CN101219377A - A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof - Google Patents
A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof Download PDFInfo
- Publication number
- CN101219377A CN101219377A CNA2008100137511A CN200810013751A CN101219377A CN 101219377 A CN101219377 A CN 101219377A CN A2008100137511 A CNA2008100137511 A CN A2008100137511A CN 200810013751 A CN200810013751 A CN 200810013751A CN 101219377 A CN101219377 A CN 101219377A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- precious metal
- dimensional
- composite material
- dimensional titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 210
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 91
- 239000002131 composite material Substances 0.000 title claims abstract description 46
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 41
- 239000010970 precious metal Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000000725 suspension Substances 0.000 claims abstract description 29
- 239000011259 mixed solution Substances 0.000 claims abstract description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 78
- 239000002127 nanobelt Substances 0.000 claims description 56
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 39
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- 229910001923 silver oxide Inorganic materials 0.000 claims description 9
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Substances [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 9
- 239000002071 nanotube Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910001922 gold oxide Inorganic materials 0.000 claims description 6
- 239000002073 nanorod Substances 0.000 claims description 5
- 229910003445 palladium oxide Inorganic materials 0.000 claims description 4
- 229910003446 platinum oxide Inorganic materials 0.000 claims description 4
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 claims description 3
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 claims 1
- NTVYFDOMBHOLGP-UHFFFAOYSA-N gold nitric acid Chemical compound [Au].O[N+]([O-])=O NTVYFDOMBHOLGP-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000009938 salting Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 239000004094 surface-active agent Substances 0.000 abstract description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052753 mercury Inorganic materials 0.000 abstract description 3
- 239000000243 solution Substances 0.000 abstract description 3
- 239000012266 salt solution Substances 0.000 abstract description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 239000002074 nanoribbon Substances 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000002070 nanowire Substances 0.000 description 5
- 230000001699 photocatalysis Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- ZVUZTTDXWACDHD-UHFFFAOYSA-N gold(3+);trinitrate Chemical compound [Au+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O ZVUZTTDXWACDHD-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种贵重金属/一维二氧化钛纳米结构复合材料的制备方法,属于无机纳米材料制备技术领域,其主要组分为一维二氧化钛纳米材料和纳米贵重金属粒子。具体工艺步骤如下:1)将0.01~0.1g一维二氧化钛纳米材料分散在10~100ml水或者乙醇中,形成悬浮溶液;2)向上述悬浮溶液中加入可溶性贵重金属盐,形成0.001~0.1M贵重金属盐溶液;3)将步骤2)所得到混合溶液放置在紫外灯或者高压汞灯或者日光灯下照射1~30min;4)将步骤3)中所得到产品,离心、洗涤即可以到贵重金属/一维二氧化钛纳米结构复合材料。本发明具有不需要任何表面活性剂,工艺简单的特点。
The invention discloses a method for preparing a precious metal/one-dimensional titanium dioxide nanostructure composite material, which belongs to the technical field of inorganic nanomaterial preparation, and its main components are one-dimensional titanium dioxide nanomaterial and nano precious metal particles. The specific process steps are as follows: 1) Disperse 0.01-0.1g of one-dimensional titanium dioxide nanomaterials in 10-100ml of water or ethanol to form a suspension solution; 2) Add soluble precious metal salts to the suspension solution to form 0.001-0.1M precious Metal salt solution; 3) Place the mixed solution obtained in step 2) under an ultraviolet lamp or a high-pressure mercury lamp or a fluorescent lamp to irradiate for 1 to 30 minutes; 4) Centrifuge and wash the product obtained in step 3) to get the precious metal/ One-dimensional titania nanostructured composites. The invention has the characteristics of no need for any surfactant and simple process.
Description
技术领域technical field
本发明涉及一种贵重金属/一维二氧化钛纳米结构复合材料及其制备方法,属于无机纳米材料制备技术领域。The invention relates to a precious metal/one-dimensional titanium dioxide nanostructure composite material and a preparation method thereof, belonging to the technical field of inorganic nanomaterial preparation.
背景技术Background technique
自从1991年日本学者饭岛澄男发现碳纳米管以来,一维纳米材料引起了人们的广泛关注。一维纳米结构材料,包括纳米棒、纳米线、纳米带和纳米管等,不仅为我们研究电子传输、机械性能等与材料的尺寸及维数的关系提供了一个理想的模型,而且在纳米尺度电子及光电器件的构建中扮演着极其重要的角色。对低维纳米材料的研究,特别是一维或准一维纳米材料的研究,被认为是研究其他低维材料的基础。一维纳米材料所具有的许多特有性能已经被相继发现和报道,这其中包括超强的机械韧性、极高的荧光效率、热电性能的增强以及激光发射闪值的降低等。Since the Japanese scholar Sumio Iijima discovered carbon nanotubes in 1991, one-dimensional nanomaterials have attracted widespread attention. One-dimensional nanostructured materials, including nanorods, nanowires, nanoribbons, and nanotubes, not only provide an ideal model for us to study the relationship between electronic transport, mechanical properties, etc., and the size and dimension of materials, but also at the nanoscale It plays an extremely important role in the construction of electronic and optoelectronic devices. The study of low-dimensional nanomaterials, especially the study of one-dimensional or quasi-one-dimensional nanomaterials, is considered to be the basis for the study of other low-dimensional materials. Many unique properties of one-dimensional nanomaterials have been discovered and reported one after another, including super strong mechanical toughness, high fluorescence efficiency, enhanced thermoelectric properties, and reduced flash value of laser emission.
二氧化钛作为一种具有多种功能特性半导体材料,在电子、光催化、光电转换、气敏和生物传感器方面、太阳能电池等都有重要用途。近年来,人们采用不同的方法合成了一维二氧化钛纳米结构,例如:水热/溶剂热法、模板法、化学气相沉积法、溶胶-凝胶法、电化学沉积法以及微波法。相比于二氧化钛纳米颗粒,一维二氧化钛纳米结构具备更广阔的应用前景。As a semiconductor material with various functional properties, titanium dioxide has important applications in electronics, photocatalysis, photoelectric conversion, gas sensing and biosensors, and solar cells. In recent years, different methods have been used to synthesize 1D titania nanostructures, such as: hydrothermal/solvothermal method, template method, chemical vapor deposition method, sol-gel method, electrochemical deposition method, and microwave method. Compared with titanium dioxide nanoparticles, one-dimensional titanium dioxide nanostructures have broader application prospects.
纳米尺度贵重金属(例如纳米Au、Ag、Pt、Pd等)以它独特的光学、电学和催化性质以及在生物领域的应用潜力,受到人们越来越多的关注。纳米贵重金属/一维二氧化钛纳米结构的复合可以明显提高二氧化钛的光催化性能,作为载体的一维二氧化钛纳米结构,也可以提高贵重金属在催化领域的应用。另外贵重金属在氧化钛的表面沉积形成等离子激元,将在太阳能电池方面有潜在的应用前景。目前有关纳米贵重金属的制备主要是利用可溶性金属盐采用化学还原的方法制得。而其制备过程中,往往涉及到有机表面活性剂、还原剂等添加剂。Nanoscale precious metals (such as nanometer Au, Ag, Pt, Pd, etc.) have attracted more and more attention due to their unique optical, electrical and catalytic properties and their potential applications in the biological field. The composite of nano-precious metal/one-dimensional titanium dioxide nanostructure can significantly improve the photocatalytic performance of titanium dioxide, and the one-dimensional titanium dioxide nanostructure as a carrier can also improve the application of precious metals in the field of catalysis. In addition, precious metals are deposited on the surface of titanium oxide to form plasmons, which will have potential application prospects in solar cells. At present, the preparation of nano-precious metals is mainly made by using soluble metal salts by chemical reduction. In its preparation process, additives such as organic surfactants and reducing agents are often involved.
发明内容Contents of the invention
针对目前的研究现状,本发明提供一种不需要任何表面活性剂,工艺简单的贵重金属/一维二氧化钛纳米结构复合材料及其制备方法。Aiming at the current research status, the present invention provides a precious metal/one-dimensional titanium dioxide nanostructure composite material and a preparation method thereof which does not require any surfactant and has a simple process.
二氧化钛是一种优良的光催化剂,在一定波长光的照射下,价带上的电子就会跃迁到导带上,从而在价带上面形成空穴(h+),在导带上形成电子(e-)。空穴是一种强氧化剂,而电子就是一种优良的还原剂。这种光催化还原技术导带电子的还原性,将贵重金属离子还原成零价金属,并且沉积到二氧化钛的表面。Titanium dioxide is an excellent photocatalyst. Under the irradiation of light of a certain wavelength, the electrons on the valence band will jump to the conduction band, thereby forming holes (h + ) on the valence band and electrons on the conduction band ( e - ). Holes are strong oxidizing agents, while electrons are excellent reducing agents. The reduction of conduction band electrons in this photocatalytic reduction technology reduces precious metal ions to zero-valent metals and deposits them on the surface of titanium dioxide.
一种贵重金属/一维二氧化钛纳米结构复合材料,其主要组分为一维二氧化钛纳米材料和纳米贵重金属粒子。A precious metal/one-dimensional titanium dioxide nanostructure composite material, the main components of which are one-dimensional titanium dioxide nanomaterials and nanometer precious metal particles.
一种贵重金属/一维二氧化钛纳米结构复合材料的制备方法,具体制备工艺步骤如下:A method for preparing a precious metal/one-dimensional titanium dioxide nanostructure composite material, the specific preparation process steps are as follows:
1)将0.01~0.1g一维二氧化钛纳米材料分散在10~100ml水或者乙醇中,形成一维纳米材料悬浮液;1) Dispersing 0.01 to 0.1 g of one-dimensional titanium dioxide nanomaterials in 10 to 100 ml of water or ethanol to form a one-dimensional nanomaterial suspension;
2)向上述一维二氧化钛纳米材料悬浮液中加入可溶性贵重金属盐,形成0.001~0.1M贵重金属盐溶液;2) adding a soluble precious metal salt to the one-dimensional titanium dioxide nanomaterial suspension to form a 0.001-0.1M precious metal salt solution;
3)将步骤2)中所得到混合溶液放置在紫外灯或者高压汞灯或者日光灯下照射1~30min;3) Place the mixed solution obtained in step 2) under an ultraviolet lamp, a high-pressure mercury lamp or a fluorescent lamp to irradiate for 1-30 minutes;
4)将步骤3)中所得到产品,离心、洗涤即可以到贵重金属/一维二氧化钛纳米结构复合材料。4) The product obtained in step 3) is centrifuged and washed to obtain the precious metal/one-dimensional titanium dioxide nanostructure composite material.
步骤1)中所述的一维二氧化钛纳米材料是二氧化钛纳米线、二氧化钛纳米管、二氧化钛纳米带、二氧化钛纳米棒、离子掺杂二氧化钛纳米线、离子掺杂二氧化钛纳米管、离子掺杂二氧化钛纳米带或离子掺杂二氧化钛纳米棒。The one-dimensional titanium dioxide nanomaterial described in step 1) is titanium dioxide nanowires, titanium dioxide nanotubes, titanium dioxide nanobelts, titanium dioxide nanorods, ion-doped titanium dioxide nanowires, ion-doped titanium dioxide nanotubes, ion-doped titanium dioxide nanobelts or Ion-doped titania nanorods.
步骤2)中所述的可溶性贵重金属盐是硝酸银或氯金酸或硝酸金或氯铂酸或硝酸铂或氯化钯或硝酸钯。The soluble noble metal salt described in step 2) is silver nitrate or chloroauric acid or gold nitrate or chloroplatinic acid or platinum nitrate or palladium chloride or palladium nitrate.
步骤4)中得到的贵重金属/一维二氧化钛纳米结构复合材料是银/二氧化钛或金/二氧化钛或铂/二氧化钛或钯/二氧化钛以及任意两种或者两种以上合金/一维二氧化钛纳米结构复合材料。The precious metal/one-dimensional titanium dioxide nanostructure composite material obtained in step 4) is silver/titanium dioxide or gold/titanium dioxide or platinum/titanium dioxide or palladium/titanium dioxide and any two or more alloys/one-dimensional titanium dioxide nanostructure composite material.
利用这种方法制备贵重金属/一维二氧化钛纳米结构复合材料的方法,制备工艺简单,不需要任何外加添加剂,表面活性剂。因此用此种方法制备的复合材料表面洁净无污染。The method for preparing precious metal/one-dimensional titanium dioxide nanostructure composite material by using this method has simple preparation process and does not need any external additives or surfactants. Therefore, the surface of the composite material prepared by this method is clean and pollution-free.
此复合材料可以在光催化、催化以及太阳能电池等领域广泛的应用。The composite material can be widely used in the fields of photocatalysis, catalysis and solar cells.
本发明涉及一种贵重金属/纳米带复合材料的制备方法,还适用于其他一些半导体氧化物纳米带与贵重金属的复合。The invention relates to a preparation method of a precious metal/nano belt composite material, and is also applicable to the compounding of other semiconductor oxide nano belts and precious metals.
附图说明Description of drawings
图1是二氧化钛(TiO2)纳米带的XRD图谱。Figure 1 is the XRD spectrum of titanium dioxide (TiO 2 ) nanobelts.
图2是典型二氧化钛纳米带的扫描电镜(SEM)照片Figure 2 is a scanning electron microscope (SEM) photo of a typical titanium dioxide nanoribbon
图3是纳米银(Ag)/二氧化钛(TiO2)扫描电镜(SEM)照片。Fig. 3 is a scanning electron microscope (SEM) photograph of nano silver (Ag)/titanium dioxide (TiO 2 ).
图4是纳米金(Au)/二氧化钛(TiO2)扫描电镜(SEM)照片。Fig. 4 is a scanning electron microscope (SEM) photo of nano gold (Au)/titanium dioxide (TiO 2 ).
具体实施方式Detailed ways
实施例1:Example 1:
将0.17g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.17g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanobelts to form nanobelt silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, centrifuge and wash to obtain silver nitrate. /TiO2 nanobelt composites.
实施例2:Example 2:
将0.017g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min.最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanobelts to form a nanobelt silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min. Finally, centrifuge and wash to obtain silver /TiO2 nanobelt composites.
实施例3:Example 3:
将0.034g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.034g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanobelts to form nanobelt silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, centrifuge and wash to obtain silver nitrate. /TiO2 nanobelt composites.
实施例4:Example 4:
将0.017g硝酸银溶解在10毫升乙醇中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10 milliliters of ethanol, then add 0.01g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例5:Example 5:
将0.017g硝酸银溶解在10毫升乙醇中,然后加入0.05g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10 milliliters of ethanol, then add 0.05g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例6:Embodiment 6:
将0.017g硝酸银溶解在10毫升乙醇中,然后加入0.1g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10 milliliters of ethanol, then add 0.1g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20 watt ultraviolet lamp for 1min, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例7:Embodiment 7:
将0.017g硝酸银溶解在10毫升乙醇中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射10min.最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10 milliliters of ethanol, then add 0.01g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 10 minutes. Finally, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例8:Embodiment 8:
将0.017g硝酸银溶解在10毫升乙醇中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射30min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10 milliliters of ethanol, then add 0.01g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 30 minutes, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例9:Embodiment 9:
将0.105g硝酸银溶解在50毫升乙醇中,然后加入0.05g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射5min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.105g of silver nitrate in 50 milliliters of ethanol, then add 0.05g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 5 minutes, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例10:Example 10:
将0.105g硝酸银溶解在100毫升乙醇中,然后加入0.1g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射2min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.105g of silver nitrate in 100 milliliters of ethanol, then add 0.1g of titanium dioxide nanobelts to form nanobelt silver nitrate suspensions; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 2min, centrifuge and wash to obtain silver/ Titanium dioxide nanoribbon composites.
实施例11:Example 11:
将0.017g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米带,形成纳米带硝酸银悬浮液;将所得到混合溶液在高压汞灯下照射1min,最后离心、洗涤即可得到银/二氧化钛纳米带复合材料。Dissolve 0.017g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanobelts to form a nanobelt silver nitrate suspension; irradiate the resulting mixed solution under a high-pressure mercury lamp for 1min, and finally centrifuge and wash to obtain silver nitrate. /TiO2 nanobelt composites.
实施例12:Example 12:
向10毫升0.01M氯金酸水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min,最后离心、洗涤即可得到金/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 milliliters of 0.01M chloroauric acid aqueous solution to form a nanobelt suspension; irradiate the resulting mixed solution under an ultraviolet lamp for 10 minutes, and finally centrifuge and wash to obtain the gold/titanium dioxide nanobelt composite material .
实施例13:Example 13:
向10毫升0.05M氯金酸水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min.最后离心、洗涤即可得到金/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 ml of 0.05M chloroauric acid aqueous solution to form a nanobelt suspension; irradiate the resulting mixed solution under a UV lamp for 10 minutes. Finally, centrifuge and wash to obtain a gold/titanium dioxide nanobelt composite material .
实施例13:Example 13:
向10毫升0.05M氯金酸乙醇溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min,最后离心、洗涤即可得到金/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 milliliters of 0.05 M chloroauric acid ethanol solution to form a nanobelt suspension; irradiate the resulting mixed solution under an ultraviolet lamp for 10 minutes, and finally centrifuge and wash to obtain a gold/titanium dioxide nanobelt composite Material.
实施例14:Example 14:
向10毫升0.05M硝酸金水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min。最后离心、洗涤即可得到金/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 ml of 0.05 M gold nitrate aqueous solution to form a nanobelt suspension; irradiate the resulting mixed solution under a UV lamp for 10 min. Finally, the gold/titanium dioxide nanobelt composite material can be obtained by centrifuging and washing.
实施例15:Example 15:
向10毫升0.05M氯铂酸水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min,最后离心、洗涤即可得到铂/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 milliliters of 0.05 M chloroplatinic acid aqueous solution to form a nanobelt suspension; irradiate the resulting mixed solution under an ultraviolet lamp for 10 minutes, and finally centrifuge and wash to obtain a platinum/titanium dioxide nanobelt composite material .
实施例16:Example 16:
向10毫升0.05M硝酸铂水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min,最后离心、洗涤即可得到铂/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 ml of 0.05 M platinum nitrate aqueous solution to form a nanobelt suspension; irradiate the obtained mixed solution under an ultraviolet lamp for 10 minutes, and finally centrifuge and wash to obtain a platinum/titanium dioxide nanobelt composite material.
实施例17:Example 17:
向10毫升0.05M硝酸钯水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min,最后离心、洗涤即可得到钯/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 ml of 0.05 M palladium nitrate aqueous solution to form a nanobelt suspension; irradiate the obtained mixed solution under an ultraviolet lamp for 10 minutes, and finally centrifuge and wash to obtain a palladium/titanium dioxide nanobelt composite material.
实施例18:Example 18:
向10毫升0.05M氯化钯水溶液中,加入0.01g二氧化钛纳米带,形成纳米带悬浮液;将所得到混合溶液在紫外灯下照射10min.最后离心、洗涤即可得到钯/二氧化钛纳米带复合材料。Add 0.01 g of titanium dioxide nanobelts to 10 ml of 0.05M palladium chloride aqueous solution to form a nanobelt suspension; irradiate the resulting mixed solution under an ultraviolet lamp for 10 minutes. Finally, centrifuge and wash to obtain a palladium/titanium dioxide nanobelt composite material .
实施例19:Example 19:
将0.17g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米管,形成纳米管硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米管复合材料。Dissolve 0.17g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanotubes to form a nanotube silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, and finally centrifuge and wash to obtain silver nitrate. /TiO2 nanotube composites.
实施例20:Example 20:
将0.17g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米棒,形成纳米棒硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米棒复合材料。Dissolve 0.17g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanorods to form a nanorod silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, and finally centrifuge and wash to obtain silver nitrate. /TiO2 nanorod composites.
实施例21:Example 21:
将0.17g硝酸银溶解在10毫升去离子水中,然后加入0.01g二氧化钛纳米线,形成纳米线硝酸银悬浮液;将所得到混合溶液在20瓦紫外灯照射1min,最后离心、洗涤即可得到银/二氧化钛纳米线复合材料。Dissolve 0.17g of silver nitrate in 10ml of deionized water, then add 0.01g of titanium dioxide nanowires to form a nanowire silver nitrate suspension; irradiate the resulting mixed solution with a 20-watt ultraviolet lamp for 1min, and finally centrifuge and wash to obtain silver nitrate. /TiO2 nanowire composites.
实施例22:Example 22:
将0.17g硝酸银溶解在10毫升去离子水中,然后加入0.01g掺镧离子二氧化钛纳米线,形成纳米线硝酸银悬浮液;将所得到混合溶液在日光灯照射20min,最后离心、洗涤即可得到银/掺杂二氧化钛纳米线复合材料。Dissolve 0.17g of silver nitrate in 10ml of deionized water, then add 0.01g of lanthanum-doped titanium dioxide nanowires to form a nanowire silver nitrate suspension; irradiate the resulting mixed solution with a fluorescent lamp for 20 minutes, centrifuge and wash to obtain silver nitrate. /doped titania nanowire composites.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100137511A CN101219377A (en) | 2008-01-11 | 2008-01-11 | A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100137511A CN101219377A (en) | 2008-01-11 | 2008-01-11 | A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101219377A true CN101219377A (en) | 2008-07-16 |
Family
ID=39629607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100137511A Pending CN101219377A (en) | 2008-01-11 | 2008-01-11 | A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101219377A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101780403B (en) * | 2009-01-19 | 2012-07-11 | 中国科学院化学研究所 | A kind of method for preparing metal/titanium dioxide composite material |
CN102642809A (en) * | 2012-04-27 | 2012-08-22 | 中国科学院理化技术研究所 | Organic nanowire/metal nanoparticle composite nanomaterial and preparation method thereof |
CN103007932A (en) * | 2012-12-11 | 2013-04-03 | 山东大学 | Method for preparing titanium dioxide nanobelt load thermometal integral catalyst |
CN102130342B (en) * | 2010-01-19 | 2013-04-10 | 中国科学院化学研究所 | Noble metal-titanium dioxide nano fiber complex and preparation method and application thereof |
CN103351859A (en) * | 2013-08-05 | 2013-10-16 | 黑龙江大学 | Preparation Method of Ag/Y2O3:Yb3+/Er3+ Composite Nanotubes with Upconversion Luminescence Function |
CN103846086A (en) * | 2014-03-05 | 2014-06-11 | 四川大学 | Catalyst for preparing nitric oxides through catalytic ammonia oxidation |
CN104076075A (en) * | 2014-06-25 | 2014-10-01 | 复旦大学 | Gold nano particle-titanium dioxide nano wire array composite material as well as preparation method and application thereof |
CN104428063A (en) * | 2012-01-18 | 2015-03-18 | 日东电工株式会社 | Titania photocatalytic compounds and methods of making the same |
CN105368274A (en) * | 2015-11-25 | 2016-03-02 | 安徽圣德建材科技有限公司 | Wearable waterproof and antibacterial powder coating |
CN105368184A (en) * | 2015-11-25 | 2016-03-02 | 安徽圣德建材科技有限公司 | Antibacterial polyvinylidene fluoride powder coating |
CN105536779A (en) * | 2015-12-31 | 2016-05-04 | 浙江工业大学 | Preparation method of Pd/TiO2 nanowire catalyst, prepared catalyst and application thereof |
CN106340239A (en) * | 2016-10-21 | 2017-01-18 | 复旦大学 | Optical anti-counterfeiting mark formed on titanium dioxide mono-crystal surface by silver nanoparticles and manufacturing method thereof |
CN107298645A (en) * | 2017-06-09 | 2017-10-27 | 兰州大学 | The method that one kind prepares 2,2 ' dinitro bibenzyls |
CN109752411A (en) * | 2017-11-07 | 2019-05-14 | 国家纳米科学中心 | A kind of composite gas-sensing material and its preparation method and use |
CN109876829A (en) * | 2019-04-11 | 2019-06-14 | 长安大学 | A kind of Pd/TOC photocatalyst, Pd/CdS/TOC photocatalyst and preparation method and application thereof |
CN110344031A (en) * | 2019-08-20 | 2019-10-18 | 上海大学 | A method of preparing modified by silver nanoparticles composite titania material |
CN113351127A (en) * | 2021-05-31 | 2021-09-07 | 浙江传化功能新材料有限公司 | Composite functional phase change microcapsule and preparation method thereof |
CN113351126A (en) * | 2021-05-31 | 2021-09-07 | 浙江传化功能新材料有限公司 | Nano Ag/TiO2Method for modifying microcapsules and products thereof |
CN113600162A (en) * | 2021-08-12 | 2021-11-05 | 曹洋 | Porous titanium dioxide nano material, metal nano particle modified porous titanium dioxide photocatalytic material, and preparation method and application thereof |
-
2008
- 2008-01-11 CN CNA2008100137511A patent/CN101219377A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101780403B (en) * | 2009-01-19 | 2012-07-11 | 中国科学院化学研究所 | A kind of method for preparing metal/titanium dioxide composite material |
CN102130342B (en) * | 2010-01-19 | 2013-04-10 | 中国科学院化学研究所 | Noble metal-titanium dioxide nano fiber complex and preparation method and application thereof |
US9433933B2 (en) | 2012-01-18 | 2016-09-06 | Nitto Denko Corporation | Titania photocatalytic compounds and methods of making the same |
CN104428063A (en) * | 2012-01-18 | 2015-03-18 | 日东电工株式会社 | Titania photocatalytic compounds and methods of making the same |
CN102642809A (en) * | 2012-04-27 | 2012-08-22 | 中国科学院理化技术研究所 | Organic nanowire/metal nanoparticle composite nanomaterial and preparation method thereof |
CN103007932B (en) * | 2012-12-11 | 2014-09-03 | 山东大学 | Method for preparing titanium dioxide nanobelt load thermometal integral catalyst |
CN103007932A (en) * | 2012-12-11 | 2013-04-03 | 山东大学 | Method for preparing titanium dioxide nanobelt load thermometal integral catalyst |
CN103351859A (en) * | 2013-08-05 | 2013-10-16 | 黑龙江大学 | Preparation Method of Ag/Y2O3:Yb3+/Er3+ Composite Nanotubes with Upconversion Luminescence Function |
CN103846086A (en) * | 2014-03-05 | 2014-06-11 | 四川大学 | Catalyst for preparing nitric oxides through catalytic ammonia oxidation |
CN104076075A (en) * | 2014-06-25 | 2014-10-01 | 复旦大学 | Gold nano particle-titanium dioxide nano wire array composite material as well as preparation method and application thereof |
CN105368274A (en) * | 2015-11-25 | 2016-03-02 | 安徽圣德建材科技有限公司 | Wearable waterproof and antibacterial powder coating |
CN105368184A (en) * | 2015-11-25 | 2016-03-02 | 安徽圣德建材科技有限公司 | Antibacterial polyvinylidene fluoride powder coating |
CN105536779A (en) * | 2015-12-31 | 2016-05-04 | 浙江工业大学 | Preparation method of Pd/TiO2 nanowire catalyst, prepared catalyst and application thereof |
CN105536779B (en) * | 2015-12-31 | 2019-05-31 | 浙江工业大学 | A kind of preparation method of Pd/TiO2 nano-wire catalyst, catalyst obtained and its application |
CN106340239A (en) * | 2016-10-21 | 2017-01-18 | 复旦大学 | Optical anti-counterfeiting mark formed on titanium dioxide mono-crystal surface by silver nanoparticles and manufacturing method thereof |
CN106340239B (en) * | 2016-10-21 | 2019-04-05 | 复旦大学 | The optical anti-counterfeiting mark and preparation method thereof that silver nano-grain is formed on titanium dioxide single crystalline surface |
CN107298645B (en) * | 2017-06-09 | 2020-04-03 | 甘肃皓天医药科技有限责任公司 | Method for preparing 2, 2' -dinitrobibenzyl |
CN107298645A (en) * | 2017-06-09 | 2017-10-27 | 兰州大学 | The method that one kind prepares 2,2 ' dinitro bibenzyls |
CN109752411A (en) * | 2017-11-07 | 2019-05-14 | 国家纳米科学中心 | A kind of composite gas-sensing material and its preparation method and use |
CN109752411B (en) * | 2017-11-07 | 2021-09-17 | 国家纳米科学中心 | Composite gas-sensitive material and preparation method and application thereof |
CN109876829A (en) * | 2019-04-11 | 2019-06-14 | 长安大学 | A kind of Pd/TOC photocatalyst, Pd/CdS/TOC photocatalyst and preparation method and application thereof |
CN109876829B (en) * | 2019-04-11 | 2021-11-16 | 长安大学 | Pd/CdS/TOC photocatalyst and preparation method and application thereof |
CN110344031A (en) * | 2019-08-20 | 2019-10-18 | 上海大学 | A method of preparing modified by silver nanoparticles composite titania material |
CN113351127A (en) * | 2021-05-31 | 2021-09-07 | 浙江传化功能新材料有限公司 | Composite functional phase change microcapsule and preparation method thereof |
CN113351126A (en) * | 2021-05-31 | 2021-09-07 | 浙江传化功能新材料有限公司 | Nano Ag/TiO2Method for modifying microcapsules and products thereof |
CN113600162A (en) * | 2021-08-12 | 2021-11-05 | 曹洋 | Porous titanium dioxide nano material, metal nano particle modified porous titanium dioxide photocatalytic material, and preparation method and application thereof |
CN113600162B (en) * | 2021-08-12 | 2024-03-29 | 曹洋 | Porous titanium dioxide nano material, metal nano particle modified porous titanium dioxide photocatalysis material, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101219377A (en) | A kind of precious metal/one-dimensional titanium dioxide nanostructure composite material and preparation method thereof | |
Cheng et al. | CdS-based photocatalysts | |
Kuo et al. | Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures | |
Pan et al. | Plasmon-enhanced photocatalytic properties of Cu2O nanowire–Au nanoparticle assemblies | |
Lin et al. | Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes | |
Lu et al. | Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications | |
Zeng et al. | Controllable Pt/ZnO porous nanocages with improved photocatalytic activity | |
Cheng et al. | Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications | |
Tu et al. | Versatile graphene‐promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications | |
Luo et al. | Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst | |
Xi et al. | Nucleation− dissolution− recrystallization: a new growth mechanism for t-selenium nanotubes | |
Sun et al. | Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone) | |
Cui et al. | Synthesis and functions of Ag 2 S nanostructures | |
CN103721708B (en) | A kind of Silver/titanium dioxide composite heterostructure and preparation method thereof | |
Yang et al. | Au nanoparticles@ MoS2 core-shell structures with moderate MoS2 coverage for efficient photocatalytic water splitting | |
CN103691433B (en) | A kind of Ag doped Ti O 2material, and its preparation method and application | |
CN102039149B (en) | Self-assembly method of noble metal quantum dots/one-dimensional titanate nanobelt heterojunction materials | |
CN107008895A (en) | A kind of rhotanium nanometer rods with excellent near-infrared absorption and PhotoelectrocatalytiPerformance Performance and preparation method thereof | |
Arifin et al. | Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application | |
Debnath et al. | Highly luminescent nitrogen doped graphene quantum dots sensitized TiO2 nanorod arrays for enhanced photoelectrochemical performance | |
CN107694561A (en) | A kind of support type disperses noble metal quantum site catalyst and preparation method thereof | |
Dejpasand et al. | Surface plasmon-induced photodegradation of methylene blue with single layer graphene quantum dots/Au nanospheres under visible-light irradiation | |
Chandrasekaran et al. | Gold artichokes for enhanced photocatalysis | |
Xia et al. | Pt quantum dots decorated nest-like 3D porous ZnO nanostructures for enhanced visible-light degradation of RhB | |
Mu et al. | Photocatalysis of nickel-based graphene/Au/ZnO nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20080716 |