CN101391304A - Preparation method of porous silver powder with high specific surface area - Google Patents
Preparation method of porous silver powder with high specific surface area Download PDFInfo
- Publication number
- CN101391304A CN101391304A CNA2008101435255A CN200810143525A CN101391304A CN 101391304 A CN101391304 A CN 101391304A CN A2008101435255 A CNA2008101435255 A CN A2008101435255A CN 200810143525 A CN200810143525 A CN 200810143525A CN 101391304 A CN101391304 A CN 101391304A
- Authority
- CN
- China
- Prior art keywords
- silver
- magnesium
- powder
- surface area
- specific surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 30
- 239000011777 magnesium Substances 0.000 claims abstract description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000000498 ball milling Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910052709 silver Inorganic materials 0.000 claims abstract description 21
- 239000004332 silver Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 20
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 17
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 14
- 229910052786 argon Inorganic materials 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000005275 alloying Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 6
- 239000010439 graphite Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 238000010309 melting process Methods 0.000 claims abstract 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000007873 sieving Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- 238000004364 calculation method Methods 0.000 claims 1
- 239000000155 melt Substances 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 230000035699 permeability Effects 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract 1
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 8
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 238000003723 Smelting Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910001923 silver oxide Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000009461 vacuum packaging Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010946 fine silver Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种高比表面积多孔银粉的制备方法,以纯度为99.9%的银锭为基材,银-镁合金中合金化元素镁重量百分比为:15~35%;采用电阻炉及石墨坩埚对镁进行熔炼,熔炼温度为720~780℃,熔炼过程中采用氩气保护,待镁完全熔融后按比例将银锭加入熔融态镁中,保温至银完全熔融后充分搅拌,浇铸于铁模中,待自然冷却后机械破碎、氩气保护下球磨,球磨参数为:转速:180~220r/min,球料比:R=10~20,球磨时间:44~52h,达到粒度要求;球磨后的银-镁合金粉末放入过量20%~40%体积的混合酸溶液中,腐蚀44~52h后取出,洗涤、过滤、干燥过筛即可。本发明是一种生产效率高,生产成本低,成品比表面积大、活性高、渗透性强的多孔银粉的制备方法。
The invention discloses a method for preparing porous silver powder with a high specific surface area. The silver ingot with a purity of 99.9% is used as a base material, and the weight percentage of alloying element magnesium in a silver-magnesium alloy is 15-35%. A resistance furnace and a graphite crucible are used. Melting magnesium, the melting temperature is 720 ~ 780 ℃, using argon protection during the melting process, after the magnesium is completely melted, add silver ingots to the molten magnesium in proportion, keep warm until the silver is completely melted, stir well, and cast it in an iron mold , mechanical crushing after natural cooling, ball milling under argon protection, ball milling parameters: speed: 180-220r/min, ball-to-material ratio: R=10-20, ball-milling time: 44-52h, to meet the particle size requirements; after ball milling The silver-magnesium alloy powder is put into an excess of 20%-40% volume mixed acid solution, corroded for 44-52 hours, taken out, washed, filtered, dried and sieved. The invention is a method for preparing porous silver powder with high production efficiency, low production cost, large specific surface area, high activity and strong permeability.
Description
技术领域 technical field
本发明涉及一种高比表面积多孔银粉的制备方法,特指一种以合金化法制备银基合金,经破碎球磨制粉后腐蚀制取多孔银粉的方法。The invention relates to a method for preparing porous silver powder with high specific surface area, in particular to a method for preparing silver-based alloy by alloying method, and then corroding to prepare porous silver powder after milling by crushing balls.
背景技术 Background technique
多孔材料是近年发展起来的新材料,它具有结构材料和功能材料的特性。多孔材料具有大量的空隙决定了它具有如比重小、比强度大、能量吸收性好、比表面积大、渗透性好及对气体敏感等特性,这些性能使得多孔材料广泛地使用于过滤器、催化剂载体、热交换器、多孔金属电极等。Porous materials are new materials developed in recent years, which have the characteristics of structural materials and functional materials. The large number of voids in the porous material determines its characteristics such as small specific gravity, high specific strength, good energy absorption, large specific surface area, good permeability, and sensitivity to gases. These properties make porous materials widely used in filters, catalysts, etc. Carriers, heat exchangers, porous metal electrodes, etc.
由微细多孔银粉烧结后得极板经化成生成氧化物而得到的氧化银电极,可用于锌/氧化银(Zn/AgO)电池正极材料和铝/氧化银(Al/AgO)电池正极材料,该电池具有放电功率大、电性能稳定、使用安全可靠和高比能量等特性,可广泛用于医疗卫生储备电源、消防储备电源、电信储备应急电源、水下推进动力电源及航空航天用二次电池。The silver oxide electrode obtained by sintering the fine porous silver powder into oxides can be used as positive electrode materials for zinc/silver oxide (Zn/AgO) batteries and aluminum/silver oxide (Al/AgO) batteries. The battery has the characteristics of large discharge power, stable electrical performance, safe and reliable use, and high specific energy. It can be widely used in medical and health reserve power, fire reserve power, telecommunications reserve emergency power, underwater propulsion power and aerospace secondary batteries. .
目前国内外制备正极用微细银粉方法,一般为化学方法如氧化银热还原法、醋酸银热分解法、葡萄糖还原法等。上述方法制备的银粉比表面积约为1.5~2m2/g,经压制后烧结及氧化化成后制造的AgO电极电极电位低,约0.15V(理论值:0.45V),利用率约为65%左右,其氧含量低(约65%)、电极极化严重、电位较低、放电过程中利用率较低(60%~70%),且流动性差导致机加工性能差,只能通过手工制作银电极,容易造成电流密度分布失衡,局部性能差异大,工作电压下降等问题,且降低生产效率,增加劳动力成本。At present, methods for preparing fine silver powders for positive electrodes at home and abroad are generally chemical methods such as silver oxide thermal reduction method, silver acetate thermal decomposition method, glucose reduction method, etc. The specific surface area of the silver powder prepared by the above method is about 1.5-2m 2 /g, and the AgO electrode produced after pressing, sintering and oxidation is low in electrode potential, about 0.15V (theoretical value: 0.45V), and the utilization rate is about 65%. , with low oxygen content (about 65%), severe electrode polarization, low potential, low utilization rate during discharge (60%-70%), and poor fluidity resulting in poor machinability, so it can only be made by hand. Electrodes are likely to cause problems such as unbalanced current density distribution, large local performance differences, and lower working voltage, which will reduce production efficiency and increase labor costs.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种生产效率高,生产成本低,成品比表面积大、活性高、渗透性强的多孔银粉制备方法。The technical problem to be solved by the present invention is to provide a preparation method of porous silver powder with high production efficiency, low production cost, large specific surface area of finished product, high activity and strong permeability.
为了解决上述技术问题,本发明提供的高比表面积多孔银粉的制备方法,以纯度为99.9%的银锭为基材,选取银-镁合金化元素镁质量百分比为:15~35%;采用电阻炉及石墨坩埚对镁进行熔炼,熔炼温度为720~780℃,熔炼过程中采用氩气保护,待镁完全熔融后按比例将银锭加入熔融态镁中,至银完全熔化后充分搅拌,浇铸于铁模中,待自然冷却后机械破碎、氩气保护下球磨,球磨参数为:转速:180~220r/min,球料比:R=10~20,球磨44~52h,根据粉末粒度要求过筛分级,没达到粒度要求的粗合金粉继续球磨;球磨后的银-镁合金粉末放入过量20%~40%体积的混合酸溶液(混合酸溶液组成为:1体积36.5%浓盐酸+9体积98%浓硫酸+40体积水)中,混合酸溶液体积根据银-镁合金粉末中镁的质量(m:克)计算确定,计算方法:混合酸溶液体积V(升)=1.2%m,腐蚀44~52h后取出,洗涤、过滤、干燥、过筛,得微米级多孔银粉。In order to solve the above-mentioned technical problems, the preparation method of the high specific surface area porous silver powder provided by the present invention uses silver ingots with a purity of 99.9% as the base material, and selects the mass percentage of silver-magnesium alloying element magnesium as: 15-35%; adopts a resistance furnace and graphite crucible to smelt magnesium. The melting temperature is 720-780°C. During the smelting process, argon protection is used. After the magnesium is completely melted, silver ingots are added to the molten magnesium in proportion. After the silver is completely melted, it is fully stirred and cast on iron In the mold, after natural cooling, mechanical crushing, ball milling under argon protection, ball milling parameters: speed: 180~220r/min, ball material ratio: R=10~20, ball milling 44~52h, sieve and classify according to powder particle size requirements , the coarse alloy powder that does not reach particle size requirement continues ball milling; The silver-magnesium alloy powder after ball milling is put into the mixed acid solution of excess 20%~40% volume (mixed acid solution is composed of: 1 volume 36.5% concentrated hydrochloric acid+9 volume 98 % concentrated sulfuric acid+40 volume water), the volume of the mixed acid solution is calculated according to the mass (m: gram) of magnesium in the silver-magnesium alloy powder. Take it out after ~52h, wash, filter, dry, and sieve to obtain micron-sized porous silver powder.
采用上述技术方案制备的大比表面积、高活性的多孔银粉的制备方法,利用低成本的合金化元素镁制备银-镁合金,经破碎球磨工艺后再腐蚀制备的多孔网络状银粉具有微米级银粉粒度、纳米级粉的比表面积,因此具有高活性、高利用率及低成本等优势。合金法得到的多孔网络状银粉比表面积为≥5m2/g,是微米级银粉比表面积的3~5倍,且制备的银粉具有较好的流动性,满足了全自动辊压电极设备对原材料的要求,提高电化学性能均匀性及降低了人工成本。多孔网络状银粉制造的氧化物(Ag2O或AgO)正极极片具有高活性、强渗透性、低极化及较正的阴极电位,其电极电位:≥0.25V(理论值:0.45V),利用率:≥75%,可用于大功率的Zn/AgO二次电池、Al/AgO一次电池正极,而且可以提高阴极的利用率和电池的功率,且可使电池放电台阶电压高且稳定,同时还能大大节省银粉用量,降低成本。The preparation method of the porous silver powder with large specific surface area and high activity prepared by the above-mentioned technical scheme uses low-cost alloying element magnesium to prepare silver-magnesium alloy, and the porous network silver powder prepared by corrosion after the crushing and ball milling process has micron-scale silver powder The specific surface area of the particle size and nano-scale powder, so it has the advantages of high activity, high utilization rate and low cost. The specific surface area of the porous network silver powder obtained by the alloy method is ≥5m 2 /g, which is 3 to 5 times the specific surface area of the micron-sized silver powder, and the prepared silver powder has good fluidity, which meets the requirements of the automatic rolling electrode equipment. Raw material requirements, improved electrochemical performance uniformity and reduced labor costs. Oxide (Ag 2 O or AgO) positive electrode sheet made of porous network silver powder has high activity, strong permeability, low polarization and relatively positive cathode potential, and its electrode potential: ≥0.25V (theoretical value: 0.45V) , Utilization rate: ≥75%, can be used for high-power Zn/AgO secondary battery, Al/AgO primary battery positive electrode, and can improve the utilization rate of the cathode and the power of the battery, and can make the battery discharge step voltage high and stable, At the same time, it can greatly save the amount of silver powder and reduce the cost.
本发明提供的高比表面积多孔银粉的制备方法,其关键技术在于选用合适的合金化元素镁与银元素形成中间合金,经腐蚀后得到多孔网络状银粉。本发明制备方法流程较短,收率较高,对环境友好,操作简便,适宜于工业化生产。The key technology of the preparation method of the high specific surface area porous silver powder provided by the present invention is to select suitable alloying elements magnesium and silver to form an intermediate alloy, and obtain the porous network silver powder after corrosion. The preparation method of the invention has short process flow, high yield, environmental friendliness, simple and convenient operation, and is suitable for industrialized production.
附图说明 Description of drawings
图1为银-镁合金经破碎球磨后所得合金粉末微观形貌;Fig. 1 is silver-magnesium alloy obtained alloy powder micromorphology after crushing ball milling;
图2为银-镁合金粉经酸腐蚀后所得的微米级多孔银粉微观形貌;Fig. 2 is the microscopic morphology of the micron-scale porous silver powder obtained after silver-magnesium alloy powder is corroded by acid;
图3为银-镁合金粉经腐蚀后所得的多孔银粉纳米级比表面积微观形貌;Fig. 3 is the nanoscale specific surface area microscopic morphology of the porous silver powder gained after silver-magnesium alloy powder is corroded;
图4微米级多孔银粉经化成压制后所得正极极板表面形貌。Figure 4 shows the surface morphology of the positive electrode plate obtained by forming and pressing the micron-sized porous silver powder.
具体实施方式 Detailed ways
实施例1:Example 1:
取纯度为99.9%纯银锭重量为:1000g,银-镁合金合金化元素镁重量为:538.5g(质量比为:35%);采用电阻炉及石墨坩埚对镁进行熔炼,熔炼温度为750℃,熔炼过程中采用通入氩气保护,待镁完全熔融后按比例将银锭加入熔融液态镁中,保温至银完全熔融后充分搅拌,浇铸于铁模中,待自然冷却后机械破碎、氩气保护下球磨,球磨参数为:转速:200r/min,球料比:R=15,球磨48h,过325目筛。取过筛后的银-镁合金粉末1000g放入5.0~5.9升(1.2%×350×120%~1.2%×350×140%)的混合酸溶液(混合酸组成为:1体积36.5%浓盐酸+9体积98%浓硫酸+40体积水)中,腐蚀48h后取出,洗涤、过滤、干燥、过325目筛,真空包装保存,得微米级多孔银粉。The weight of the pure silver ingot with a purity of 99.9% is: 1000g, and the weight of the silver-magnesium alloying element magnesium is: 538.5g (mass ratio: 35%); the magnesium is smelted using a resistance furnace and a graphite crucible, and the melting temperature is 750°C During the smelting process, argon protection is used. After the magnesium is completely melted, silver ingots are added to the molten liquid magnesium in proportion, kept warm until the silver is completely melted, then fully stirred, cast in an iron mold, mechanically crushed after natural cooling, and argon Ball milling under protection, ball milling parameters: rotating speed: 200r/min, ball-to-material ratio: R=15, ball milling for 48 hours, passing through a 325-mesh sieve. Get the silver-magnesium alloy powder 1000g after sieving and put into the mixed acid solution of 5.0~5.9 liters (1.2%×350×120%~1.2%×350×140%) (the mixed acid is composed of: 1 volume of 36.5% concentrated hydrochloric acid +9 volumes of 98% concentrated sulfuric acid+40 volumes of water), corroded for 48 hours, taken out, washed, filtered, dried, passed through a 325 mesh sieve, and stored in vacuum packaging to obtain micron-scale porous silver powder.
实施例2:Example 2:
取纯度为99.9%纯银锭重量为:1000g,银-镁合金合金化元素镁重量为:176.5g(质量比为:15%);采用电阻炉及石墨坩埚对镁进行熔炼,熔炼温度为720℃,熔炼过程中采用通入氩气保护,待镁完全熔融后按比例将银锭加入熔融液态镁中,保温至银完全熔融后充分搅拌,浇铸于铁模中,待自然冷却后机械破碎、氩气保护下球磨,球磨参数为:转速:180r/min,球料比:R=10,球磨44h,过325目筛。取过筛后的银-镁合金粉末1000g放入2.2~2.6升(1.2%×150×120%~1.2%×150×140%)混合酸溶液(混合酸组成为:1体积36.5%浓盐酸+9体积98%浓硫酸+40体积水)中,腐蚀44h后取出,洗涤、过滤、干燥、过325目筛,真空包装保存,得微米级多孔银粉。The weight of silver ingot with a purity of 99.9% is: 1000g, and the weight of silver-magnesium alloying element magnesium is: 176.5g (mass ratio: 15%); magnesium is smelted using a resistance furnace and a graphite crucible, and the melting temperature is 720°C During the smelting process, argon protection is used. After the magnesium is completely melted, silver ingots are added to the molten liquid magnesium in proportion, kept warm until the silver is completely melted, then fully stirred, cast in an iron mold, mechanically crushed after natural cooling, and argon Ball milling under protection, the ball milling parameters are: rotating speed: 180r/min, ball-to-material ratio: R=10, ball milling for 44 hours, passing through a 325-mesh sieve. Get the silver-magnesium alloy powder 1000g after sieving and put into 2.2~2.6 liters (1.2%×150×120%~1.2%×150×140%) mixed acid solution (mixed acid composition is: 1 volume 36.5% concentrated hydrochloric acid+ 9 volumes of 98% concentrated sulfuric acid+40 volumes of water), corroded for 44 hours, taken out, washed, filtered, dried, passed through a 325 mesh sieve, and stored in vacuum packaging to obtain micron-sized porous silver powder.
实施例3:Example 3:
取纯度为99.9%纯银锭重量为:1000g,银-镁合金合金化元素镁重量为:298.7g(质量比为:23%);采用电阻炉及石墨坩埚对镁进行熔炼,熔炼温度为780℃,熔炼过程中采用通入氩气保护,待镁完全熔融后按比例将银锭加入熔融液态镁中,保温至银完全熔融后充分搅拌,浇铸于铁模中,待自然冷却后机械破碎、氩气保护下球磨,球磨参数为:转速:220r/min,球料比:R=20,球磨52h,过325目筛。取过筛后的银-镁合金粉末1000g放入3.3~3.9升(1.2%×230×120%~1.2%×230×140%)混合酸溶液(混合酸组成为:1体积36.5%浓盐酸+9体积98%浓硫酸+40体积水)中,腐蚀52h后取出,洗涤、过滤、干燥、过325目筛,真空包装保存,得微米级多孔银粉。The weight of the pure silver ingot with a purity of 99.9% is: 1000g, and the weight of the silver-magnesium alloying element magnesium is: 298.7g (mass ratio: 23%); the magnesium is smelted using a resistance furnace and a graphite crucible, and the smelting temperature is 780°C During the smelting process, argon protection is used. After the magnesium is completely melted, silver ingots are added to the molten liquid magnesium in proportion, kept warm until the silver is completely melted, then fully stirred, cast in an iron mold, mechanically crushed after natural cooling, and argon Ball milling under protection, the ball milling parameters are: rotating speed: 220r/min, ball-to-material ratio: R=20, ball milling for 52 hours, passing through a 325-mesh sieve. Get the silver-magnesium alloy powder 1000g after sieving and put into 3.3~3.9 liters (1.2%×230×120%~1.2%×230×140%) mixed acid solution (mixed acid composition is: 1 volume 36.5% concentrated hydrochloric acid+ 9 volumes of 98% concentrated sulfuric acid+40 volumes of water), corroded for 52 hours, taken out, washed, filtered, dried, passed through a 325 mesh sieve, and stored in vacuum packaging to obtain micron-sized porous silver powder.
多孔银粉经辊压烧结后制成多孔氧化物(Ag2O或AgO)正极极片。Porous silver powder is rolled and sintered to make porous oxide (Ag2O or AgO) positive electrode sheet.
本发明制备银粉相关参数如表1所示。The parameters related to the preparation of silver powder in the present invention are shown in Table 1.
本发明提供合金化法制备微米级多孔银粉,主要原理为银与易于腐蚀的合金化元素镁化合为中间化合物,经球磨、酸腐蚀后残留的即为所需的多孔银粉。因此按此原理,对于一般金属多孔粉末的制备,选取适当的合金化元素及腐蚀条件,均能制备出较理想金属多孔粉末,所以本发明可以说提供了一种较为普遍的微细多孔金属粉末制备的方法。The invention provides an alloying method to prepare micron-scale porous silver powder. The main principle is that silver and easily corroded alloying element magnesium are combined to form an intermediate compound, and what remains after ball milling and acid corrosion is the desired porous silver powder. Therefore, according to this principle, for the preparation of general metal porous powders, appropriate alloying elements and corrosion conditions can be selected to produce more ideal metal porous powders, so the present invention can be said to provide a relatively common method for the preparation of fine porous metal powders. Methods.
表1本发明制备银粉相关参数Table 1 present invention prepares silver powder correlation parameter
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101435255A CN101391304A (en) | 2008-11-07 | 2008-11-07 | Preparation method of porous silver powder with high specific surface area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101435255A CN101391304A (en) | 2008-11-07 | 2008-11-07 | Preparation method of porous silver powder with high specific surface area |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101391304A true CN101391304A (en) | 2009-03-25 |
Family
ID=40491922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101435255A Pending CN101391304A (en) | 2008-11-07 | 2008-11-07 | Preparation method of porous silver powder with high specific surface area |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101391304A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101912970A (en) * | 2010-08-25 | 2010-12-15 | 中南大学 | A kind of preparation method of spherical porous silver powder |
CN103260795A (en) * | 2010-11-08 | 2013-08-21 | 纳美仕有限公司 | Metal particles and manufacturing method for same |
CN104096832A (en) * | 2013-04-03 | 2014-10-15 | 北京有色金属研究总院 | High-activity hollow-out silver powder and preparation method thereof |
WO2016082262A1 (en) | 2014-11-27 | 2016-06-02 | 中国科学院大连化学物理研究所 | Hierarchical porous material and preparation method therefor |
CN106862587A (en) * | 2017-01-20 | 2017-06-20 | 重庆市科学技术研究院 | The preparation method of porous nano silver |
CN113182525A (en) * | 2021-04-27 | 2021-07-30 | 安徽工业大学 | Preparation method of nano porous silver powder |
CN113186428A (en) * | 2021-04-27 | 2021-07-30 | 安徽工业大学 | Preparation method of layer-pleated nano-porous silver alloy |
-
2008
- 2008-11-07 CN CNA2008101435255A patent/CN101391304A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101912970A (en) * | 2010-08-25 | 2010-12-15 | 中南大学 | A kind of preparation method of spherical porous silver powder |
CN103260795A (en) * | 2010-11-08 | 2013-08-21 | 纳美仕有限公司 | Metal particles and manufacturing method for same |
CN103260795B (en) * | 2010-11-08 | 2015-10-07 | 纳美仕有限公司 | Metallic and manufacture method thereof |
CN104096832A (en) * | 2013-04-03 | 2014-10-15 | 北京有色金属研究总院 | High-activity hollow-out silver powder and preparation method thereof |
WO2016082262A1 (en) | 2014-11-27 | 2016-06-02 | 中国科学院大连化学物理研究所 | Hierarchical porous material and preparation method therefor |
US10052613B2 (en) | 2014-11-27 | 2018-08-21 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Hierarchical porous material and the preparation method thereof |
CN106862587A (en) * | 2017-01-20 | 2017-06-20 | 重庆市科学技术研究院 | The preparation method of porous nano silver |
CN106862587B (en) * | 2017-01-20 | 2019-01-25 | 重庆市科学技术研究院 | Preparation method of porous nano-silver |
CN113182525A (en) * | 2021-04-27 | 2021-07-30 | 安徽工业大学 | Preparation method of nano porous silver powder |
CN113186428A (en) * | 2021-04-27 | 2021-07-30 | 安徽工业大学 | Preparation method of layer-pleated nano-porous silver alloy |
CN113182525B (en) * | 2021-04-27 | 2022-07-26 | 安徽工业大学 | Preparation method of nano porous silver powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101391304A (en) | Preparation method of porous silver powder with high specific surface area | |
CN108642327B (en) | Anode material for aluminum-air battery and preparation method thereof | |
CN102820472B (en) | Manganese-aluminum containing anode material and preparation method thereof, as well as air cell prepared by using anode material | |
CN103146943B (en) | Red impure copper refining agent and preparation method thereof | |
CN101527359A (en) | Magnesium alloy anode material for water activated batteries and manufacture method thereof | |
CN101388457A (en) | Aluminum Alloy Anode Materials for Batteries | |
CN109694964B (en) | Preparation method of aluminum-air battery anode material | |
CN104451215B (en) | A kind of method that electrodeoxidation-ingot metallurgy prepares aluminium alloy | |
CN109103534B (en) | Recovery method of waste cobalt-containing lithium ion battery | |
CN105925862A (en) | Mg alloy anode material and preparation method thereof | |
CN103280565A (en) | Aluminium alloy anode material and preparation method thereof | |
CN111793760A (en) | Anode alloy material for magnesium-air battery, preparation method thereof, and battery | |
CN107164657B (en) | A kind of preparation method of graphene/La-Fe-B systems low temperature hydrogen storage composite material | |
KR20150022994A (en) | Inert alloy anode used for aluminum electrolysis and preparation method therefor | |
CN109461942B (en) | Aluminum alloy anode material for air battery, preparation method of aluminum alloy anode material and air battery | |
CN110492086B (en) | A kind of preparation method of hydrogen storage alloy composite material | |
CN114628661A (en) | Negative electrode material, preparation method thereof and lithium ion battery | |
CN111740094A (en) | A kind of aluminum-air battery aluminum anode plate material and preparation method thereof, aluminum-air battery aluminum anode plate and preparation method and application thereof | |
CN110048129A (en) | Metal-air battery metal electrode material and its preparation method and application | |
CN110129623B (en) | Rare earth aluminum alloy foil and preparation method and application thereof | |
CN108247040A (en) | Nano-oxide catalyst coats the in-situ synthesis of hydrogen storing alloy composite material | |
CN113249755B (en) | Inert anode material and preparation method and application thereof | |
CN101662027B (en) | Grid alloy and its manufacturing method and application | |
CN104451185B (en) | From silver-colored nickel leftover pieces, silver-colored method is reclaimed in melting | |
CN1208860C (en) | Lead-rare earth multi-element alloy used as positive grid of lead storage battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090325 |