Nothing Special   »   [go: up one dir, main page]

CN101282904A - 用作传感器的聚合物-碳纳米管复合材料 - Google Patents

用作传感器的聚合物-碳纳米管复合材料 Download PDF

Info

Publication number
CN101282904A
CN101282904A CNA2006800371857A CN200680037185A CN101282904A CN 101282904 A CN101282904 A CN 101282904A CN A2006800371857 A CNA2006800371857 A CN A2006800371857A CN 200680037185 A CN200680037185 A CN 200680037185A CN 101282904 A CN101282904 A CN 101282904A
Authority
CN
China
Prior art keywords
carbon nanotube
polymer
composite material
material film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800371857A
Other languages
English (en)
Inventor
戴黎明
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Dayton
Original Assignee
University of Dayton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Dayton filed Critical University of Dayton
Publication of CN101282904A publication Critical patent/CN101282904A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/707Integrated with dissimilar structures on a common substrate having different types of nanoscale structures or devices on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

提供聚合物-碳纳米管复合材料膜用作检测化学蒸气的传感器。通过用选自聚乙酸乙烯酯、聚异戊二烯、或其共混物中的聚合物涂布垂直定向碳纳米管,从而形成复合材料膜。可通过固定至少两个电极到聚合物-碳纳米管复合材料膜上,从而形成传感器。可在其中传感器能检测复合材料内传导率变化的任何应用中使用该传感器。

Description

用作传感器的聚合物-碳纳米管复合材料
本发明涉及通过用聚合物涂布定向碳纳米管形成的复合材料膜,和掺入该聚合物-碳纳米管复合材料膜的传感器。
化学气相传感器广泛地用于诸如防御、领土安全、健康护理和环境监控应用之类的应用上。例如,化学气相传感器通过监控士兵衣服电阻率的变化可用于战场上化学战争刺激剂的实时传感。
近年来,对高效、机械坚固、环境稳定且在低功耗下操作的化学气相传感器存在增加的需求。
基于共轭传导聚合物的化学气相传感器是已知的。这种聚合物显示出无机半导体或金属的光电性能。然而,与大多数共轭聚合物有关的环境稳定性差妨碍了它们在实际应用中使用。
碳纳米管已显示出拥有与共轭聚合物类似的光电性能。与共轭聚合物不同,碳纳米管是环境稳定的,这是因为在没有悬空键的情况下它们的六角环的无缝排列所致。另外,它们高的表面积和小的尺寸使得碳纳米管成为在化学气相传感器中使用的吸引人的候选物。已使用非定向纳米管检测气体材料,其中通过采用气体分子(例如O2、H2、CO2)测量电荷转移诱导的碳纳米管的电性能的变化,或者通过气体分子的物理吸收导致的电容器变化,来实现气体的检测。然而,有限的特定相互作用和所使用的转导机理妨碍了使用这种碳纳米管基传感器检测的分析物的数量。
因此,本领域仍需要一种化学气相传感器,其可显示出环境稳定性,显示出良好的光电性能,且可容易地检测宽泛范围的分析物。
通过提供可用作检测例如化学蒸气用传感器的聚合物-碳纳米管复合材料膜,本发明满足了该需要。掺入聚合物-碳纳米管复合材料的传感器显示出高的灵敏度、良好的选择性、优良的环境稳定性且具有低的功耗。该传感器也可适用于传感机械变形、温度变化、光信号和可诱导复合材料膜传导率变化的任何其他变化。
根据本发明的一个方面,提供一种用作传感器的复合材料膜,它包括定向碳纳米管,所述碳纳米管沿着其长度方向用聚合物部分涂布,即没有完全涂布。优选地,碳纳米管垂直定向。优选通过热解酞菁铁(II)制备定向碳纳米管。
优选地,复合材料内的聚合物选自聚乙酸乙烯酯、聚异戊二烯、及其共混物。该聚合物优选以约0.001-约100wt%的浓度涂布在碳纳米管上。可以含该聚合物和合适溶剂的溶液的形式施加该聚合物。或者,可以熔融涂层形式施加该聚合物。
所得复合材料膜可用作化学气相传感器在检测众多种化学蒸气中使用,所述化学蒸气包括但不限于丙酮、氯仿、环己烷、N,N-二甲基甲酰胺、乙醇、乙酸乙酯、己烷、甲醇、四氯化碳、四氢呋喃和甲苯。优选通过将至少两个电极固定到所述聚合物-纳米管复合材料膜上,形成传感器。优选地,将金属线从电极连接到直流电阻仪上以供测量对化学蒸气暴露的应答的电阻变化,
本发明的传感器也可用作机械变形传感器、光学传感器或温度传感器。该传感器可在任何传感应用中使用,其中该传感器能检测传导率的变化。
因此,本发明的特征是提供用作传感器的聚合物-碳纳米管复合材料。根据下述说明和附图,本发明的其他特征和优点将变得显而易见。
图1是根据本发明形成聚合物/碳纳米管复合材料的方法的示意图。
图2a-2d是阐述测量各种聚合物/碳纳米管复合材料的电阻的图表。
图3a-3d是阐述测量各种聚合物/碳纳米管复合材料的电阻的图表。
我们已发现,由用合适的聚合物沿着其管道长度方向部分涂布的垂直定向碳纳米管形成的复合材料膜给传感器提供检测宽泛的各种化学蒸气的基础。尽管任何一种碳纳米管或者聚合物单独不具有所需的传感性能,但协同效果来自于结合的聚合物/纳米管复合材料。认为这一协同效果来自于化学蒸气通过聚合物基质的吸收和解吸,所述吸收和解吸将引起碳纳米管的管道内距离的变化和垂直于纳米管长度方向上的表面电阻的变化。
在本发明中使用的优选的碳纳米管是具有良好石墨化结构的多层壁碳纳米管。优选通过在Ar/H2氛围内,在约800-1100℃下热解酞菁铁(II)(FePc)形成碳纳米管。这导致形成垂直定向碳纳米管,这是因为在纳米管生长的起始阶段期间在基底表面上形成的催化剂颗粒的致密堆积导致的。碳纳米管的这一垂直定向给传感器提供明确的大表面积,从而导致提高的灵敏度以及还促进用各种转导材料表面改性碳纳米管用以拓宽可通过该传感器检测的分析物的种类。
现参考图1,其示出了形成聚合物-碳纳米管复合材料膜的方法。优选在石英基底12上形成定向碳纳米管10。定向碳纳米管可转移到许多其他基底(其中包括聚合物膜)上。可在进行转移之前或之后,用聚合物溶液涂布该定向纳米管膜。
优选在碳纳米管上滴涂聚合物溶液14(即在定向纳米管表面上放置聚合物溶液的液滴),以便碳纳米管沿着其长度方向至少部分被聚合物覆盖。在本发明中使用的优选聚合物包括聚乙酸乙烯酯和聚异戊二烯,或其共聚物共混物。我们已发现,可通过使用聚乙酸乙烯酯和聚异戊二烯共聚物,拓宽可检测的分析物的数量。
聚合物优选以含诸如甲苯之类溶剂的溶液形式在约0.001至100wt%的聚合物浓度下施加。应当理解,可使用任何合适的有机或无机溶剂,这取决于涂布所使用的聚合物的性质。或者,可通过熔融涂布施加聚合物。
在涂布之后,优选空干所得复合材料膜16并例如在烘箱内加热。应当理解,可通过调节溶剂、聚合物浓度、堆积密度或借助等离子体处理调节纳米管的表面性能,从而控制聚合物涂层的厚度。在加热之后,优选从石英基底12上剥离掉复合材料膜16。
在复合材料膜用作化学气相传感器的情况下,优选例如通过溅射涂布或者通过平版印刷沉积,将电极18沉积在所述膜上。直流电阻仪或其他测量装置(未示出)可与测量电阻的电极相连。可使用该复合材料膜传感许多化学蒸气,其中包括但不限于甲醇、己烷、氯仿、四氢呋喃(THF)、苯、甲苯和丙酮。除了化学气相传感器以外,当在膜平面法向上的任何机械变形可能引起管道内距离和垂直于纳米管长度方向上的表面电阻率变化时,也可使用所述聚合物/碳纳米管复合材料膜来传感和/或描绘机械变形。类似地,相同或类似的复合材料膜也可用作温度传感器、光学传感器或其他传感器。
为了更加容易地理解本发明,参考下述实施例,所述实施例拟阐述本发明,但不限制本发明的范围。
实施例1
通过在Ar/H2氛围下在800-1100℃下热解酞菁铁(II)(FePc),在石英板上生产具有带50个同心碳壳、40nm外径和20微米长度的良好石墨化结构的定向多层壁碳纳米管。然后用聚合物涂布液滴涂所得定向碳纳米管膜,其中每一构成碳纳米管沿着其长度方向自顶向下被聚合物部分覆盖。视需要,通过调节溶剂的性质、聚合物的浓度、堆积密度和借助等离子体处理调节纳米管的表面性能,从而控制在定向碳纳米管上特定聚合物的涂层深度。
以2wt%的浓度将聚乙酸乙烯酯(PVAc)或聚异戊二烯(PI)的甲苯溶液滴落在定向多层壁碳纳米管阵列的顶部表面上,以涂布纳米管长度的约一半。在空干复合材料膜并在烘箱内在80℃下烘烤过夜之后,将具有从聚合物基质中伸出的定向碳纳米管的复合材料膜从石英基底上剥离掉,并以自立式膜形式将上面朝下。
之后,将自立式复合材料膜(5mm×10mm×0.2mm)置于非传导载体(例如玻璃板)上,且自由的碳纳米管面朝上,之后平版印刷沉积两个电极(0.1微米的厚度)。将电极横跨管道彼此隔开8mm布置以供使用金传导油漆与金线电接触。然后在含有化学溶剂的单颈烧瓶内,将整个薄膜器件暴露于化学蒸气下,并使用直流电阻仪在室温下进行电阻测量。作为对照实验,使用在石英上原样合成的定向碳纳米管阵列测量在这一实施例中研究的所有化学蒸气(甲醇、己烷、氯仿、四氢呋喃(THF)、苯、甲苯、丙酮)的直流电阻。正如图2(a)所示的,对于对照测量来说没有明显的电阻变化。相反,图2(b)清楚地示出,在暴露于THF蒸气下约2分钟之后,PVAc和定向碳纳米管的复合材料膜的电阻增加约130%。随后在空气中在室温下保持PVAc和纳米管复合材料膜2分钟之后,除去THF蒸气源引起约75%的电阻损失。显然,所观察到的电阻变化是由于暴露于化学蒸气下时聚合物基质膨胀导致的,这种暴露将导致管道内距离同时增加。应当注意,在这一情况下不可能完全补偿传导率的损失,因为在PVAc基质内不可避免地存在一些溶剂(THF)。然而,在2分钟的时间间隔下,几个循环的蒸气-空气暴露之后,正如图2(b)所示,最大电阻和峰值高度经大于10分钟变得恒定,从而表明溶剂的吸收/解吸达到平衡状态。
对于传感THF的PVAc和定向纳米管复合材料膜来说,在达到平衡状态之后,应答时间ts(它定义为电阻变化一半所要求的时间)为约20秒,和完全恢复的时间tc为约5分钟。
对于定向碳纳米管和PVAc复合材料膜来说,当暴露于其他化学蒸气(例如乙醇和环己烷;分别是图2(c)和(d))下时,观察到类似的电阻变化。根据图2可看出,THF的平衡峰值高度为约290%(图2(b)),而对于乙醇相应值为75%(图2(c))。这一差值可归因于下述事实:THF是比乙醇更好的溶剂且可引起PVAc基质较大的膨胀,并因此导致更大的电阻变化。在暴露于非溶剂(环己烷,图2(d))下时,平衡峰值高度仅达到约12%。然而,在除去蒸气源之后,因暴露于环己烷导致的传导率损失在几分钟内完全恢复。
根据图2(d)和3(a)看出,通过用PI替代PVAc,将提高环己烷对PVAc和定向碳纳米管复合材料膜传感器的微弱应答,这是因为环己烷是P I的良好溶剂。然而,由于乙醇是PI的不良溶剂,因此乙醇引起对定向碳纳米管和PI复合材料膜传感器仅仅微弱的应答,峰值高度为约10%(图3(b))。
实施例2
为了拓宽通过基于所述聚合物-纳米管复合材料膜的化学气相传感器检测的分析物的范围,将PVAc和PI(重量比50∶50)的甲苯溶液(2wt%)用作涂布材料,来用物理共混的双组分聚合物膜部分覆盖定向纳米管。
根据图3(c)看出,基于定向碳纳米管和PVAc/PI二元聚合物复合材料的化学气相传感器对环己烷(平衡峰值高度:约50%,其纯的PVAc对应物:12%)和乙醇(平衡峰值高度:约45%,其纯的PI对应物:10%)均显示出合理地良好的应答。也可在复合材料膜中使用诸如PVAc和PI二嵌段共聚物之类的共聚物。
下表1示出了可使用聚合物-纳米管复合材料传感器检测宽泛的各种化学蒸气。图3(d)所示的平衡峰值高度与环己烷的蒸气分压的强烈依赖性表明了高的灵敏度和可靠度。
表1.用于化学气相传感的PI/PVAc和定向碳纳米管复合材料膜
  溶剂蒸气   应答时间(ts;s)  ΔR的峰值高度(%)   恢复时间(tc;s)
  丙酮   30  63   750
  氯仿   26  81   570
  环己烷   47  48   490
  N,N-二甲基甲酰胺   15  34   50
  乙醇   32  45   110
  乙酸乙酯   18  55   170
  己烷   20  53   240
  甲醇   16  41   120
  四氯化碳   15  71   1320
  四氢呋喃   20  63   280
  甲苯   12  25   130
  水   N/A  N/A   N/A
通过参考本发明的优选实施方案详细地描述了本发明,但显而易见的是在没有脱离本发明范围的情况下各种改性和变化是可能的。

Claims (12)

1.一种用作传感器的聚合物-纳米管复合材料膜,它包括沿着其长度方向用聚合物部分涂布的定向碳纳米管。
2.权利要求1的复合材料膜,其中垂直定向所述碳纳米管。
3.权利要求2的复合材料膜,其中通过热解酞菁铁(I I),形成所述定向碳纳米管。
4.权利要求1的复合材料膜,其中所述聚合物选自聚乙酸乙烯酯、聚异戊二烯、及其共混物。
5.权利要求1的复合材料膜,其中所述聚合物以约0.001-约100wt%的浓度涂布在所述碳纳米管上。
6.一种用于检测化学蒸气的传感器,它包括:
含用聚合物涂布的定向碳纳米管的聚合物-碳纳米管复合材料膜;和固定到所述复合材料膜上的至少两个电极。
7.权利要求6的传感器,它进一步包括与所述电极相连的电阻仪。
8.一种制造传感器的方法,该方法包括:
形成定向碳纳米管;
用聚合物部分涂布所述定向碳纳米管,形成复合材料膜;和
固定至少两个电极到所述膜上。
9.权利要求8的方法,其中所述聚合物选自聚乙酸乙烯酯、聚异戊二烯、及其共混物。
10.权利要求8的方法,其中所述聚合物以约0.001-约100wt%的浓度涂布在所述碳纳米管上。
11.权利要求8的方法,其中垂直定向所述碳纳米管。
12.权利要求8的方法,其中通过热解酞菁铁(II),形成所述定向碳纳米管。
CNA2006800371857A 2005-09-12 2006-09-12 用作传感器的聚合物-碳纳米管复合材料 Pending CN101282904A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US71611205P 2005-09-12 2005-09-12
US60/716,112 2005-09-12
US11/518,832 US8133465B2 (en) 2005-09-12 2006-09-11 Polymer-carbon nanotube composite for use as a sensor
US11/518,832 2006-09-11

Publications (1)

Publication Number Publication Date
CN101282904A true CN101282904A (zh) 2008-10-08

Family

ID=37557424

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800371857A Pending CN101282904A (zh) 2005-09-12 2006-09-12 用作传感器的聚合物-碳纳米管复合材料

Country Status (3)

Country Link
US (1) US8133465B2 (zh)
CN (1) CN101282904A (zh)
WO (1) WO2007033189A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501982A (zh) * 2014-12-19 2015-04-08 桂林电子科技大学 一种改性碳纳米管温度传感器
CN105136861A (zh) * 2015-06-18 2015-12-09 沈阳航空航天大学 聚合物基复合材料固化过程的碳纳米纸监测方法
CN106415255A (zh) * 2014-03-02 2017-02-15 麻省理工学院 基于金属碳配合物的气体感测器
CN110899981A (zh) * 2019-12-04 2020-03-24 哈尔滨工业大学 一种激光改性超精密切削的激光辅助加工硬脆材料方法
CN111527633A (zh) * 2017-12-26 2020-08-11 可隆工业株式会社 催化剂、其制备方法、包含所述催化剂的电极、膜-电极组件和燃料电池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002755A1 (en) * 2006-06-29 2008-01-03 Raravikar Nachiket R Integrated microelectronic package temperature sensor
JP2010521429A (ja) 2007-03-07 2010-06-24 マサチューセッツ インスティテュート オブ テクノロジー ナノチューブおよびフラーレンを含むナノスケール物品の官能基化
US8347726B2 (en) * 2007-04-25 2013-01-08 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and methods for forming and using the same
WO2009136978A2 (en) * 2008-03-04 2009-11-12 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
ITSA20080014A1 (it) * 2008-06-13 2009-12-14 Univ Degli Studi Salerno Compositi a base di polimero e nanotubi di carbonio da applicare come sensori di temperatura a basso costo
US8735313B2 (en) 2008-12-12 2014-05-27 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
US8456073B2 (en) 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
US8187887B2 (en) 2009-10-06 2012-05-29 Massachusetts Institute Of Technology Method and apparatus for determining radiation
DE102010041650A1 (de) * 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Band für die Erfassung von Vitaldaten einer Person
US20120171093A1 (en) 2010-11-03 2012-07-05 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
CN103359718B (zh) * 2012-04-05 2015-07-01 清华大学 石墨烯纳米窄带的制备方法
CN102944315B (zh) * 2012-11-06 2014-06-25 沈阳航空航天大学 基于碳纳米管三维网络薄膜的温度传感器制备方法
US10799618B2 (en) * 2016-01-21 2020-10-13 Saint Louis University Methods of transferring carbon nanotubes on a hydrogel
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene
CN111721812A (zh) * 2019-12-18 2020-09-29 中国科学院上海微系统与信息技术研究所 一种传感器材料及制备方法、传感器及在co检测中的应用
DE112021003224T5 (de) 2020-06-12 2023-04-20 Analog Devices International Unlimited Company Selbstkalibrierendes Polymer-Nanokomposit(PNC)-Erfassungselement
CN116324431A (zh) 2020-10-27 2023-06-23 美国亚德诺半导体公司 无线完整性感测采集模块
CN114720524B (zh) * 2021-01-06 2023-08-04 南开大学 一种铁基酞菁复合材料及其制备方法、纳米传感器和在迷迭香酸检测中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506530A (ja) 2000-08-24 2004-03-04 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー巻き付け単層カーボンナノチューブ
CN1214974C (zh) 2002-01-25 2005-08-17 中国科学院化学研究所 一种条带型阵列碳纳米管的制备方法
FR2841233B1 (fr) * 2002-06-24 2004-07-30 Commissariat Energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone
AU2003294588A1 (en) * 2002-12-09 2004-06-30 Rensselaer Polytechnic Institute Embedded nanotube array sensor and method of making a nanotube polymer composite
WO2004106420A2 (en) * 2003-05-22 2004-12-09 Zyvex Corporation Nanocomposites and method for production
US20070189953A1 (en) * 2004-01-30 2007-08-16 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same
US7400490B2 (en) * 2005-01-25 2008-07-15 Naturalnano Research, Inc. Ultracapacitors comprised of mineral microtubules

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415255A (zh) * 2014-03-02 2017-02-15 麻省理工学院 基于金属碳配合物的气体感测器
CN104501982A (zh) * 2014-12-19 2015-04-08 桂林电子科技大学 一种改性碳纳米管温度传感器
CN105136861A (zh) * 2015-06-18 2015-12-09 沈阳航空航天大学 聚合物基复合材料固化过程的碳纳米纸监测方法
CN111527633A (zh) * 2017-12-26 2020-08-11 可隆工业株式会社 催化剂、其制备方法、包含所述催化剂的电极、膜-电极组件和燃料电池
US11831025B2 (en) 2017-12-26 2023-11-28 Kolon Industries, Inc. Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
CN110899981A (zh) * 2019-12-04 2020-03-24 哈尔滨工业大学 一种激光改性超精密切削的激光辅助加工硬脆材料方法
CN110899981B (zh) * 2019-12-04 2021-07-02 哈尔滨工业大学 一种激光改性超精密切削的激光辅助加工硬脆材料方法

Also Published As

Publication number Publication date
WO2007033189A1 (en) 2007-03-22
US20120037306A1 (en) 2012-02-16
US8133465B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
CN101282904A (zh) 用作传感器的聚合物-碳纳米管复合材料
Wongwiriyapan et al. Single-walled carbon nanotube thin-film sensor for ultrasensitive gas detection
Zhang et al. Printed carbon nanotubes-based flexible resistive humidity sensor
Dai et al. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes
Chen et al. High‐performance and breathable polypyrrole coated air‐laid paper for flexible all‐solid‐state supercapacitors
Jiménez-Cadena et al. Gas sensors based on nanostructured materials
Novak et al. Nerve agent detection using networks of single-walled carbon nanotubes
US7166325B2 (en) Carbon nanotube devices
US7416699B2 (en) Carbon nanotube devices
EP1247089B1 (en) Carbon nanotube devices
Li et al. Nano chemical sensors with polymer-coated carbon nanotubes
Li et al. Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors
US10024814B2 (en) Molecularly imprinted polymer sensors
Tang et al. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography
Zhang et al. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection
Mallya et al. Conducting polymer–carbon black nanocomposite sensor for volatile organic compounds and correlating sensor response by molecular dynamics
Ahn et al. Multi-wall carbon nanotubes as a high-efficiency gas sensor
EP3864400A1 (en) Sensor platform
Li et al. n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite
Wu et al. A dimethyl methylphonate sensor based on HFIPPH modified SWCNTs
Lee et al. Direct integration of carbon nanotubes on a suspended Pt microheater for hydrogen gas sensing
CN112432976B (zh) 具有表面褶皱结构的透明柔性传感材料及制备方法和应用
Ma et al. Polyvinylpyrrolidone/graphene oxide thin films coated on quartz crystal microbalance electrode for NH 3 detection at room temperature
ur Rahman et al. Electrical and hysteric properties of organic compound-based humidity sensor and its dualistic interactive approach to H2O molecules
Vedala et al. Effect of PVA functionalization on hydrophilicity of Y-junction single wall carbon nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081008