of wireless sensor network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101895952B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104185217B (en) * | 2014-05-09 | 2019-08-27 | 中兴通讯股份有限公司 | Parallel data transmission processing method and processing device |
CN106851764B (en) * | 2016-12-05 | 2020-12-22 | 台州智奥通信设备有限公司 | Short data message sending method and device based on Zigbee network |
US10505836B2 (en) * | 2017-04-21 | 2019-12-10 | Mediatek Inc. | Symmetric route establishment with bidirectional links for wireless mesh networks |
CN109005113B (en) * | 2018-07-04 | 2020-04-10 | 浙江大学 | Low-delay routing method of intertidal zone sensor network based on machine learning |
CN109327255B (en) * | 2018-09-26 | 2023-01-24 | 中国民航管理干部学院 | Routing method and system for unmanned aerial vehicle ad hoc network |
CN111294881A (en) * | 2020-02-07 | 2020-06-16 | 北京小米移动软件有限公司 | Network link switching method and device, client and computer readable storage medium |
CN118748654A (en) * | 2024-06-07 | 2024-10-08 | 北京开源芯片研究院 | Data packet sending method, device, electronic device and readable storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1933445A (en) * | 2006-09-04 | 2007-03-21 | 南通大学 | Radio senser network up and down isomeric routing method |
CN101159697A (en) * | 2007-11-23 | 2008-04-09 | 南京大学 | A method to achieve minimum energy routing under delay constraints in wireless sensor networks |
CN101778423A (en) * | 2010-01-19 | 2010-07-14 | 南京邮电大学 | Mobile agent-based method for guaranteeing quality of service of wireless multimedia sensor network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8102794B2 (en) * | 2007-12-10 | 2012-01-24 | Electronics And Telecommunications Research Institute | Cross-layer routing method in wireless sensor network |
-
2010
- 2010-07-16 CN CN2010102283238A patent/CN101895952B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1933445A (en) * | 2006-09-04 | 2007-03-21 | 南通大学 | Radio senser network up and down isomeric routing method |
CN101159697A (en) * | 2007-11-23 | 2008-04-09 | 南京大学 | A method to achieve minimum energy routing under delay constraints in wireless sensor networks |
CN101778423A (en) * | 2010-01-19 | 2010-07-14 | 南京邮电大学 | Mobile agent-based method for guaranteeing quality of service of wireless multimedia sensor network |
Also Published As
Publication number | Publication date |
---|---|
CN101895952A (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101895952B (en) | Multi-route establishment method and parallel data transmission method of wireless sensor network | |
CN102821437B (en) | Ad-hoc on-demand distance vector routing method | |
CN104602313B (en) | An Environment Adaptive Routing Method for Maritime Search and Rescue Wireless Sensor Networks | |
CN105916183B (en) | Wireless sensor network routing method based on link quality and residual energy | |
CN101932062B (en) | Multipath routing method in Ad Hoc network environment | |
CN102291795B (en) | Wireless communication device, wireless communication network and method of controlling routing | |
CN102036338A (en) | Sensor network real-time routing method based on data-driven link estimation | |
Saraswala | A survey on routing protocols in zigbee network | |
Ali et al. | An on-demand power and load-aware multi-path node-disjoint source routing scheme implementation using NS-2 for mobile ad-hoc networks | |
CN103139073B (en) | A kind of cognitive routing method based on Ad Hoc network form | |
Tarique et al. | Minimum energy hierarchical dynamic source routing for mobile ad hoc networks | |
CN101965031A (en) | Maximum probability-based cognitive radio multi-path multicast routing method | |
CN101951656A (en) | Method for designing wireless network routing protocol with energy efficiency and coding perception | |
CN104349418A (en) | Rapid routing transmission method for data in wireless sensor network facing sudden events | |
CN102781060B (en) | A kind of method, forward node and wireless network realizing route in the wireless network | |
CN101969322B (en) | Method for evaluating multi-time scale link of wireless sensor network | |
CN110831006B (en) | Ad hoc network system and data transmission method thereof | |
Li et al. | Energy-efficient multipath routing in wireless sensor network considering wireless interference | |
CN104010338A (en) | An improved AODV routing method based on terminal energy perception | |
CN102316527A (en) | Multi-path ad hoc on-demand distance vector (AODV) routing method based on service quality sensing | |
CN106937349A (en) | Routing Protocol for Wireless Sensor Networks Based on Mobile Aggregation Nodes and Ant Colony Algorithm | |
JP5885242B2 (en) | Sensor node, sensor node control method, and sensor node control program | |
Hasnain et al. | An adaptive opportunistic routing scheme for reliable data delivery in WSNs | |
Ren et al. | Energy saving ad-hoc on-demand distance vector routing for mobile ad-hoc networks | |
JP5979705B2 (en) | Node device, node device control method, and node device control program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120912 Termination date: 20130716 |