CN101750462B - Solid thermal conductivity detector for cylindrical thermal sensitive region - Google Patents
Solid thermal conductivity detector for cylindrical thermal sensitive region Download PDFInfo
- Publication number
- CN101750462B CN101750462B CN2008102299830A CN200810229983A CN101750462B CN 101750462 B CN101750462 B CN 101750462B CN 2008102299830 A CN2008102299830 A CN 2008102299830A CN 200810229983 A CN200810229983 A CN 200810229983A CN 101750462 B CN101750462 B CN 101750462B
- Authority
- CN
- China
- Prior art keywords
- thermal conductivity
- thermosensitive
- flow cell
- solid
- conductivity detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007787 solid Substances 0.000 title description 2
- 210000004027 cell Anatomy 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 36
- 210000005056 cell body Anatomy 0.000 claims abstract description 15
- 238000004817 gas chromatography Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- 239000010410 layer Substances 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000012159 carrier gas Substances 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 11
- 239000010453 quartz Substances 0.000 claims description 9
- 230000003064 anti-oxidating effect Effects 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 6
- 230000007774 longterm Effects 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910001080 W alloy Inorganic materials 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 150000002484 inorganic compounds Chemical class 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 238000002161 passivation Methods 0.000 claims description 2
- 239000002210 silicon-based material Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 10
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- 238000013403 standard screening design Methods 0.000 description 7
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000005297 pyrex Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000005526 G1 to G0 transition Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明涉及固态热导检测器,是一种气体热导率传感器,用于气相色谱及气体组成变化的检测。本发明包括柱形热敏元件和流通池体,所述柱形热敏元件是由表面固定有热敏电极的柱状支撑体构成,金属丝或热敏镀膜的两端分别与固定在柱状支撑体同一端的引出电极连接;所述流通池体的内腔为筒状,柱形热敏元件与流通池体内腔形成的空间作为检测池;柱形热敏元件镶嵌在流通池体内,且柱状支撑体的轴线与检测池的轴线同轴,在流通池体的二端分别设有气体入口和气体出口,且气体入口设置于检测池的轴线上;引出电极经引出导线与外部电路电连接。本发明检测器的耐温稳定性依所用热敏材料不同而不同,用金属丝的可以达到400℃,不仅提高了器件的耐温,而且简化了制造工艺和要求,拓宽了应用领域。
The invention relates to a solid-state thermal conductivity detector, which is a gas thermal conductivity sensor and is used for gas chromatography and gas composition change detection. The invention comprises a columnar thermosensitive element and a flow cell body. The columnar thermosensitive element is composed of a columnar support with thermosensitive electrodes fixed on the surface. The lead-out electrodes at the same end are connected; the inner cavity of the flow cell body is cylindrical, and the space formed by the cylindrical thermosensitive element and the inner cavity of the flow cell is used as a detection cell; the cylindrical thermal element is embedded in the flow cell body, and the columnar support The axis of the flow cell is coaxial with the axis of the detection cell, and the two ends of the flow cell body are respectively provided with a gas inlet and a gas outlet, and the gas inlet is arranged on the axis of the detection cell; the lead-out electrode is electrically connected to the external circuit through the lead-out wire. The temperature-resistant stability of the detector of the invention varies with the heat-sensitive materials used, and the metal wire can reach 400°C, which not only improves the temperature resistance of the device, but also simplifies the manufacturing process and requirements, and broadens the application field.
Description
技术领域 technical field
本发明涉及固态热导检测器,是一种气体热导率传感器,用于气相色谱及气体组成变化的检测,广泛的应用在工业在线仪表和实验室分析仪器中。The invention relates to a solid-state thermal conductivity detector, which is a gas thermal conductivity sensor, which is used for gas chromatography and gas composition change detection, and is widely used in industrial online instruments and laboratory analysis instruments.
背景技术 Background technique
分析仪器的微型化是21世纪分析仪器的发展主流,微型化不仅减小了仪器的体积和重量,而且减小了仪器的功耗和物耗。而仪器微型化的关键之处就是检测器或传感器的微型化,使检测池体积和功耗降低90%以上,进而可以用更细小的分离色谱柱和电源,使能耗和载气消耗大幅度降低。The miniaturization of analytical instruments is the mainstream of the development of analytical instruments in the 21st century. Miniaturization not only reduces the volume and weight of the instrument, but also reduces the power consumption and material consumption of the instrument. The key to the miniaturization of the instrument is the miniaturization of the detector or sensor, which reduces the volume and power consumption of the detection cell by more than 90%, and then can use a smaller separation column and power supply, which greatly reduces the energy consumption and carrier gas consumption. reduce.
固态热导检测器(Solid State Thermal Conductivity Detector,简称SSD)实质上是一种气体热导率传感器,主要用于气相色谱的检测器、工业在线仪表中的检测器以及需要测量气体组成变化的传感器。Solid State Thermal Conductivity Detector (SSD for short) is essentially a gas thermal conductivity sensor, mainly used in gas chromatography detectors, detectors in industrial online instruments, and sensors that need to measure changes in gas composition .
SSD可以用两种技术实现。一是利用单晶硅表面可氧化成SiO2薄膜并在其上面进一步溅射一层Pyrex玻璃,再溅射左右的镍层,用光刻工艺刻蚀出梳状或网状镍电极。为提高热敏电极基底区的绝热性能并减小热容量,利用单晶硅的可定向腐蚀特性,将热敏电极区背面的单晶硅腐蚀掉,形成以SiO2薄膜和Pyrex玻璃支撑的热悬浮区,使检测器有极高的检测灵敏度。检测器的腔体上盖也是由单晶硅制成,因为它有良好的导热性能。如美国Agilent公司生产的SSD和德国的Freiburg大学的IMTEK研究所研制的SSD都是用上述技术实现的。SSDs can be implemented with two technologies. One is to use the surface of single crystal silicon to be oxidized into a SiO2 film and further sputter a layer of Pyrex glass on it, and then sputter For the left and right nickel layers, comb-shaped or mesh-shaped nickel electrodes are etched by photolithography. In order to improve the heat insulation performance of the base area of the thermally sensitive electrode and reduce the heat capacity, the single crystal silicon on the back of the thermally sensitive electrode area is etched away by utilizing the directional etching characteristics of single crystal silicon, forming a thermal suspension supported by SiO2 film and Pyrex glass. area, so that the detector has extremely high detection sensitivity. The detector cavity cover is also made of single crystal silicon because of its good thermal conductivity. For example, the SSD produced by Agilent Corporation of the United States and the SSD developed by the IMTEK Institute of Freiburg University in Germany are all realized by the above-mentioned technology.
但是,SiO2薄膜、Pyrex玻璃和镍金属电极的热膨胀系数差别很大,当检测器温度从150℃下降到室温时,不仅Pyrex玻璃层会发生龟裂现象,而且镍电极也会与Pyrex玻璃层剥离,使检测器损坏。因此这种检测器的最高工作温度为90℃。只能用来测量沸点较低的组,应用对象受到限制。However, the thermal expansion coefficients of SiO 2 film, Pyrex glass and nickel metal electrodes are very different. When the detector temperature drops from 150°C to room temperature, not only cracks will occur in the Pyrex glass layer, but also the nickel electrode will contact with the Pyrex glass layer. Peel off and damage the detector. Therefore the maximum operating temperature of this detector is 90°C. It can only be used to measure groups with lower boiling points, and the application objects are limited.
另一个技术使用微晶玻璃-陶瓷基片,在上面溅射或化学沉积镍或铂金属膜,然后用光刻或机械刻的方法制作出热敏电极,再用热导率好的材料制成流通池腔体,把上述热敏基片作为腔体的侧壁,形成SSD。如中国发明专利ZL200410046348.0所述技术。Another technology uses a glass-ceramic-ceramic substrate, sputtering or chemically depositing a nickel or platinum metal film on it, and then making a thermosensitive electrode by photolithography or mechanical engraving, and then making it with a material with good thermal conductivity The cavity of the flow cell uses the heat-sensitive substrate as the side wall of the cavity to form an SSD. Such as the technology described in Chinese invention patent ZL200410046348.0.
使用微晶玻璃-陶瓷基片的SSD流通池内有2个转角,气流经过时会产生扰动而增加噪音和谱带混合效应。There are 2 corners in the SSD flow cell using the glass-ceramic-ceramic substrate, which will cause disturbance when the air flow passes through, which will increase the noise and band mixing effect.
现有SSD的热敏电极的金属薄膜都是用溅射或化学沉积上去的,厚度只有0.1~1μm,金属的晶体结构有较多的缺陷,因此长期稳定性不好,热丝的温度一般不能超过200℃以防止损坏。The metal thin film of the thermosensitive electrode of the existing SSD is deposited by sputtering or chemical deposition, the thickness is only 0.1-1 μm, and the crystal structure of the metal has many defects, so the long-term stability is not good, and the temperature of the heating wire generally cannot over 200°C to prevent damage.
传统的热导检测器中的热敏元件是使用单螺旋或双螺旋热敏金属丝绕制的,两个引线固定在用较粗金属制成的弓架上,金属丝穿过绝缘基座引出,作为电引线。这种弓架型热敏丝在外界有微小震动时就会发生弹性震动,导致输出信号有很大的噪音。因此不能在运动过程中使用。另外,这种类型的热导检测器池体积最小为20微升,不适合配毛细管色谱柱使用。The thermosensitive element in the traditional thermal conductivity detector is wound with a single helix or double helix thermosensitive metal wire, and the two lead wires are fixed on the bow frame made of thicker metal, and the wire is drawn out through the insulating base , as electrical leads. This bow-type thermal wire will undergo elastic vibration when there is a slight vibration in the outside world, resulting in a large noise in the output signal. Therefore it cannot be used during exercise. In addition, the minimum cell volume of this type of thermal conductivity detector is 20 microliters, which is not suitable for use with capillary columns.
发明内容 Contents of the invention
为了克服现有技术的缺陷,本发明的目的是提供一种用拉伸金属热敏丝绕制的圆柱形热敏元件,检测池为同轴结构的固态热导检测器,可以在高温下进行检测,对色谱流出谱带的展宽小,检测器噪音低,检测器性能长期稳定性好,而且其制作工艺简单。In order to overcome the defects of the prior art, the object of the present invention is to provide a cylindrical thermosensitive element wound with stretched metal thermosensitive wire, and the detection pool is a solid-state thermal conductivity detector with a coaxial structure, which can be tested at high temperature. Detection, the broadening of the chromatographic effluent band is small, the noise of the detector is low, the long-term stability of the detector performance is good, and the manufacturing process is simple.
为达到上述目的,本发明采用的技术解决方案是:In order to achieve the above object, the technical solution adopted in the present invention is:
一种柱形热敏区的固态热导检测器,包括柱形热敏元件和流通池体,所述柱形热敏元件是由表面固定有热敏电极的柱状支撑体构成,金属丝或热敏镀膜的两端分别与固定在柱状支撑体同一端的引出电极连接;所述流通池体的内腔为筒状,作为检测池;柱形热敏元件镶嵌在流通池体内,且柱状支撑体的轴线与检测池的轴线同轴,在流通池体的二端分别设有气体入口和气体出口,且气体入口设置于检测池的轴线上;引出电极经引出导线与外部电路电连接。A solid-state thermal conductivity detector with a cylindrical thermosensitive area, comprising a cylindrical thermosensitive element and a flow cell body. The two ends of the sensitive coating are respectively connected to the lead-out electrodes fixed at the same end of the columnar support; the inner cavity of the flow cell body is cylindrical and serves as a detection cell; the columnar thermosensitive element is embedded in the flow cell body, and the columnar support body The axis is coaxial with the axis of the detection cell, and the two ends of the flow cell body are respectively provided with a gas inlet and a gas outlet, and the gas inlet is arranged on the axis of the detection cell; the lead-out electrode is electrically connected to the external circuit through the lead-out wire.
所述流通池体用热导率良好的金属或硅材料制成,气体入口连接色谱柱,气体出口放空;热敏电极与流通池体内壁之间的距离为25~500微米。The flow cell body is made of metal or silicon material with good thermal conductivity, the gas inlet is connected to the chromatographic column, and the gas outlet is vented; the distance between the thermosensitive electrode and the inner wall of the flow cell is 25-500 microns.
所述热敏电极是指由缠绕在柱状支撑体表面的热敏金属丝或镀在柱状支撑体表面的热敏镀膜构成;在热敏电极表面涂覆抗氧化保护层;The heat-sensitive electrode refers to a heat-sensitive wire wound on the surface of a columnar support or a heat-sensitive coating coated on the surface of a columnar support; an anti-oxidation protective layer is coated on the surface of the heat-sensitive electrode;
所述热敏金属丝的直径为7~70微米,绕在柱状支撑体上,两个线端与固定于柱状支撑体下部的金属引线连接;所述金属丝有较高的电阻温度系数和长期稳定的性能,其为镍、铂、铼钨合金或其它合金;The diameter of the heat-sensitive metal wire is 7-70 microns, which is wound on the columnar support, and the two wire ends are connected with the metal leads fixed on the lower part of the columnar support; the metal wire has a relatively high temperature coefficient of resistance and long-term Stable performance, which is nickel, platinum, rhenium-tungsten alloy or other alloys;
所述热敏镀膜为热敏金属膜、金属氧化物膜或半导体膜,热敏镀膜可刻蚀成筒状、梳妆或螺旋状电极,电极的引出端分别与固定于柱状支撑体下部的金属引线连接。The heat-sensitive coating film is a heat-sensitive metal film, metal oxide film or semiconductor film, and the heat-sensitive coating film can be etched into cylindrical, comb or spiral electrodes, and the lead-out ends of the electrodes are respectively connected to the metal leads fixed on the lower part of the columnar support. connect.
所述抗氧化保护层厚度为~2μm,其为喷涂的一层耐高温无机化合物或一层耐高温有机化合物、或生成的一层金属钝化层或为表面镀金层。The thickness of the anti-oxidation protective layer is ~2μm, which is a layer of high-temperature resistant inorganic compound or a layer of high-temperature resistant organic compound sprayed, or a layer of metal passivation layer or a gold-plated layer on the surface.
所述柱状支撑体为圆柱体或圆筒,其采用陶瓷棒、陶瓷管、玻璃棒、石英棒、玻璃管或石英管材料制成;柱状支撑体外表面粗糙或有螺纹形浅槽。The columnar support is a cylinder or cylinder, which is made of ceramic rods, ceramic tubes, glass rods, quartz rods, glass tubes or quartz tubes; the outer surface of the columnar support is rough or has thread-shaped shallow grooves.
所述热敏元件可为一对与固定电阻组成惠斯登电桥;或两对组成惠斯登电桥,以增加检测器的响应值和灵敏度,引出导线从柱形热敏元件在流通池体上的镶嵌处伸出。The thermosensitive element can be formed into a Wheatstone bridge with a pair of fixed resistors; or two pairs can be formed into a Wheatstone bridge to increase the response value and sensitivity of the detector. The inlay on the body protrudes.
所述检测池的有效体积0.5~50微升,优选在1~5微升;当用在气相色谱检测器时,适合毛细管色谱柱和微填充色谱柱,载气流量为0.5~30毫升/分。The effective volume of the detection cell is 0.5-50 microliters, preferably 1-5 microliters; when used in a gas chromatographic detector, it is suitable for capillary chromatographic columns and micro-packed chromatographic columns, and the carrier gas flow rate is 0.5-30 ml/min .
本发明的优势在于:1)与现有的固态热导检测器比,用热丝绕制的热敏元件具有特别好的长期稳定性,耐温性能比现有的薄膜工艺制作的固态热导检测器高200℃,因此可以在较高温度下使用,分析较高沸点的组分,极大地拓展了应用范围;2)与现有的常规型微池热导检测器比较,本发明的热敏元件抗震动,没有悬浮金属丝,可以在运动过程中使用;3)本发明固态热导检测器池体积比传统的微池热导检测器池体积小1个数量级,适合配毛细管色谱柱而且不需要尾吹气,显著提高实用灵敏度;4)本发明固态热导检测器的入口与检测池同轴,色谱流出气体进入后保持层流状态,避免了现有热导检测器入口方向与检测池方向成90°而引起的气体再混合以及检测池内组分浓度随时间指数衰减而造成色谱峰拖尾的问题;5)本发明的热敏电极均匀分布在支撑柱体外表面,而且表面积大,使进入的气体组分能够充分接触电极表面。因此响应值的重复性能优于常规热导检测器和现有的固态热导检测器。The advantages of the present invention are: 1) Compared with the existing solid-state thermal conductivity detector, the thermosensitive element wound with hot wire has particularly good long-term stability, and its temperature resistance is better than that of the solid-state thermal conductivity detector made by the existing film technology. The detector is 200°C higher, so it can be used at a higher temperature to analyze components with higher boiling points, which greatly expands the scope of application; 2) Compared with the existing conventional micro-cell thermal conductivity detector, the thermal conductivity detector of the present invention Sensitive components are anti-vibration, there is no suspended metal wire, and can be used during motion; 3) The volume of the solid-state thermal conductivity detector of the present invention is an order of magnitude smaller than that of the traditional micro-cell thermal conductivity detector, and is suitable for matching with capillary chromatographic columns and Makeup gas is not needed, which significantly improves the practical sensitivity; 4) The entrance of the solid-state thermal conductivity detector of the present invention is coaxial with the detection cell, and the chromatographic outflow gas maintains a laminar flow state after entering, avoiding the direction of the entrance of the existing thermal conductivity detector and the detection The gas remixing caused by the pool direction being 90° and the concentration of components in the detection pool decaying exponentially with time cause the problem of chromatographic peak tailing; 5) the thermosensitive electrode of the present invention is evenly distributed on the outer surface of the support column, and has a large surface area, Make the incoming gas components fully contact the electrode surface. Therefore, the repeatability of the response value is better than conventional thermal conductivity detectors and existing solid-state thermal conductivity detectors.
本发明的金属细丝绕在绝热支撑圆棒或圆管上,并外涂敷抗氧化保护膜,当检测器温度和热敏电极温度有400℃以内变化时,金属丝在圆柱支撑体上不脱落,基底材料不龟裂,不变形。本发明采用的同轴形检测池结构显著降低了对气流扰动,同时增加测量热导率变化的敏感面积,提高检测灵敏度和稳定性,改善了对色谱谱带的展宽效应。不仅提高了器件的整体性能,而且简化了制造工艺和要求,拓宽了应用领域。The metal filament of the present invention is wound on a heat-insulating support round rod or a round tube, and is coated with an anti-oxidation protective film. When the temperature of the detector and the temperature of the thermosensitive electrode change within 400°C, the metal wire does not move on the cylindrical support. Shedding, the base material is not cracked or deformed. The coaxial detection cell structure adopted by the invention significantly reduces the disturbance to the air flow, increases the sensitive area for measuring the thermal conductivity change, improves the detection sensitivity and stability, and improves the broadening effect on the chromatographic band. It not only improves the overall performance of the device, but also simplifies the manufacturing process and requirements, and broadens the application field.
附图说明 Description of drawings
图1为本发明固态热导检测器的热敏元件结构图;其中1为热敏金属丝对折绕在支撑棒上的示意图;2为热敏金属丝直绕在支撑管上的示意图,顶端用无机材料封口(下同);3为热敏金属膜/金属氧化膜/半导体金属化合物膜热敏元件示意图,热敏膜固载在支撑管上;4为刻蚀热敏膜形成热敏电阻的结构示意图;5为将热敏膜镀在支撑棒或管后,再进行双螺旋刻蚀,之后将顶端的两个导电端短接,下面的两个导电端分别与固定电极焊接,形成热敏电阻。Fig. 1 is the structural diagram of the thermosensitive element of the solid-state thermal conductivity detector of the present invention; Wherein 1 is the schematic diagram that the thermosensitive metal wire is folded on the support bar; 2 is the schematic diagram that the thermosensitive metal wire is directly wound on the support tube, Inorganic material sealing (the same below); 3 is a schematic diagram of a heat-sensitive metal film/metal oxide film/semiconductor metal compound film heat-sensitive element, and the heat-sensitive film is fixed on the support tube; 4 is the etching heat-sensitive film to form a thermistor Schematic diagram of the structure; 5 is to plate the heat-sensitive film on the support rod or tube, then perform double-helix etching, and then short-circuit the two conductive ends at the top, and weld the two conductive ends at the bottom to the fixed electrodes respectively to form a heat-sensitive resistance.
图2.1为本发明固态热导检测器基本结构单元的结构图;右图是检测器池体结构,左图是嵌入热敏元件后的检测器结构;Figure 2.1 is a structural diagram of the basic structural unit of the solid-state thermal conductivity detector of the present invention; the right figure is the structure of the detector cell, and the left figure is the detector structure after the thermal sensor is embedded;
图2.2为本发明四臂固态热导检测器的结构原理图。Fig. 2.2 is a schematic diagram of the structure of the four-arm solid-state thermal conductivity detector of the present invention.
图3为用1对热敏元件构成测量电桥的原理图;图中1区为测量和参比臂的热敏电阻元件,R1为测量臂,R2为参比臂,R0、R3和R4为桥路电阻;Figure 3 is a schematic diagram of a measuring bridge composed of a pair of thermal elements;
图4为用2对热敏元件构成测量电桥的原理图。Figure 4 is a schematic diagram of the measurement bridge composed of 2 pairs of heat-sensitive elements.
图5为本发明固态热导检测器与色谱分离柱连用,分析变压器油中溶解气体样品的谱图。其中,样品:5ppm C2H4、C2H6、C2H2、C3H8标准混合气,峰号对应组分:1:CO2;2:C2H4;3:C2H6;4:C2H2;5:C3H8。Fig. 5 is a spectrogram of analyzing dissolved gas samples in transformer oil when the solid-state thermal conductivity detector of the present invention is used in conjunction with a chromatographic separation column. Among them, the sample: 5ppm C 2 H 4 , C 2 H 6 , C 2 H 2 , C 3 H 8 standard gas mixture, the corresponding components of the peak number: 1: CO 2 ; 2: C 2 H 4 ; 3: C 2 H6 ; 4 : C2H2 ; 5: C3H8 .
具体实施方式 Detailed ways
见图1、图2所示,为本发明固态热导检测器的结构图,包括热敏元件100和流通池200两部分。热敏元件100由作为支撑体101的圆柱形陶瓷/玻璃/石英棒,缠绕在101上的热敏金属丝作为热敏电极102、或镀在101表面的热敏金属薄膜/金属氧化物薄膜/半导体金属化合物薄膜构成的热敏电极102、热敏电极引出103与引出线104熔焊连接、和抗氧化保护层105组成。热敏元件100安装在流通池200内,100的底座区套上弹性材料205,镶嵌在204部位固定密封。热敏元件的引出线104由一侧伸出,与外部电路电连接。See FIG. 1 and FIG. 2 , which are structural diagrams of the solid-state thermal conductivity detector of the present invention, including two parts of a
圆柱形支撑体101提供了良好的强度、绝缘和热导率很低的支撑和粗糙适度的表面。使上绕或镀敷的金属丝或金属/金属氧化物/半导体金属化合物薄膜热敏电极102能够牢固附着在粗糙的表面上,当温度有上百度变化时,仍然能保证薄膜热敏电极102能够固定在101的表面上而不脱落,尽管金属丝的温度膨胀系数与支撑体101的温度膨胀系数有很大不同,外涂抗氧化层能够固定金属丝。The
热敏金属丝可以是铼钨丝、铂丝、镍丝和其它温度系数较高的电热丝,热敏薄膜材料可为镍、铂、合金或铼钨等金属薄膜、或金属氧化物、或半导体材料等有较高电阻温度系数和性能稳定的材料。见图3、图4和图5,薄膜热敏电极102是用蚀刻工艺制作成,以增加电阻值或热敏电极与流通池壁之间的温度差。热敏元件100可以是一对,也可以是两对,如图3和图4所示。用2对热敏元件可以增加响应值和灵敏度,但是增加了池体积。The thermosensitive metal wire can be rhenium tungsten wire, platinum wire, nickel wire and other electric heating wire with high temperature coefficient, and the thermosensitive film material can be metal film such as nickel, platinum, alloy or rhenium tungsten, or metal oxide, or semiconductor Materials such as materials with high temperature coefficient of resistance and stable performance. Referring to FIG. 3 , FIG. 4 and FIG. 5 , the thin-
本发明的固态热导检测器,由绕在或固载在圆柱形支撑体101上的热敏金属丝或热敏薄膜电阻被通电自体加热成为热敏元件100,当流过热敏电极102的气体组成发生变化而使气体的热导率发生变化时,发热的热敏电极102的热耗散程度发生变化,热敏电极102的温度也随之变化,使阻值相应改变。据此可以测量气体组成的变化。In the solid-state thermal conductivity detector of the present invention, a thermosensitive metal wire or a thermosensitive thin film resistor wound on or fixed on a
本发明的热敏元件中由金属丝绕在圆柱形支撑体上的类型,因金属晶体结构比较理想,加之抗氧化涂层的固定,因此耐温可以达到400℃(用铂、铼钨丝等)。In the thermosensitive element of the present invention, the metal wire is wound on the cylindrical support body, because the metal crystal structure is ideal, and the anti-oxidation coating is fixed, so the temperature resistance can reach 400 ° C (using platinum, rhenium tungsten wire, etc. ).
对于中空型圆柱形支撑体101(用圆管封端头实现),因其良好的绝热作用使热敏电极102的响应值和响应速度都比较高,对气体热导系数的变化非常敏感。本发明的固态热导检测器可以检测到氢气中≤3×10-6丁烷气体所引起的热导率变化。For the hollow cylindrical support 101 (implemented by a round pipe end cap), the thermally
实施例1Example 1
固态热导检测器,在直径0.6mm的陶瓷棒101上,用直径15μm的铼钨合金丝绕100欧姆/0℃的热敏电阻102,引出金属丝103与引出线104熔焊连接,然后在表面涂覆2微米厚的低温陶瓷保护层105。这个组件称为热敏元件100。将制作好的2支热敏元件100分别镶嵌到2个流通池201中,形成检测池,分别有气体入口202和气体出口203。热敏丝102与检测池壁之间的距离为100~200微米。这对热敏元件与外部电路连接成惠斯登电桥。A solid-state thermal conductivity detector, on a
用两根长度20米,内径0.53mm,内涂色谱固定相的弹性石英毛细管柱分别连接到检测器的两个入口,一个作为参比,另一个作为测量,测量毛细管柱的入口接到色谱进样器上。两路都通入载气,流量3毫升/分氢气。在检测器的引出线上施加电压,使热敏电极的温度高于检测器温度60℃~220℃。整个系统都放在一个恒温箱内。用进样针将样品从进样器注入,经色谱柱分离的组分在检测器上产生信号,信号的幅度正比于组分的浓度和组分与载气热导率之差值。图5是分析样品的谱图。Use two elastic quartz capillary columns with a length of 20 meters and an internal diameter of 0.53mm to be connected to the two inlets of the detector respectively, one as a reference and the other as a measurement, and the inlet of the measuring capillary column is connected to the chromatographic inlet. on the sampler. Both paths are fed with carrier gas with a flow rate of 3 ml/min hydrogen. Apply a voltage to the lead wire of the detector to make the temperature of the thermosensitive electrode 60°C to 220°C higher than the detector temperature. The whole system is placed in an incubator. The sample is injected from the injector with the injection needle, and the components separated by the chromatographic column generate a signal on the detector, and the amplitude of the signal is proportional to the concentration of the component and the difference between the thermal conductivity of the component and the carrier gas. Figure 5 is the spectrum of the analyzed sample.
实施例2Example 2
固态热导检测器,在外径1mm的玻璃管(作为支撑体101)上用直径20μm的铂丝绕成阻值22欧姆/0℃的热敏电极102,铂丝引出103与固定引出线104焊接,在热敏区表面涂覆玻璃釉约1μm厚形成保护膜105。将制作好的2支热敏元件分别镶嵌到2个流通池201中,形成两个独立的检测池。热敏区表面与检测池壁之间的距离为200~300微米。检测池的入口202连接色谱柱出口,检测池的出口203放空。这对热敏元件与外部电路连接成惠斯登电桥。Solid-state thermal conductivity detector, on a glass tube with an outer diameter of 1mm (as a support 101), a
用两根长度2米,内径1mm,内填100-120目色谱固定相的微填充不锈钢柱,分别连接到检测器的两个入口,一个作为参比,另一个作为测量,测量柱的入口接到进样阀上。两路都通入载气,流量8毫升/分氢气。在检测器的引出线上施加电压,使热敏电极的温度高于检测器温度80℃。整个系统都放在一个恒温箱内。将样品气从进样阀注入样品管中,转动阀进样,经色谱柱分离的组分在检测器上产生信号,信号的幅度正比于组分的浓度和组分与载气热导率之差值。Use two micro-packed stainless steel columns with a length of 2 meters, an inner diameter of 1mm, and a chromatographic stationary phase of 100-120 mesh, which are respectively connected to the two inlets of the detector, one as a reference and the other as a measurement, and the inlet of the measuring column is connected to the detector. to the injection valve. Both paths are fed with carrier gas with a flow rate of 8 ml/min hydrogen. Apply a voltage to the lead wire of the detector to make the temperature of the thermosensitive electrode 80°C higher than the temperature of the detector. The whole system is placed in an incubator. The sample gas is injected into the sample tube from the injection valve, and the valve is turned to inject the sample. The components separated by the chromatographic column generate signals on the detector. The amplitude of the signal is proportional to the concentration of the components and the thermal conductivity of the components and the carrier gas. difference.
实施例3Example 3
在外径0.8mm的石英管(作为支撑体101)上用直径10μm的铂丝绕成阻值100欧姆/0℃的热敏电极102,铂丝引出103与固定引出电极104焊接,在热敏区表面涂覆0.5μm聚酰亚胺构成保护层105。将制作好的2支热敏元件分别镶嵌到2个流通池201中,形成两个独立的检测池。热敏电阻丝表面与检测池壁之间的距离为50-180微米,检测池的入口202连接色谱柱出口,检测池的出口203放空。这对热敏元件与外部电路连接成惠斯登电桥。On a quartz tube with an outer diameter of 0.8mm (as a support 101), a
用两根长度30米,内径0.53mm,内涂色谱固定相的弹性石英毛细管柱分别连接到检测器的两个入口,一个作为参比,另一个作为测量,测量毛细管柱的入口接到色谱进样器上。两路都通入载气,流量5毫升/分氢气。在检测器的引出线上施加电压,使热敏电极的温度高于检测器温度150℃。整个系统都放在一个恒温箱内。用进样针将样品从进样器注入,经色谱柱分离的组分在检测器上产生信号,信号的幅度正比于组分的浓度和组分与载气热导率之差值。Use two elastic quartz capillary columns with a length of 30 meters and an internal diameter of 0.53mm to be connected to the two inlets of the detector respectively, one as a reference and the other as a measurement, and the inlet of the measuring capillary column is connected to the chromatographic inlet. on the sampler. Both paths are fed with carrier gas with a flow rate of 5 ml/min hydrogen. Apply a voltage to the lead wire of the detector to make the temperature of the thermosensitive electrode 150°C higher than the temperature of the detector. The whole system is placed in an incubator. The sample is injected from the injector with the injection needle, and the components separated by the chromatographic column generate a signal on the detector, and the amplitude of the signal is proportional to the concentration of the component and the difference between the thermal conductivity of the component and the carrier gas.
实施例4Example 4
固态热导检测器,在直径0.5mm的陶瓷管(作为支撑体101)上,用直径17μm的铂丝对折绕20欧姆/0℃的热敏电极102,铂丝引出103与引出线104熔焊连接,然后在表面涂覆约3微米厚的低温陶瓷保护层105。将制作好的4支2对热敏元件100分别镶嵌到2个流通池301中,形成检测池,分别有气体入口302和出口303。热敏电极102与检测池壁之间的距离为50~100微米。这2对热敏元件与外部电路连接成惠斯登电桥。A solid-state thermal conductivity detector, on a ceramic tube with a diameter of 0.5mm (as a support 101), a platinum wire with a diameter of 17 μm is used to fold a 20 ohm/0°
用两根长度50米,内径0.32mm,内涂色谱固定相的弹性石英毛细管柱分别连接到检测器的两个入口,一个作为参比,另一个作为测量。测量臂的毛细管柱的入口接到色谱进样器上。两路都通入载气,流量3毫升/分氢气。在检测器的引出线上施加电压,使热敏电极的温度高于检测器温度200℃。整个系统都放在一个恒温箱内。用进样针将样品从进样器注入,经色谱柱分离的组分在检测器上产生信号,信号的幅度正比于组分的浓度和组分与载气热导率之差值。Two elastic quartz capillary columns with a length of 50 meters and an inner diameter of 0.32 mm, which are coated with a chromatographic stationary phase, are respectively connected to the two inlets of the detector, one as a reference and the other as a measurement. The inlet of the capillary column of the measuring arm is connected to the chromatographic injector. Both paths are fed with carrier gas with a flow rate of 3 ml/min hydrogen. Apply a voltage to the lead wire of the detector to make the temperature of the thermosensitive electrode 200°C higher than the temperature of the detector. The whole system is placed in an incubator. The sample is injected from the injector with the injection needle, and the components separated by the chromatographic column generate a signal on the detector, and the amplitude of the signal is proportional to the concentration of the component and the difference between the thermal conductivity of the component and the carrier gas.
实施例5Example 5
固态热导检测器,在直径1.0mm的玻璃棒(作为支撑体101)上模压螺旋浅槽,用直径22微米的铂丝绕制出50欧姆/0℃的热敏电极102,然后将铂丝引出103与引出线104焊接。在绕铂丝区溅射覆盖1~2微米厚的玻璃,经退火稳定形成保护层105。将2只制作好的热敏元件分别镶嵌到2个流通池201中,形成两个独立的检测池,分别有气体入口和出口。热敏电极102的表面与检测池壁201之间的距离为150微米。这2只热敏电阻与外部电桥连接构成测量电桥。A solid-state thermal conductivity detector molds a spiral shallow groove on a glass rod with a diameter of 1.0mm (as the support body 101), and winds a 50 ohm/0°
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102299830A CN101750462B (en) | 2008-12-19 | 2008-12-19 | Solid thermal conductivity detector for cylindrical thermal sensitive region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102299830A CN101750462B (en) | 2008-12-19 | 2008-12-19 | Solid thermal conductivity detector for cylindrical thermal sensitive region |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101750462A CN101750462A (en) | 2010-06-23 |
CN101750462B true CN101750462B (en) | 2012-06-20 |
Family
ID=42477755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102299830A Active CN101750462B (en) | 2008-12-19 | 2008-12-19 | Solid thermal conductivity detector for cylindrical thermal sensitive region |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101750462B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105891394B (en) * | 2014-12-09 | 2018-05-29 | 山东鲁南瑞虹化工仪器有限公司 | A kind of thermal conductivity cell detector |
CN105277586A (en) * | 2015-07-13 | 2016-01-27 | 西华大学 | Minisize air chamber of thermal conductance sensor |
CN108178122B (en) * | 2016-12-08 | 2024-06-18 | 中国科学院上海微系统与信息技术研究所 | Micro heat conduction detector and preparation method thereof |
EP3671195B1 (en) * | 2018-12-17 | 2025-02-12 | Siemens Aktiengesellschaft | Thermoresistive gas sensor |
CN113203769B (en) * | 2021-04-15 | 2022-11-04 | 电子科技大学 | A kind of miniature thermal conductivity detector with high airtightness and its manufacturing method |
-
2008
- 2008-12-19 CN CN2008102299830A patent/CN101750462B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101750462A (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101750462B (en) | Solid thermal conductivity detector for cylindrical thermal sensitive region | |
Xie et al. | A low power cantilever-based metal oxide semiconductor gas sensor | |
CN102200480B (en) | In-situ temperature measuring thermocouple on diamond anvil cell and preparation method thereof | |
CN102288644A (en) | Resistance gas sensor with four support cantilever beams and a four-layer structure and method | |
CN101620192A (en) | Test structure for measuring thermal conductivity of film | |
JP2001033295A (en) | Capacitive probe for measuring level of conductive liquid in container and method for manufacturing the probe | |
CN102359981A (en) | Resistance type gas sensor with two support suspension beams and six-layer structure, and method thereof | |
CN104614399B (en) | A kind of hot physical property transient hot wire technique temperature probe of liquid | |
CN113790814B (en) | Spherical tip micro-nano thermocouple probe and preparation method thereof | |
CN112129800A (en) | Temperature-changing probe for nuclear magnetic resonance detection | |
CN102279206B (en) | Thermal Analytical Chemical and Gas Detection Sensors | |
CN105784183A (en) | SMD temperature sensor and preparation technology therefor | |
CN1317559C (en) | Solid thermal conductivity detector | |
CN108507717A (en) | A kind of micro vacuum sensor | |
CN1194426C (en) | Thin film thermocouple with suspended temperature measuring node | |
CN205175942U (en) | Air chamber of miniature thermal conductance sensor | |
CN110274649A (en) | A kind of hot temperature difference type flow sensor and preparation method thereof based on MEMS technology | |
TW494233B (en) | Thermal conductivity detector | |
CN204832093U (en) | Novel semiconductor gas sensing device | |
CN101475137A (en) | Double-layer suspension beam microstructure thin film heat meter | |
CN211291781U (en) | Single-core dual-redundancy temperature measuring equipment | |
JP2022091728A (en) | High-speed humidity sensor and method for calibrating the same | |
CN209673693U (en) | A Mechanically Sealed Miniature Thermal Conductivity Detector | |
CN113511626A (en) | Multi-parameter gas sensing microchip and preparation method thereof, and gas sensor | |
CN117434193B (en) | High-sensitivity TCD detector for corrosive gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |