CN101319781A - Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system - Google Patents
Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system Download PDFInfo
- Publication number
- CN101319781A CN101319781A CNA2008101502118A CN200810150211A CN101319781A CN 101319781 A CN101319781 A CN 101319781A CN A2008101502118 A CNA2008101502118 A CN A2008101502118A CN 200810150211 A CN200810150211 A CN 200810150211A CN 101319781 A CN101319781 A CN 101319781A
- Authority
- CN
- China
- Prior art keywords
- gas
- magnetic valve
- heat
- temperature
- storage medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title abstract description 30
- 239000003054 catalyst Substances 0.000 claims abstract description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011449 brick Substances 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052849 andalusite Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000005995 Aluminium silicate Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 235000012211 aluminium silicate Nutrition 0.000 claims description 2
- 229910052878 cordierite Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 239000010431 corundum Substances 0.000 claims description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 3
- 239000007789 gas Substances 0.000 abstract description 95
- 238000005338 heat storage Methods 0.000 abstract description 40
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 5
- 239000003546 flue gas Substances 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 abstract description 3
- 239000012467 final product Substances 0.000 abstract 1
- 230000000737 periodic effect Effects 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 17
- 238000009423 ventilation Methods 0.000 description 15
- 238000005485 electric heating Methods 0.000 description 13
- 239000003245 coal Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 6
- 239000002918 waste heat Substances 0.000 description 6
- 239000006004 Quartz sand Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000007084 catalytic combustion reaction Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010849 combustible waste Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Air Supply (AREA)
Abstract
本发明涉及一种超低浓度可燃气体的燃烧及其热能梯级利用系统,电磁阀和管路形成气体流向周期变化的气路,连接内置蓄热介质和换热器的燃烧室;热量传输在气体和蓄热介质及换热器之间实现。当蓄热介质附载不同催化剂时,可以实现更低的起燃温度;当蓄热介质的数量足够多时,可以实现更高的气体预热温度;通过改变催化剂和蓄热介质的数量,可以实现更高的工作温度和更低的燃烧浓度极限,且通过改变催化剂的种类和电磁阀的换向周期,可以实现更好的气体适应性与负荷调节性。通过内置换热器内的工质与燃烧后高温气体的换热或利用系统反应后高温烟气,可以实现高品位热能的利用;通过降低最终产物的排烟温度,可以实现低品位热能的利用。
The invention relates to an ultra-low-concentration combustible gas combustion and its thermal energy cascade utilization system. The electromagnetic valve and the pipeline form a gas path with periodic changes in the gas flow direction, and are connected to a combustion chamber with a built-in heat storage medium and a heat exchanger; heat is transferred in the gas It is realized between heat storage medium and heat exchanger. When the heat storage medium is loaded with different catalysts, a lower light-off temperature can be achieved; when the amount of heat storage medium is sufficient, a higher gas preheating temperature can be achieved; by changing the number of catalysts and heat storage medium, a higher temperature can be achieved. High working temperature and lower combustion concentration limit, and better gas adaptability and load regulation can be achieved by changing the type of catalyst and the reversing cycle of the solenoid valve. Utilization of high-grade heat energy can be achieved by exchanging heat between the working fluid in the built-in heat exchanger and the high-temperature gas after combustion or using the high-temperature flue gas after system reaction; by reducing the exhaust gas temperature of the final product, the utilization of low-grade heat energy can be realized .
Description
技术领域 technical field
本发明属于燃烧设备技术领域,特别涉及煤矿通风瓦斯的燃烧及其热能梯级利用系统。The invention belongs to the technical field of combustion equipment, and in particular relates to the combustion of coal mine ventilation gas and its thermal energy cascade utilization system.
背景技术 Background technique
瓦斯是煤矿开采中最大的安全隐患,它是以甲烷(CH4)为主的多种气体的混合物;其中甲烷浓度为85%的瓦斯,热值为34.6MJ/m3。据统计,我国的煤炭百万吨死亡率2004年约3人,这一水平是美国的100多倍,印度的10多倍。其中95%以上都是死于瓦斯爆炸引起的事故,瓦斯爆炸给煤矿的正常生产造成了巨大的损失。Gas is the biggest safety hazard in coal mining. It is a mixture of various gases based on methane (CH4); among them, gas with a methane concentration of 85% has a calorific value of 34.6MJ/m3. According to statistics, the death rate per million tons of coal in my country was about 3 in 2004, which is more than 100 times that of the United States and more than 10 times that of India. More than 95% of them died in accidents caused by gas explosions, which caused huge losses to the normal production of coal mines.
在煤矿的开采中,为了预防瓦斯爆炸,通常采用通风稀释的方法,将瓦斯的浓度控制在1%以下,这部分瓦斯被称为通风瓦斯。通风瓦斯也是一种储量巨大的低品位能源,甲烷浓度为1%的通风瓦斯,理论燃烧温度为265℃。虽然通风瓦斯中瓦斯的浓度只有约1%,但是由于排放量巨大,造成了巨大的能源浪费。根据美国EPA(Environmental Protection Agency)做的调查,2000年全球VAM(Ventilation Air Methane)排放量为16.6Bm3,中国VAM排放量6.5Bm3,占总量的39.2%。预计2010年CH4排放量将增至2800万t,其中70%(中国则为90%)来自CH4浓度低于1%的煤矿通风瓦斯。根据我国1996年及2000年进行全国矿井瓦斯情况的调查,通风瓦斯量分别为106亿m3和96亿m3,位居世界第一,所含瓦斯的低位发热量相当于3370万t标准煤的低位发热量,如果能将这部分资源作为能源进行开发利用,这将对于保障我国的能源安全起到不可忽视的作用。In the mining of coal mines, in order to prevent gas explosion, the method of ventilation and dilution is usually adopted to control the concentration of gas below 1%. This part of gas is called ventilation gas. Ventilation gas is also a kind of low-grade energy with huge reserves. The ventilation gas with a methane concentration of 1% has a theoretical combustion temperature of 265°C. Although the concentration of gas in ventilation gas is only about 1%, it causes huge waste of energy due to the huge discharge. According to the survey conducted by the US EPA (Environmental Protection Agency), the global VAM (Ventilation Air Methane) emissions in 2000 were 16.6Bm 3 , and China's VAM emissions were 6.5Bm 3 , accounting for 39.2% of the total. It is estimated that CH 4 emissions will increase to 28 million tons in 2010, of which 70% (90% in China) comes from coal mine ventilation gas with CH 4 concentration below 1%. According to the national mine gas survey conducted in China in 1996 and 2000, the amount of ventilated gas was 10.6 billion m 3 and 9.6 billion m 3 respectively, ranking first in the world, and the low calorific value of the gas contained was equivalent to 33.7 million tons of standard coal If this part of resources can be developed and utilized as energy, it will play a non-negligible role in ensuring China's energy security.
此外,钢铁生产和石化工艺中排放的大量可燃气体,一般都会直接排空或燃烧后排放,其热能白白浪费,并没有得到充分的利用。In addition, a large amount of combustible gas discharged from steel production and petrochemical processes is usually directly emptied or discharged after combustion, and its heat energy is wasted and not fully utilized.
中国《工业安全与环保》(2002,28(3))中介绍了热力双向反应器(Thermal Flow Reversal Reactor,TFRR)的工作原理,该反应器分为上中下三部分,中部为换热器层,上下两部分为石英砂或陶瓷颗粒构成的可高效存贮和传输热量的热交换层。开始运行时,先使用电加热元件对热交换层进行预热,以达到通风瓦斯燃烧所需的温度,约1000℃以上,然后通入通风瓦斯,通风瓦斯流经一侧热交换层的过程中被预热,达到燃烧所需温度发生氧化反应,放出热量继续流动。流经换热器层时放出部分热量,然后到达另一热交换层并放出大部分热量,存储燃烧后气体的热量以维持燃烧室内的整体温度。随着时间的推移,反应器中的高温段会不断向出口侧偏移,进口侧的热交换层的温度会不断降低,为了保持燃烧的稳定进行,需要将气体的流向在由上而下或者由下而上之间切换,以保证反应器中的高温段在反应器中部来回波动。为了提高反应器的热能利用效率,需要将流向切换时间控制在一个合理的范围,切换时间太短,意味着反应器换热时间太短,进口气温不能被预热到燃烧温度;切换时间太长,高温段偏离中心太远,燃烧产物放热不会大部分被热交换层吸收,排烟温度过高,这二者都容易导致反应器发生熄火现象。China's "Industrial Safety and Environmental Protection" (2002, 28 (3)) introduced the working principle of the Thermal Flow Reversal Reactor (TFRR). The reactor is divided into three parts: upper, middle and lower, and the middle part is a heat exchanger. The upper and lower parts are heat exchange layers made of quartz sand or ceramic particles that can efficiently store and transmit heat. At the beginning of operation, the electric heating element is used to preheat the heat exchange layer to reach the temperature required for ventilation gas combustion, which is above 1000°C, and then the ventilation gas is introduced, and the ventilation gas flows through the heat exchange layer on one side. It is preheated and reaches the temperature required for combustion to undergo an oxidation reaction, releasing heat and continuing to flow. Part of the heat is released when it flows through the heat exchanger layer, and then reaches another heat exchange layer and releases most of the heat, storing the heat of the combusted gas to maintain the overall temperature in the combustion chamber. As time goes by, the high-temperature section in the reactor will continue to shift to the outlet side, and the temperature of the heat exchange layer on the inlet side will continue to decrease. In order to maintain stable combustion, it is necessary to flow the gas from top to bottom or Switch from bottom to top to ensure that the high temperature section in the reactor fluctuates back and forth in the middle of the reactor. In order to improve the thermal energy utilization efficiency of the reactor, it is necessary to control the switching time of the flow direction within a reasonable range. If the switching time is too short, it means that the heat exchange time of the reactor is too short, and the inlet air temperature cannot be preheated to the combustion temperature; if the switching time is too long , the high temperature section is too far away from the center, most of the heat released by the combustion products will not be absorbed by the heat exchange layer, and the exhaust gas temperature is too high, both of which are likely to cause the reactor to flame out.
由于TFRR采用的是石英砂或陶瓷颗粒,气体流过时压降较大,有时需要专门的增压设备来克服沿程压降,这增加了系统的复杂程度和投资成本。同时,由于石英砂或陶瓷颗粒的传热性能较差,气流换向时间较长,这导致了其处理能力较小。此外,由于TFRR只利用了高温的反应气体放出的热能,并未回收排烟中的低品位热能,能源利用效率没有最大化。Since the TFRR uses quartz sand or ceramic particles, the pressure drop is relatively large when the gas flows through it, and sometimes special pressurization equipment is required to overcome the pressure drop along the way, which increases the complexity and investment cost of the system. At the same time, due to the poor heat transfer performance of quartz sand or ceramic particles, it takes a long time for the airflow to change direction, which results in a small processing capacity. In addition, because TFRR only utilizes the heat energy released by the high-temperature reaction gas, and does not recover the low-grade heat energy in the exhaust smoke, the energy utilization efficiency is not maximized.
加拿大矿产与能源技术研究中心(CANMET)研制开发的催化热力双向反应器(Catalytic Flow Reversal Reactor,CFRR)其结构设计和运行方式与TFRR基本相同,通过采用催化剂来降低通风瓦斯的着火温度。但CFRR中因为采用石英砂和陶瓷颗粒导致增加专门的增压设备、处理能力较小和能源利用效率没有最大化等缺点仍然存在。此外,由于CFRR采用催化剂和蓄热介质分离的设计方式,导致了更换催化剂困难,气体适应性差。The Catalytic Flow Reversal Reactor (CFRR) developed by the Canadian Center for Mineral and Energy Technology Research (CANMET) has basically the same structural design and operation mode as TFRR, and uses catalysts to reduce the ignition temperature of ventilated gas. However, the shortcomings of CFRR, such as the addition of special booster equipment, small processing capacity, and not maximized energy utilization efficiency, still exist due to the use of quartz sand and ceramic particles. In addition, since the CFRR adopts the design method of separating the catalyst and the heat storage medium, it is difficult to replace the catalyst and the gas adaptability is poor.
中科大扈鹏飞等发明的双向逆流圈状反应器,通过使用反应后的气体与反应前气体的间壁换热,达到预热进气和降低排烟温度的目的,虽然结构简单,成本较低,但却存在气体种类和浓度适应性较差,改装复杂,成本较高等缺点。且该发明仅为一种燃烧反应器,并未提出热能的综合利用方案。The two-way countercurrent coil reactor invented by Hu Pengfei of the University of Science and Technology of China uses the heat exchange between the reacted gas and the pre-reacted gas to achieve the purpose of preheating the intake air and reducing the exhaust gas temperature. Although the structure is simple and the cost is low, it is There are disadvantages such as poor adaptability to gas types and concentrations, complicated modification, and high cost. And this invention is only a kind of combustion reactor, does not propose the comprehensive utilization plan of thermal energy.
浙江大学岑可法等人发明的往复式多孔介质燃烧高温空气发生系统,虽然也可实现强化燃烧和低污染物排放的目的。但其特征在于将燃烧器与蓄热介质分为独立两个部分,蓄热介质只起到存储高温烟气部分热能的作用。通过燃气在两侧蓄热介质和燃烧器之间循环切换,来实现多孔介质燃烧与蓄热相结合产生高温空气。但此种设计方法会增加系统的控制复杂程度,且对系统的保温及施工有更高的要求,也并未实现热能的梯级利用。The reciprocating porous medium combustion high-temperature air generation system invented by Cen Kefa of Zhejiang University and others can also achieve the purpose of enhanced combustion and low pollutant emissions. But it is characterized in that the burner and the heat storage medium are divided into two independent parts, and the heat storage medium only plays the role of storing part of the heat energy of the high-temperature flue gas. The combination of porous media combustion and heat storage to generate high-temperature air is realized by gas circulating and switching between the heat storage medium on both sides and the burner. However, this design method will increase the control complexity of the system, and has higher requirements on the thermal insulation and construction of the system, and has not realized the cascade utilization of heat energy.
邓洋波和解茂昭发明的往复流动下多孔介质超绝热燃烧装置,其虽然也能实现稀薄气体的自维持燃烧。但其原理在于只适用于浓度比较高的可燃气体,经过点火器点燃后,通过逐步减小燃气流量来实现稀薄气体的自维持燃烧。并不适用于本来就不能点火燃烧的超低浓度可燃气体。Deng Yangbo and Xie Maozhao invented the porous medium superadiabatic combustion device under reciprocating flow, although it can also realize the self-sustaining combustion of rarefied gas. But its principle is that it is only suitable for combustible gas with relatively high concentration. After being ignited by the igniter, the self-sustaining combustion of rare gas can be realized by gradually reducing the gas flow. It is not suitable for ultra-low concentration combustible gases that cannot be ignited and burned.
陈宜亮等人发明的煤矿乏风甲烷氧化装置,其结构虽与本发明相似,但其原理是基于传统的氧化反应,与本发明基于催化反应不同。且并未说明是否只能应用于煤矿乏风或任意低浓度可燃气体。Chen Yiliang and others invented the methane oxidation device for coal mine exhaust air, although its structure is similar to the present invention, but its principle is based on traditional oxidation reaction, which is different from the present invention based on catalytic reaction. And it doesn't say whether it can only be applied to coal mine exhaust air or any low-concentration combustible gas.
发明内容 Contents of the invention
本发明提供一种超低浓度可燃气体的燃烧及其热能梯级利用系统,不仅可以对超低浓度的可燃气体进行燃烧,而且对其产生的热能可以进行梯级利用。The invention provides an ultra-low-concentration combustible gas combustion and its heat energy cascade utilization system, which can not only burn the ultra-low-concentration combustible gas, but also utilize the heat energy generated by it in cascades.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
风机经由管路与流量控制阀相连;流量控制阀和另一流量控制阀与浓度监测表相连;浓度监测表与第一电磁阀和第二电磁阀连接;第一电磁阀与第二电磁阀相连;第三电磁阀与第四电磁阀相连;时间继电器连接控制第一电磁阀与第三电磁阀;时间继电器连接控制第二电磁阀与第四电磁阀;第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀与反应器相连;反应器内置电加热元件和另一电加热元件、附载催化剂的蜂窝多孔蓄热介质、测温热电偶束、换热器;预热回收装置与换热器、第三电磁阀、第四电磁阀相连。The fan is connected to the flow control valve through the pipeline; the flow control valve and another flow control valve are connected to the concentration monitoring meter; the concentration monitoring meter is connected to the first solenoid valve and the second solenoid valve; the first solenoid valve is connected to the second solenoid valve The third solenoid valve is connected with the fourth solenoid valve; the time relay is connected to control the first solenoid valve and the third solenoid valve; the time relay is connected to control the second solenoid valve and the fourth solenoid valve; the first solenoid valve, the second solenoid valve, The third solenoid valve and the fourth solenoid valve are connected to the reactor; the reactor has a built-in electric heating element and another electric heating element, a honeycomb porous heat storage medium with a catalyst, a temperature measuring thermocouple bundle, a heat exchanger; a preheating recovery device It is connected with the heat exchanger, the third solenoid valve and the fourth solenoid valve.
附载催化剂的蜂窝多孔蓄热介质选用包括高铝砖、硅砖、复合碳化硅、镁砖、刚玉、高岭土、堇青石或红柱石在内的单一组分或多种材料混合的可耐温1000℃~1800℃的蓄热材料,且存在均匀的任意形状通孔方便气体流过。The honeycomb porous heat storage medium with catalyst is selected from single components or mixed materials including high alumina bricks, silica bricks, composite silicon carbide, magnesia bricks, corundum, kaolin, cordierite or andalusite, which can withstand a temperature of 1000°C ~1800°C heat storage material, and there are uniform through holes of any shape to facilitate the flow of gas.
电加热元件为内置的电加热棒或均匀加热附载催化剂的蜂窝多孔蓄热介质的电加热带。The electric heating element is a built-in electric heating rod or an electric heating belt that uniformly heats the honeycomb porous heat storage medium loaded with catalyst.
由于本发明采用了附载催化剂的蜂窝状蓄热介质,一方面由于蜂窝状通孔的存在,减少了气体流动时的压损,可以实现本系统直接安装在矿井的通风井处或钢铁化工企业的排气出口,无需专门的增压设备。另一方面,由于采用了多孔的蜂窝状蓄热介质,气固之间的传热效率大大提升,提高了该系统的处理能力。Because the present invention adopts the honeycomb heat storage medium with catalyst, on the one hand, due to the existence of honeycomb through holes, the pressure loss during gas flow is reduced, and the system can be directly installed at the ventilation shaft of the mine or in the iron and steel chemical industry. Exhaust outlet, no need for special booster equipment. On the other hand, due to the use of porous honeycomb heat storage medium, the heat transfer efficiency between gas and solid is greatly improved, which improves the processing capacity of the system.
由于本发明将催化剂附载在蜂窝状蓄热介质的通孔内壁上,由于内壁上多孔的存在,增大了比表面积,能够增加催化剂的附载量,进一步提高催化燃烧效率。同时,因为采用整体附载式催化,对气体的种类和浓度的适应性有很大的提高,如果燃气种类发生改变,只需更换附载催化剂的蓄热介质即可,节约了改造时间和成本。Because the catalyst is loaded on the inner wall of the through hole of the honeycomb heat storage medium in the present invention, the specific surface area is increased due to the presence of pores on the inner wall, the loaded amount of the catalyst can be increased, and the catalytic combustion efficiency can be further improved. At the same time, due to the adoption of the overall supported catalysis, the adaptability to the type and concentration of the gas is greatly improved. If the type of gas changes, only the heat storage medium with the catalyst needs to be replaced, which saves the transformation time and cost.
由于本发明采用了附载催化剂的蜂窝状蓄热介质,如果希望达到更高的工作温度,进一步降低燃烧的浓度极限,只需要增加蓄热介质的量即可;同时也通过改变催化剂的种类来实现降低燃烧的浓度极限的目的。Since the present invention adopts the honeycomb heat storage medium loaded with catalyst, if it is desired to achieve a higher working temperature and further reduce the concentration limit of combustion, it only needs to increase the amount of heat storage medium; at the same time, it can also be achieved by changing the type of catalyst The purpose of reducing the concentration limit of combustion.
由于本发明不仅可以利用反应器中部高品位的热能,还能通过回收尾部烟气的低品位热能来预热内置换热器工质或提供热水,实现了热能梯级利用的目的。Because the invention can not only utilize the high-grade heat energy in the middle of the reactor, but also recover the low-grade heat energy of the flue gas at the tail to preheat the working medium of the built-in heat exchanger or provide hot water, thereby realizing the purpose of cascaded utilization of heat energy.
本发明系统采用的蜂窝状催化蓄热介质和热能利用方案,不仅能实现达到更高工作温度和降低燃烧的浓度极限的目的,还能达到热能的梯级利用。本发明系统对气体的种类和浓度适应性好,改造成本低,且改造手段方便快捷。本发明系统适用于包括煤矿通风瓦斯、天然气、沼气、石油油层气、高炉煤气及钢铁和石化生产中的可燃废气在内的超低浓度可燃气体。The honeycomb catalytic heat storage medium and heat energy utilization scheme adopted by the system of the present invention can not only achieve the purpose of achieving higher working temperature and lowering the concentration limit of combustion, but also achieve cascaded utilization of heat energy. The system of the invention has good adaptability to gas types and concentrations, low modification cost, and convenient and quick modification means. The system of the invention is suitable for ultra-low concentration combustible gases including coal mine ventilation gas, natural gas, marsh gas, oil layer gas, blast furnace gas and combustible waste gas in steel and petrochemical production.
附图说明 Description of drawings
图1是本发明在反应器中部设置换热器并在尾部设置余热回收装置的结构示意图。Figure 1 is a schematic structural view of the present invention with a heat exchanger in the middle of the reactor and a waste heat recovery device at the tail.
图2是本发明在反应器中部抽取部分高温烟气做工并在尾部设置余热回收装置的结构示意图。Fig. 2 is a structural schematic diagram of extracting part of the high-temperature flue gas in the middle of the reactor for work and installing a waste heat recovery device at the tail of the present invention.
以下结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
具体实施方式 Detailed ways
如图1所示,其系统主要包括:As shown in Figure 1, its system mainly includes:
风机1经由管路与流量控制阀2相连;流量控制阀2和另一流量控制阀3与浓度监测表4相连;浓度监测表4与第一电磁阀5和第二电磁阀6连接;第一电磁阀5与第二电磁阀6相连;第三电磁阀11与第四电磁阀12相连;时间继电器13连接控制第一电磁阀5与第三电磁阀11;时间继电器14连接控制第二电磁阀6与第四电磁阀12;第一电磁阀5、第二电磁阀6、第三电磁阀11、第四电磁阀12与反应器15相连;反应器15内置电加热元件7和另一电加热元件8、附载催化剂的蜂窝多孔蓄热介质9、测温热电偶束10、换热器16;预热回收装置17与换热器16、第三电磁阀11、第四电磁阀12相连。The fan 1 is connected to the flow control valve 2 via a pipeline; the flow control valve 2 and another
电加热元件7、8采用内置的硅碳棒。换热壁面16采用在反应器中部的内壁上铺设水冷壁面,余热回收装置采用管壳换热器,蜂窝多孔蓄热介质采用红柱石挤压成型的通孔尺寸为2mm×2mm,壁厚1mm的蜂窝式蓄热介质,附载催化剂采用溶胶凝胶法制备的Ce-Zr-Mn-O固溶体催化剂,使用浸渍-焙烧法附载在蓄热介质的通孔内壁。The
使用时,先启动电加热元件7、8将蜂窝多孔蓄热介质9加热至可燃气体的催化起燃温度之上,并根据测温热电偶束10所测得的温度数据保持一定时间以保证整个反应器内温度均匀恒定,此后关闭电加热元件。如在反应系统工作过程中反应器内温度低于催化起燃温度,可再次启用电加热元件进行热补偿。When in use, first start the
可燃气体通过流量阀3进入燃气供应管路,并通过浓度监测表4来控制浓度,当可燃气体中所含空气量不足时,可以通过控制调节风机1中空气的流量将可燃气体所需的燃烧空气量补足(补足空气量随可燃气体所需燃烧空气的差额而变化),以保证整个反应系统的稳定运行。The combustible gas enters the gas supply pipeline through the
以可燃气体流动方向自上而下为例,此时电磁阀5、12开启,电磁阀6、11关闭。气体通过电磁阀5流进反应器15,此时气体温度低于蜂窝多孔蓄热介质9的温度,随着气体向下流动,上部蜂窝多孔蓄热介质9逐步被冷却,气体温度不断升高,等升高至催化起燃温度时,气体发生催化燃烧燃烧反应并放出热量。此时部分热量被中部的水冷壁面吸收,水冷壁面内经过预热的工质被加热,并通往发电机组发电。气体不断向下流动并放热,此时气体不断被冷却,下部蜂窝多孔蓄热介质9不断被加热,直至通过出口流向电磁阀12。因为此时排烟温度还有部分低品位热能,所以可以在尾部加设余热回收装置17换热器预热进入反应器中部水冷壁面的工质来回收这部分热能。最终排烟经过管壳式换热器排空。Taking the flow direction of combustible gas from top to bottom as an example, at this time, the
随着反应的不断进行,会出现进口处蜂窝多孔蓄热介质9温度不断降低,出口处蜂窝多孔蓄热介质9温度不断升高,反应的高温区从中部向出口处偏移的情况,此种偏移达到一定程度之后,有可能出现进来的气体不能被预热到催化起燃温度或气体放热不能被下部蜂窝多孔蓄热介质9大部分吸收的情况,导致整个反应系统熄火。因此需要通过时间继电控制器13、14来切换气体的流向,以保证反应的高温区在反应器15的中部一定区域内作周期性偏移。As the reaction continues, the temperature of the honeycomb porous
同样,气体流向从下向上流动时,此时电磁阀6、11开启,电磁阀5、12关闭,系统工作过程与上述相同。Similarly, when the gas flows from bottom to top, the
停止工作时,先切断气流供给,再使用风机将整个系统吹扫5min即可。When stopping work, first cut off the air supply, and then use the fan to blow the entire system for 5 minutes.
图2所示系统主要包括:The system shown in Figure 2 mainly includes:
可燃气体供应管路、风机1、流量控制阀2、3、浓度监测表4、第一、第二、第三、第四电磁阀5、6、11、12、时间继电控制器13、14、电加热元件7、8、附载催化剂的蜂窝多孔蓄热介质9、测温热电偶束10、反应器15、余热回收装置17、燃气轮机18。Combustible gas supply pipeline, fan 1, flow
其中气体燃烧过程与图1所示系统相同,不同之处在于,在反应器15中部的高温反应区内,抽取50%~70%的高温烟气通往燃气轮机18发电,抽气剩余气体用来加热下部蜂窝多孔蓄热介质9,并经由设在尾部的管壳式换热器回收排烟热能用来提供生活热水。此系统中抽气比例不能太大或太小,抽气比例过大,出口处蜂窝多孔蓄热介质9不能得到足够的热量补偿,不足以加热下次进气至催化起燃温度,导致反应系统熄火;抽气量过小,排烟温度过高,设在尾部的余热回收装置不足以吸收全部热量,导致热量浪费。The gas combustion process is the same as that of the system shown in Figure 1, the difference is that in the high-temperature reaction zone in the middle of the
停止工作时,先切断气流供给,再使用风机将整个系统吹扫5min即可。When stopping work, first cut off the air supply, and then use the fan to blow the entire system for 5 minutes.
由于某些气体的成分会有一定波动性,其所需的燃烧空气有可能出现补足的现象,因此当所需空气量不足时可能威胁到系统的安全运行,因此需要通过浓度检测表4的监测数据来控制风机1的空气流量来保证整个系统的稳定运行。Because the composition of some gases will fluctuate to a certain extent, the required combustion air may be supplemented, so when the required air volume is insufficient, it may threaten the safe operation of the system, so it needs to be monitored through the concentration detection table 4 Data to control the air flow of fan 1 to ensure the stable operation of the whole system.
由于本发明采用了附载催化剂的蜂窝多孔蓄热介质9,不仅蓄热能力强,传热效率高,而且抗热震性能好,使用寿命长。因为催化剂时附载在蓄热介质通孔的内壁上,此种介质内壁上存在大量毛细孔,增大了比表面积,提高了催化剂的附载量。也可以同时附载针对不同气体的催化剂,增强了气体种类的适应性。此外,该系统的维修更换也简便易行,只需更换蓄热介质的种类或改变流向变换的周期即可,成本低工期短。Since the present invention adopts the honeycomb porous
另外,本发明系统还针对排烟中的低品位热能加以利用,也提高了整体的热能利用效率。In addition, the system of the present invention also utilizes the low-grade heat energy in the exhaust smoke, and also improves the overall heat energy utilization efficiency.
本发明系统是针对煤矿通风瓦斯中甲烷平均浓度在0.1%~1%之间的现状来设计的。针对这部分通风瓦斯进行回收利用,不仅能够实现低品位能源的有效利用,还能通过减排换取碳汇来收到很大的经济效益和环保效益。The system of the invention is designed for the current situation that the average concentration of methane in coal mine ventilation gas is between 0.1% and 1%. The recycling of this part of ventilation gas can not only realize the effective utilization of low-grade energy, but also receive great economic and environmental benefits through emission reduction in exchange for carbon sinks.
本发明系统也适用于任何可以催化燃烧系统的可燃气体,这些气体作为燃料不会改变进气气流的热物性,不同的可燃气体,只是着火温度和发热量不同,当燃气不是通风瓦斯时,只需要更换附载催化剂的种类和改变蓄热介质的预热温度即可,其改造成本低,简便易行。The system of the present invention is also applicable to any combustible gas that can catalyze the combustion system. These gases will not change the thermal properties of the intake airflow as fuel. Different combustible gases only have different ignition temperatures and calorific values. When the gas is not ventilated gas, only It is only necessary to change the type of the supported catalyst and change the preheating temperature of the heat storage medium, and the transformation cost is low and easy to implement.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101502118A CN101319781A (en) | 2008-06-30 | 2008-06-30 | Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101502118A CN101319781A (en) | 2008-06-30 | 2008-06-30 | Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101319781A true CN101319781A (en) | 2008-12-10 |
Family
ID=40179972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101502118A Pending CN101319781A (en) | 2008-06-30 | 2008-06-30 | Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101319781A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101839472A (en) * | 2010-04-16 | 2010-09-22 | 萧琦 | Method for reclaiming heat of ventilated gas oxidation device |
CN101713535B (en) * | 2009-11-30 | 2011-05-18 | 重庆大学 | Burning method of gas fuel with ultra-low concentration |
CN101518739B (en) * | 2009-03-31 | 2012-06-27 | 华南理工大学 | Integral type catalyst with heat storage function as well as preparation method and application thereof |
CN109404960A (en) * | 2018-10-30 | 2019-03-01 | 中煤科工集团重庆研究院有限公司 | Gradient symmetry control method for vertical multi-bed RTO bell-shaped temperature zone |
US10288348B2 (en) | 2014-01-10 | 2019-05-14 | Compass Minerals America Inc. | Method of drying salt and similar materials through the use of heat engine waste heat |
CN110822458A (en) * | 2019-10-21 | 2020-02-21 | 山西大学 | A low-concentration gas steady-state catalytic oxidation device utilizing waste heat stepwise |
CN112844043A (en) * | 2021-03-19 | 2021-05-28 | 山西亚乐士环保技术股份有限公司 | Bidirectional preheating catalytic oxidation waste gas treatment device |
CN114804322A (en) * | 2022-04-29 | 2022-07-29 | 西安交通大学 | Integrated type integrated supercritical water oxidation reactor |
-
2008
- 2008-06-30 CN CNA2008101502118A patent/CN101319781A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518739B (en) * | 2009-03-31 | 2012-06-27 | 华南理工大学 | Integral type catalyst with heat storage function as well as preparation method and application thereof |
CN101713535B (en) * | 2009-11-30 | 2011-05-18 | 重庆大学 | Burning method of gas fuel with ultra-low concentration |
CN101839472A (en) * | 2010-04-16 | 2010-09-22 | 萧琦 | Method for reclaiming heat of ventilated gas oxidation device |
US10288348B2 (en) | 2014-01-10 | 2019-05-14 | Compass Minerals America Inc. | Method of drying salt and similar materials through the use of heat engine waste heat |
CN109404960A (en) * | 2018-10-30 | 2019-03-01 | 中煤科工集团重庆研究院有限公司 | Gradient symmetry control method for vertical multi-bed RTO bell-shaped temperature zone |
CN110822458A (en) * | 2019-10-21 | 2020-02-21 | 山西大学 | A low-concentration gas steady-state catalytic oxidation device utilizing waste heat stepwise |
CN112844043A (en) * | 2021-03-19 | 2021-05-28 | 山西亚乐士环保技术股份有限公司 | Bidirectional preheating catalytic oxidation waste gas treatment device |
CN114804322A (en) * | 2022-04-29 | 2022-07-29 | 西安交通大学 | Integrated type integrated supercritical water oxidation reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101319781A (en) | Combustion of ultra-low concentration combustible gas and its thermal energy cascade utilization system | |
CN104457302A (en) | Regenerative combustion device | |
CN105299652B (en) | Emission coal gas utilizes system and method | |
CN101413041B (en) | Coal-based direct reduction iron rotary hearth furnace and combustion method thereof | |
CN101846459A (en) | Method for recycling waste heat of flue gas of heating furnace and heating furnace system | |
CN100485260C (en) | Combustion device for low concentration gaseous hydrocarbon | |
CN101135441A (en) | A Mine Ventilation Gas Combustion and Heat Energy Utilization Device | |
CN201137928Y (en) | Single heat accumulating type combustion device | |
CN103708744B (en) | Low-heat value gas thermal storage type limestone kiln | |
CN103363534A (en) | Novel catalytic combustion industrial furnace | |
CN203489670U (en) | Regenerative type continuous flame tube heating furnace | |
CN111750367A (en) | Heat accumulating type thermal oxidation device and process for treating sintering waste gas of electroplating sludge | |
CN101915502A (en) | Method for regulating oxygen atmosphere in fuel oil (gas) reverberatory furnace by using recovered fume | |
CN205026654U (en) | Htac combustion device who mixes | |
CN204153781U (en) | Emission coal gas utilizes system | |
CN201255579Y (en) | Residual heat utilizing apparatus for kiln | |
CN202066349U (en) | Reciprocating porous medium gas combustion metal smelting furnace | |
CN101713534B (en) | Combustion method of low-concentration combustible gas and fluidized reactor | |
CN107559812A (en) | Modular multistage phase-change heat-storage high-temperature air burning energy saver | |
CN201413027Y (en) | Heat storage type heating furnace | |
CN106479529A (en) | A kind of heat accumulating type metallic honeycomb bodies electronic gas refuse pyrolysis system | |
CN106482114A (en) | A kind of heat accumulating type blockage resisting electronic waste pyrolysis installation and method | |
CN103033062A (en) | Waste heat utilization device for gas shuttle kiln | |
CN101713535B (en) | Burning method of gas fuel with ultra-low concentration | |
CN108926996A (en) | A kind of cyclone type coal mine methane catalyst oxidation reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081210 |