CN101806884B - Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline - Google Patents
Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline Download PDFInfo
- Publication number
- CN101806884B CN101806884B CN2010101535231A CN201010153523A CN101806884B CN 101806884 B CN101806884 B CN 101806884B CN 2010101535231 A CN2010101535231 A CN 2010101535231A CN 201010153523 A CN201010153523 A CN 201010153523A CN 101806884 B CN101806884 B CN 101806884B
- Authority
- CN
- China
- Prior art keywords
- beacon
- measuring point
- ultra
- depth
- horizontal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 238000009304 pastoral farming Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000005236 sound signal Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 2
- 238000003491 array Methods 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域 technical field
本发明属于水声定位领域,主要涉及海底信标的定位方法。The invention belongs to the field of underwater acoustic positioning, and mainly relates to a positioning method of a seabed beacon.
背景技术 Background technique
信标机工作在水下时,由于只是独立的周期性发射声脉冲,水面定位系统仅能获得目标的方位信息,而没有距离信息,因此定位精度较高的长基线方法失效。只能采用纯方位的定位方法。现有的纯方位定位方法,多是集中于利用目标二维水平方位对目标进行定位的研究。When the beacon machine works underwater, because it only emits sound pulses independently and periodically, the surface positioning system can only obtain the target's azimuth information, but not the distance information, so the long baseline method with high positioning accuracy is invalid. Only azimuth-only positioning methods can be used. Most of the existing azimuth-only positioning methods focus on the research of using the two-dimensional horizontal azimuth of the target to locate the target.
中国学术文献网络出版总库CNKI中,可以检索到的与本发明申请有关的公开报道主要包括:1、水声主被动定位系统声信标设计(中国学位论文/哈尔滨工程大学/2008/许志恒)。该文献介绍了水声信标系统的设计方案,并非信标的定位方法;2、深海水声应答器定位导航技术研究(中国学位论文/哈尔滨工程大学/2008/兰华林)。该文献给出了基于超短基线的海底应答器纯方位定位方法,与本发明申请相关度较大。但是该文献中并未给出测点的选取方法,并未详细介绍声线弯曲修正的方法;3、一种基于超短基线的声信标定位方法(高技术通讯2009年第5期/李想)。该文献给出了一种仅用目标方位信息来确定信标位置的方法。通过多次测量得到方位信息,建立了方位信息和目标位置的关系式,利用最小二乘方法获得信标在大地坐标系下的位置。但是没给出声线弯曲修正。In the CNKI of Chinese Academic Literature Network Publishing General Database, the public reports related to the application of the present invention that can be retrieved mainly include: 1. Acoustic Beacon Design of Underwater Acoustic Active and Passive Positioning System (Chinese Dissertation/Harbin Engineering University/2008/Xu Zhiheng ). This document introduces the design scheme of the underwater acoustic beacon system, not the positioning method of the beacon; 2. Research on positioning and navigation technology of deep sea acoustic transponders (Chinese dissertation/Harbin Engineering University/2008/Lan Hualin). This document provides an azimuth-only positioning method for submarine transponders based on an ultra-short baseline, which is highly relevant to the application of the present invention. However, this document does not give the selection method of the measuring point, and does not introduce the method of sound ray bending correction in detail; 3. An acoustic beacon positioning method based on an ultra-short baseline (High Technology Communication 2009 No. 5 / Li think). This document presents a method for determining the position of a beacon using only target azimuth information. The azimuth information is obtained through multiple measurements, the relationship between the azimuth information and the target position is established, and the position of the beacon in the geodetic coordinate system is obtained by using the least square method. But no sound ray bending correction is given.
针对深海海底信标的精确定位,现有纯方位定位方法至少有两点不足:一是信标的位置未知,而测点的位置直接影响信标定位的精度,现有方法并未给出测量点位置的选取方法;二是当利用声信号的三维方位对信标定位时,虽然在浅海声速分布对定位精度影响小的情形可以直接求解,而在声速分布对定位精度影响较大的深海情形不再适用。针对现有技术的不足,需要一种对深海海底应答器绝对位置精确校准的方法。For the precise positioning of deep-sea submarine beacons, the existing azimuth-only positioning methods have at least two shortcomings: one is that the position of the beacon is unknown, and the position of the measuring point directly affects the accuracy of the positioning of the beacon, and the existing method does not give the position of the measuring point Second, when using the three-dimensional azimuth of the acoustic signal to locate the beacon, although the sound velocity distribution in shallow seas has little influence on the positioning accuracy, it can be solved directly, but in the deep sea where the sound velocity distribution has a greater impact on the positioning accuracy, it is no longer necessary. Be applicable. Aiming at the deficiencies of the prior art, a method for accurately calibrating the absolute position of the deep-sea subsea transponder is needed.
发明内容 Contents of the invention
本发明的目的在于提供一种能够实现对深海海底应答器绝对位置精确校准的基于超短基线的深海信标绝对位置精确定位方法。The purpose of the present invention is to provide an ultra-short baseline-based precise positioning method for the absolute position of a deep-sea beacon that can realize precise calibration of the absolute position of a deep-sea subsea transponder.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
(1)超短基线声学基阵在一测量点分别接收信标信号,测得信标方位;(1) The ultra-short baseline acoustic matrix receives beacon signals at a measurement point and measures the beacon azimuth;
(2)根据上次所得方位和接收信号改变测点位置,得到方位差别较大的测点;(2) Change the position of the measuring point according to the azimuth obtained last time and the received signal, and obtain the measuring point with a large difference in azimuth;
(3)利用GPS测得测量点的绝对位置;(3) Use GPS to measure the absolute position of the measuring point;
(4)重复步骤(2)和步骤(3)得到足够多的测点数据;(4) repeat step (2) and step (3) to obtain enough measuring point data;
(5)在信标位置附近海域现场测量声速分布;(5) On-site measurement of the sound velocity distribution in the sea area near the beacon position;
(6)根据测点位置和水平方位解算出信标的水平坐标;(6) Calculate the horizontal coordinates of the beacon according to the position of the measuring point and the horizontal orientation;
(7)根据解算得到的信标水平坐标、声速剖面和各测点声信号俯仰方位解算出信标的深度。(7) Calculate the depth of the beacon according to the horizontal coordinates of the beacon, the sound velocity profile and the pitch and azimuth of the sound signals of each measuring point.
为实现本发明的目的,需要利用超短基线对信标声信号检测,测定声信号在大地坐标系下的方位。In order to realize the purpose of the present invention, it is necessary to use the ultra-short baseline to detect the beacon acoustic signal and measure the orientation of the acoustic signal in the geodetic coordinate system.
为实现本发明的目的,需要利用当前测点的信标水平方位值,引导水面船的航向选择下一个测点。In order to realize the purpose of the present invention, it is necessary to use the beacon horizontal azimuth value of the current survey point to guide the course of the surface ship to select the next survey point.
为实现本发明的目的,需要用GPS测定测量点的绝对大地坐标并用声速剖面仪在信标位置附近海域对声速分布进行现场测量。In order to realize the purpose of the present invention, it is necessary to use GPS to determine the absolute geodetic coordinates of the measuring point and to use a sound velocity profiler to measure the sound velocity distribution in the sea area near the beacon position.
为实现本发明的目的,需要将声信号的方位分解为水平方位和俯仰方位,水平方位交汇可以解算出信标的水平坐标。In order to achieve the purpose of the present invention, the azimuth of the acoustic signal needs to be decomposed into horizontal azimuth and elevation azimuth, and the horizontal coordinates of the beacon can be calculated by combining the horizontal and azimuth.
为实现本发明的目的,需要根据测点和信标的水平坐标、声信号的俯仰方位进行声线弯曲修正,求得信标的深度坐标。In order to achieve the purpose of the present invention, it is necessary to correct the sound ray bending according to the horizontal coordinates of the measuring point and the beacon, and the pitch and azimuth of the acoustic signal, so as to obtain the depth coordinate of the beacon.
本发明的特点是在利用水面船的船载超短基线对深海信标进行精确定位,通过超短基线的引导确定测点位置,由声线弯曲修正获得高精度的深海信标绝对位置坐标。该方法在深海条件下的黑匣子搜救和水下信标导航方面都有广泛的应用前景。The present invention is characterized in that the ultra-short baseline of the surface ship is used to accurately locate the deep-sea beacon, the position of the measuring point is determined through the guidance of the ultra-short baseline, and the absolute position coordinates of the high-precision deep-sea beacon are obtained by sound ray bending correction. This method has broad application prospects in black box search and rescue and underwater beacon navigation under deep sea conditions.
附图说明 Description of drawings
图1是深海信标精确定位的几何配置示意图。Figure 1 is a schematic diagram of the geometric configuration of deep-sea beacons for precise positioning.
图2是深海信标精确定位测点选择俯视图。Figure 2 is a top view of the selection of measuring points for precise positioning of deep-sea beacons.
图3是两侧点水平方位交汇原理示意图。Fig. 3 is a schematic diagram of the principle of horizontal azimuth intersection of points on both sides.
图4是基于超短基线的深海信标绝对位置精确定位方法实现流程图。Fig. 4 is a flow chart of the implementation of the method for precise positioning of the absolute position of the deep-sea beacon based on the ultra-short baseline.
具体实施方式 Detailed ways
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
本发明中,如图1,信标1锚定于海底,位置为Xb;以时间间隔T周期性发射声脉冲信号;超短基线声学基阵2安装于水面船上,高精度GPS3安装于船上。超短基线声学基阵在不同的测点位置XGi检测信标的声信号并对其测向,结合超短基线安装误差校准结果和该测点的船姿数据得到信标在大地坐标系下的方位其中θi定义为第i测点测得信标声信号水平方向与正北方向夹角;定义为第i测点测得信标声信号的掠射角。In the present invention, as shown in Fig. 1, the beacon 1 is anchored on the seabed, and the position is X b ; the acoustic pulse signal is periodically emitted at a time interval T; the ultra-short baseline acoustic matrix 2 is installed on the surface ship, and the high-precision GPS3 is installed on the ship . The ultra-short baseline acoustic matrix detects the acoustic signal of the beacon at different measuring point X Gi and finds its direction, and combines the installation error calibration results of the ultra-short baseline and the ship attitude data of the measuring point to obtain the position of the beacon in the geodetic coordinate system position Where θi is defined as the angle between the horizontal direction of the beacon acoustic signal measured at the i-th measuring point and the true north direction; Defined as the grazing angle of the beacon acoustic signal measured at the i-th measuring point.
测点的选取方式如图2,假设测点1位置为XG1,测得信标的水平方位θ1;然后选取水面船的航向为θ1-60°,航行一定的距离后停止,进行第2点测量,得到信标水平方位θ2;然后选取水面船的航向为θ2-60°,航行距离r0后停止,进行第3点测量,得到信标水平方位θ3;依次类推,得到N个测量点及相应的测量结果。此法利用了超短基线的测向能力对水面船进行方位引导,并能保证测点位置与海底信标的距离越来越近。The selection method of the measuring point is shown in Figure 2. Assuming that the position of measuring point 1 is X G1 , the horizontal orientation of the beacon is measured θ 1 ; then the course of the surface ship is selected as θ 1 -60°, and it stops after sailing for a certain distance, and proceeds to the second Point measurement to obtain the horizontal orientation θ 2 of the beacon; then select the heading of the surface ship as θ 2 -60°, stop after sailing distance r 0 , and perform the third point measurement to obtain the horizontal orientation θ 3 of the beacon; and so on, to obtain N measurement points and the corresponding measurement results. This method utilizes the direction-finding ability of the ultra-short baseline to guide the surface ship azimuth, and can ensure that the distance between the measuring point and the submarine beacon is getting closer.
假设信标坐标Xb=(xb,yb,zb),测点位置坐标XG1=(xGi,yGi,zGi),那么有如下关系:Assuming that the beacon coordinates X b = (x b , y b , z b ), and the measuring point position coordinates X G1 = (x Gi , y Gi , z Gi ), then the relationship is as follows:
式中In the formula
表示各测点与信标位置的水平距离。图3给出了以两侧点为例的水平方位交汇示意图。Indicates the horizontal distance between each measuring point and the beacon position. Figure 3 shows a schematic diagram of the intersection of horizontal azimuths taking points on both sides as examples.
方程(1)是非线性方程,采用牛顿法求解出信标的水平坐标,将结果回代到式(2)中得到各测点与信标的水平距离rai。Equation (1) is a non-linear equation. Newton's method is used to solve the horizontal coordinates of the beacon, and the result is substituted into equation (2) to obtain the horizontal distance r ai between each measuring point and the beacon.
由于超短基线声学基阵的水深已知,根据水平距离、掠射角和声速分布可以求得信标位置的深度坐标。有两种实现的方法。Since the water depth of the ultra-short baseline acoustic array is known, the depth coordinates of the beacon position can be obtained according to the horizontal distance, grazing angle and sound velocity distribution. There are two ways to achieve this.
第一种方法。对于每个测点,从掠射角出发进行声线跟踪,当水平距离为rai时停止,此时对应的深度即为信标的深度估计然后对多个测点的深度估计求平均,得到信标的最终深度估计 the first method. For each survey point, from the glancing angle Start sound ray tracking, stop when the horizontal distance is r ai , and the corresponding depth at this time is the depth estimation of the beacon Then the depth estimation of multiple survey points averaged to get the final depth estimate for the beacon
该方法由于每个测点都需要进行一次声线跟踪,计算量大,在测点多的情况下尤为如此。This method requires a sound ray tracing for each measurement point, which requires a large amount of calculation, especially in the case of many measurement points.
第二种方法。对任意一个测点,由第一种方法得到信标深度初值在深度一定、声速分布一定的条件下,声传播的水平距离与掠射角有固定的函数关系,如下式:The second method. For any measuring point, the initial value of the beacon depth is obtained by the first method Under the conditions of constant depth and constant sound velocity distribution, the horizontal distance of sound propagation has a fixed functional relationship with the grazing angle, as follows:
其中r是斜距,f(·)是由海深及相应声速分布确定的函数,可以根据snell定律通过数值计算进行逼近求解。是声信号在超短基线声学基阵位置处的掠射角。where r is the slant distance, and f(·) is a function determined by the sea depth and the corresponding sound velocity distribution, which can be approximated by numerical calculation according to Snell's law. is the grazing angle of the acoustic signal at the position of the ultra-short baseline acoustic array.
根据各测点的声传播时延可以求得各测点与信标的水平距离rai (1)。定义误差e:The horizontal distance r ai (1) between each measuring point and the beacon can be obtained according to the sound propagation time delay of each measuring point. Define the error e:
改变深度进行搜索,当e足够小时对应的信标深度即为信标深度估计。搜索的方法可以采用二分法。change depth Search, when e is small enough, the corresponding beacon depth is the beacon depth estimate. The search method can adopt dichotomy.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101535231A CN101806884B (en) | 2010-04-23 | 2010-04-23 | Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101535231A CN101806884B (en) | 2010-04-23 | 2010-04-23 | Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101806884A CN101806884A (en) | 2010-08-18 |
CN101806884B true CN101806884B (en) | 2012-02-01 |
Family
ID=42608762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101535231A Expired - Fee Related CN101806884B (en) | 2010-04-23 | 2010-04-23 | Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101806884B (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323587A (en) * | 2011-06-10 | 2012-01-18 | 哈尔滨工程大学 | High-speed underwater target trajectory measurement system data acquisition control transmission device |
CN103376452B (en) * | 2012-04-18 | 2014-12-10 | 中国科学院沈阳自动化研究所 | Method for correction of underwater robot position error with single acoustic beacon |
CN102979060B (en) * | 2012-12-11 | 2014-11-05 | 上海交通建设总承包有限公司 | Soft mattress paving method |
CN103576555B (en) * | 2013-11-14 | 2016-05-04 | 哈尔滨工程大学 | A kind of dynamic positioning boats and ships tracking guiding control method |
CN104304114B (en) * | 2014-10-14 | 2016-07-06 | 浙江海洋学院 | A kind of method that deep water net cage net clothing based on ultra-short baseline is monitored and device |
NL2013724B1 (en) * | 2014-10-31 | 2016-10-04 | Fugro N V | Underwater positioning system. |
CN104932020B (en) * | 2015-04-22 | 2017-09-22 | 国家深海基地管理中心 | Manned underwater vehicle Long baselines alignment system sea trial method |
CN105044724A (en) * | 2015-08-20 | 2015-11-11 | 中国人民解放军国防科学技术大学 | Plane five-element cross array shape estimation and specific array shape arrangement method based on acoustic location |
CN105445694A (en) * | 2015-11-19 | 2016-03-30 | 中国石油大学(华东) | Equal-gradient sound ray tracking acoustic velocity profile adaptive layering method |
CN105487046A (en) * | 2015-11-19 | 2016-04-13 | 中国石油大学(华东) | Large-incidence-angle sound ray tracking and positioning method |
CN105301556B (en) * | 2015-11-30 | 2017-11-03 | 江苏中海达海洋信息技术有限公司 | The calibration method of ultra-short baseline alignment error calibrating installation |
CN105526931A (en) * | 2015-12-02 | 2016-04-27 | 中国人民解放军91388部队 | Combined navigation method for underwater vehicle based on individual seabed transponder |
CN105823480B (en) * | 2016-03-18 | 2018-07-06 | 中国海洋大学 | Underwater moving target location algorithm based on single beacon |
CN106546957A (en) * | 2016-10-25 | 2017-03-29 | 中国海洋石油总公司 | A kind of ultra-short baseline localization method for the polynary battle array of arbitrary plane |
CN106767918B (en) * | 2016-12-09 | 2019-08-30 | 交控科技股份有限公司 | Transponder location data calibration method, terminal and control centre in electronic map |
CN108267717B (en) * | 2016-12-31 | 2021-08-06 | 中国船舶重工集团公司第七六○研究所 | Underwater acoustic beacon searching and positioning method and system |
CN107132520B (en) * | 2017-05-03 | 2020-08-14 | 江苏中海达海洋信息技术有限公司 | Sound ray correction method and system based on underwater sound ultra-short baseline positioning system |
CN108616918B (en) * | 2018-05-14 | 2021-02-19 | 沈阳永业实业有限公司 | Communication method and system for robot in petroleum pipeline |
CN109029460B (en) * | 2018-08-03 | 2019-08-02 | 国家深海基地管理中心 | Air navigation aid, system and device of the deep-sea vehicle to monitor surface platform ranging |
CN109239666A (en) * | 2018-11-07 | 2019-01-18 | 中国科学院深海科学与工程研究所 | A kind of calibration method for deep-sea acoustic positioning device |
CN109490927B (en) * | 2018-12-26 | 2024-04-09 | 天津水运工程勘察设计院 | Positioning system and positioning method for underwater leveling frame |
CN109696235B (en) * | 2018-12-27 | 2020-11-06 | 国家深海基地管理中心 | Deep sea effective sound velocity determination method |
CN110703202B (en) * | 2019-10-22 | 2022-06-21 | 哈尔滨工程大学 | Underwater Pulse Acoustic Localization System Based on Multiacoustic Wave Glider and Surface Unmanned Vehicle |
CN111060913B (en) * | 2019-11-26 | 2022-07-19 | 中国船舶重工集团公司第七研究院 | Active and passive compatible underwater sound positioning system |
CN111380517B (en) * | 2020-03-04 | 2021-10-29 | 哈尔滨工程大学 | A SINS/USBL deep integrated navigation and positioning method based on USBL software receiver |
CN112285719B (en) * | 2020-10-26 | 2024-01-30 | 中国人民解放军61540部队 | Method and system for calculating coordinate tolerance value of submarine reference station |
CN112462322B (en) * | 2020-11-12 | 2024-06-11 | 应急管理部四川消防研究所 | Positioning method and positioning system for underwater frogman |
CN112540340B (en) * | 2020-11-26 | 2024-04-30 | 博雅工道(北京)机器人科技有限公司 | Precision error compensation method and self-calibration acoustic beacon positioning device based on same |
CN112666519B (en) * | 2020-12-14 | 2022-10-14 | 哈尔滨工程大学 | A high-precision positioning method for underwater targets based on generalized second-order delay difference |
CN114355287B (en) * | 2022-01-04 | 2023-08-15 | 湖南大学 | Ultra-short baseline underwater sound distance measurement method and system |
CN116299393A (en) * | 2023-02-24 | 2023-06-23 | 烟台欣飞智能系统有限公司 | Stealth radar high-precision navigation positioning system based on multi-target detection |
CN116819444B (en) * | 2023-07-17 | 2024-04-05 | 中国海洋大学 | A precise underwater acoustic positioning method based on iterative depth fine-tuning |
CN117031398B (en) * | 2023-10-08 | 2024-01-12 | 青岛智能导航与控制研究所 | Position correction method for underwater transponder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4229809A (en) * | 1979-01-29 | 1980-10-21 | Sperry Corporation | Acoustic under sea position measurement system |
CN101441267A (en) * | 2008-12-30 | 2009-05-27 | 哈尔滨工程大学 | Three-measuring point high precision alignment calibration method of seabed answering machine absolute location |
-
2010
- 2010-04-23 CN CN2010101535231A patent/CN101806884B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4229809A (en) * | 1979-01-29 | 1980-10-21 | Sperry Corporation | Acoustic under sea position measurement system |
CN101441267A (en) * | 2008-12-30 | 2009-05-27 | 哈尔滨工程大学 | Three-measuring point high precision alignment calibration method of seabed answering machine absolute location |
Non-Patent Citations (2)
Title |
---|
兰华林 等.一种海底应答器的绝对位置的精确校准方法.《海军工程大学学报》.2007,第19卷(第5期),正文33页倒数第11行至34页第4行,图3. * |
李想 等.一种基于超短基线的声信标定位方法.《高技术通讯》.2009,第19卷(第5期),正文533页右栏第10行至13行,正文534页左栏倒数第9行至535页右栏第23行. * |
Also Published As
Publication number | Publication date |
---|---|
CN101806884A (en) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101806884B (en) | Absolute position precise positioning method of deep-sea beacon based on ultra-short baseline | |
CN101441267B (en) | High-precision Calibration Method of Absolute Position of Submarine Transponder with Three Measuring Points | |
CN102262226B (en) | Underwater Positioning Method Based on Differential Technology | |
Chen et al. | Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations | |
CN101833081A (en) | Method for precise calibration of absolute position of deep sea underwater transponder | |
CN107390177B (en) | A Passive Underwater Acoustic Positioning Method Based on Pure Direction Finding | |
CN105116372B (en) | A kind of method of bottom of shallow sea horizontal linear hydrophone array direction calibration | |
CN107664758B (en) | Deep-sea navigation and positioning system and method based on long-baseline or ultra-short-baseline networking | |
Chadwell et al. | Acoustic ray-trace equations for seafloor geodesy | |
CN106546954A (en) | A kind of deep-sea ultra-short baseline positioning precision method of inspection | |
CN111751856B (en) | Accurate positioning method for submarine ground reference point based on PPP technology | |
Xin et al. | A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed | |
CN112540348A (en) | Application of sound ray correction algorithm based on spatial scale in long-baseline underwater sound positioning system | |
CN111350214A (en) | Multi-beam underwater steel pipe pile position measuring method | |
CN110780263A (en) | Multi-base sonar system positioning accuracy analysis method based on cassini oval line | |
CN107024227A (en) | A kind of combined type TT&C system installed for immersed tube and method | |
CN104422921A (en) | Fixed single station passive positioning system based on orientation and self time difference measurement | |
CN112147578A (en) | High-precision deep water transmitting array and multi-element vertical receiving array element positioning system and method | |
CN108627802B (en) | Multi-information-source marine Internet of things positioning method | |
CN113049052B (en) | Flow measurement method for river with large sand content | |
CN113406645A (en) | Novel average sound velocity underwater sonar positioning method | |
CN114413846B (en) | Deep water jumper installation measurement method based on long baseline acoustic positioning system | |
CN113218372B (en) | A system and method for calibrating the position of a seabed reference point | |
CN206321338U (en) | Acoustic velocity measurement device under a kind of Real-time Water based on semisubmersible drilling platform accommodation instrument | |
CN106908036B (en) | A kind of AUV multi-beam Bathymetric Data patterning process based on local offset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120201 Termination date: 20170423 |