CN101163851A - 用于原地转换过程的双阻挡层系统 - Google Patents
用于原地转换过程的双阻挡层系统 Download PDFInfo
- Publication number
- CN101163851A CN101163851A CN200680013092.0A CN200680013092A CN101163851A CN 101163851 A CN101163851 A CN 101163851A CN 200680013092 A CN200680013092 A CN 200680013092A CN 101163851 A CN101163851 A CN 101163851A
- Authority
- CN
- China
- Prior art keywords
- barrier layer
- barrier
- layer
- stratum
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 242
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims description 25
- 238000006243 chemical reaction Methods 0.000 title description 16
- 238000011065 in-situ storage Methods 0.000 title description 12
- 239000012530 fluid Substances 0.000 claims abstract description 140
- 238000007710 freezing Methods 0.000 claims description 108
- 230000008014 freezing Effects 0.000 claims description 106
- 238000012545 processing Methods 0.000 claims description 75
- 230000015572 biosynthetic process Effects 0.000 claims description 62
- 238000005755 formation reaction Methods 0.000 claims description 62
- 238000005553 drilling Methods 0.000 claims description 50
- 238000012544 monitoring process Methods 0.000 claims description 33
- 239000004215 Carbon black (E152) Substances 0.000 claims description 28
- 229930195733 hydrocarbon Natural products 0.000 claims description 28
- 150000002430 hydrocarbons Chemical class 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 229910001868 water Inorganic materials 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 5
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 21
- 239000004568 cement Substances 0.000 description 19
- 238000005086 pumping Methods 0.000 description 15
- 239000011435 rock Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 239000011440 grout Substances 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 229910000851 Alloy steel Inorganic materials 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000005979 thermal decomposition reaction Methods 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000013529 heat transfer fluid Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000008398 formation water Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000005864 Sulphur Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005067 remediation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 244000287680 Garcinia dulcis Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 241001074085 Scophthalmus aquosus Species 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/17—Interconnecting two or more wells by fracturing or otherwise attacking the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/03—Heating of hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Resistance Heating (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- General Induction Heating (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Surface Heating Bodies (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Air-Conditioning For Vehicles (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Communication Control (AREA)
- Lubricants (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Pipe Accessories (AREA)
- Processing Of Solid Wastes (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Heat Treatment Of Articles (AREA)
- Control Of Resistance Heating (AREA)
- Cookers (AREA)
- Geophysics And Detection Of Objects (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Emergency Alarm Devices (AREA)
Abstract
本发明提供用于地下处理区域的双阻挡层系统(132),该系统包括:围绕地下处理区域至少一部分形成的第一阻挡层(136),第一阻挡层构造为阻止流体排出或进入地下处理区域;以及围绕第一阻挡层的至少一部分形成的第二阻挡层(138),其中,第一阻挡层和第二阻挡层之间存在分离空间。本发明还提供形成该双阻挡层系统的方法。
Description
技术领域
本发明一般地涉及用于提供从各种地下地层,比如含碳氢化合物的地层,生产碳氢化合物、氢和/或其它产品用的阻挡层(barrier)的方法和系统。实施例涉及围绕一处理区域的至少一部分的双阻挡层的形成。
背景技术
原地过程可以用于处理地下地层。在某些原地过程中,流体可以引入或产生在地层内。引入或产生的流体可能需要被保持在一处理区域内,以减少或消除原地过程对相邻区域的冲击。在某些原地过程中可以围绕处理区域的全部或一部分形成一阻挡层,以阻止流体迁移出或迁移入处理区域。
为了许多目的,一低温区域可以用于隔离地下地层的选择的区域。在某些系统中,土地被冷冻,以阻止流体在土壤修复(remediation)时从处理区域迁移。下列美国专利描述了用于冷冻土地的系统:授予Krieg等人的4,860,544;授予Krieg等人的4,974,425;授予Dash等人的5,507,149;授予Briley等人的6,796,139;以及授予Vinegar等人的6,854,929。
为了形成低温阻挡层,可以在待形成阻挡层的地层内形成间隔开的井孔。导管可以放置在井孔内。一种低温热传递流体可以通过导管循环,以降低邻近井孔的温度。围绕井孔的低温区域可以向外扩张。最终,由两个相邻井孔产生的低温区域融合。低温区域的温度足够低,以冷冻地层流体,从而形成一基本上不渗透的阻挡层。井孔间距可以从约1m至3m或更大。
井孔间距可以是一系列因数的函数,这些因数包括地层的组分和性能、地层流体和性能、可用于形成阻挡层的时间、以及低温热传递流体的温度和性能。通常,低温热传递流体的非常冷的温度允许较大的间距和/或阻挡层较快的形成。非常冷的温度可以为-20℃或更低。
确定围绕一处理区域的阻挡层何时形成可能存在问题。同样,如果在阻挡层内产生缺口,确定缺口的位置以及限制缺口对处理区域或相邻区域的影响可能是困难的。因此,希望具有用于原位过程的阻挡层系统,该系统允许确定阻挡层的形成。该阻挡层系统应该是,如果出现阻挡层系统的一部分的缺口,则对处理区域和/或相邻区域的影响最小或没有影响。
发明内容
本发明一般地涉及用于提供从各种地下地层,比如含碳氢化合物的地层,生产碳氢化合物、氢和/或其它产品用的阻挡层的方法和系统。实施例涉及围绕处理区域的至少一部分的双阻挡层的形成。
在某些实施例中,本发明提供用于地下处理区域的阻挡层系统,该系统包括:围绕地下处理区域的至少一部分形成的第一阻挡层,该第一阻挡层构造为阻止流体排出或进入地下处理区域;以及围绕第一阻挡层的至少一部分形成的第二阻挡层,其中在第一阻挡层和第二阻挡层之间存在分离空间。
本发明还提供使用所述本发明以建立围绕地下处理区域的双阻挡层的方法。
在另一些实施例中,特定的实施例的特点可以与其它实施例的特点相结合。例如,一个实施例的特点可以与任何其它实施例的特点相结合。
在另一些实施例中,地下地层的处理可以使用这里所述的任何方法或系统进行。
在另一些实施例中,附加的特点可以增加至这里所述的特定的实施例。
附图说明
本发明的优点对于本领域技术熟练人员在阅读下列详细说明并参见附图之后而变得明显,其中:
图1示出用于处理含碳氢化合物的地层的原地转换系统一部分的一个实施例的示意图;
图2示出用于一循环液体冷冻系统的冷冻井的一个实施例,其中冷冻井的剖面图表示低于地表面;
图3示出一双阻挡层保持系统的示意图;
图4示出一双阻挡层保持系统的横剖面图;
图5示出在一双阻挡层保持系统的第一阻挡层内一个缺口的示意图;
图6示出在一双阻挡层保持系统的第二阻挡层内一个缺口的示意图。
虽然本发明易于接受各种改进和代替形式,但在附图中以实例方式示出其特定实施例,并在文中详细地说明。附图可能不是按比例的。然而,应该理解,这里的附图和详细说明不是有意地限制本发明为公开的特定的形式,相反,本发明覆盖如所附权利要求书限定的本发明的精神和范围内的全部改进、等同物和替代方案。
具体实施方式
下列的说明一般地涉及用于处理地层内的碳氢化合物的系统和方法。这种地层可以被处理以产生碳氢化合物产品、氢和其它产品。
“碳氢化合物”一般地定义为主要由碳和氢原子形成的分子。碳氢化合物可以还包括其它元素,比如,但不局限于卤族元素、金属元素、氮、氧和/或硫。碳氢化合物可以是,但不局限于油母质、沥青、焦沥青、油类、天然矿物蜡和地沥青。碳氢化合物可以位于或邻近地球内的矿物母岩(mineral matrices)。矿物母岩可包括,但不局限于沉积岩、砂子、硅化岩、碳酸盐类,硅藻土和其它疏松介质。“碳氢化合物流体”是包含碳氢化合物的流体。碳氢化合物流体可以包括、夹杂或被夹杂在非碳氢化合物流体中,比如氢、氮、一氧化碳、二氧化碳、硫化氢、水和氨。
“地层”包括一个或更多个含碳氢化合物的层、一个或更多个非碳氢化合物层、上覆岩层(overburden)和/或下伏岩层(underburden)。“上覆岩层”和/或“下伏岩层”包括一种或更多种不同类型的不可渗透的材料。例如,上覆岩层和/或下伏岩层可以包括岩石、页岩、泥石岩或湿/致密碳酸盐。在原地转换过程的某些实施例中,上覆岩层和/或下伏岩层可以包括一个含碳氢化合物的层或几个含碳氢化合物的层,这些层较不可渗透,以及在原地转换过程中不经受温度,该原地转换过程导致上覆岩层和/或下伏岩层的含碳氢化合物层显著的性能改变。例如,下伏岩层可能含有页岩或泥石岩,但下伏岩层不允许在原地转换过程中加热至热分解温度。在某些情况下,上覆岩层和/或下伏岩层可能稍有可渗透性。
“地层流体”是指存在于地层内的流体,以及可以包括热分解流体、合成气体、可移动的碳氢化合物和水(蒸汽)。地层流体可以包括碳氢化合物流体以及非碳氢化合物流体。术语“可移动的流体”是指在含碳氢化合物地层内作为地层热处理结果可以流动的流体。“生产的流体”是指从地层移出的地层流体。
“热源”是基本借助传导和/或辐射热传递提供热量至地层的至少一部分的任何系统。例如,热源可以包括电加热器,比如设置在一导管内的绝缘导体、细长部件和/或导体。热源还可以包括借助在地层外部或地层内燃烧燃料产生热量的系统。这种系统可以是地面燃烧器、孔下气体燃烧器、无焰分布燃烧室式燃烧器和自然分布燃烧室式燃烧器。在某些实施例中,提供至一个或更多个热源或在其中产生的热量可以由其它能源供给。其它能源可以直接加热地层或将能量施加至传递介质,该传递介质直接地或间接地加热地层。应该理解,施加热量至地层的一个或更多个热源可以使用不同的能源。因此,例如,对于一个给定的地层,某些热源可以由电阻加热器供热,某些热源可以由燃烧器供热,以及某些热源可以由一个或更多个其它能源(例如,化学反应、太阳能、风能、生物物质或其它可再生能源)供热。化学反应可以包括放热反应(例如氧化反应)。热源还可以包括提供热量至邻近区域和/或围绕加热位置,比如一个加热井的加热器。
“加热器”是用于在钻井内或邻近井孔区产生热量的任何系统或热源。加热器可以是,但不局限于电加热器、燃烧器、燃烧室式燃烧器,这些加热器可以与地层内存在或从地层产生的材料和/或这些材料的组合反应。
“原地转换过程”是指这样的过程,即,由热源加热含碳氢化合物的地层以使地层的至少一部分的温度升高超过热分解温度从而在地层中产生热分解流体。
术语“井孔”是指在地层中钻出的一个孔,或在地层内插入一根导管形成的孔。井孔可以具有基本上圆横截面或其它的横截面形状。在这里使用的术语“钻井”和“开口”当指地层内的开口时可以与术语“井孔”互换地使用。
“热分解”是由于施加热量而使化学键破坏。例如,热分解可以包括单独依靠热量使一种化合物转换成一种或多种其它物质。热量可以传递至地层的一段,以引起热分解。在某些地层内,地层的各部分和/或在地层内的其它材料可以通过催化剂活性促进热分解。
“热分解流体”或“热分解产品”是指基本上在碳氢化合物热分解时产生的流体。借助热分解反应产生的流体可能与地层内的其它流体混合。这种混合物被认为是热分解流体或热分解产品。在此处使用的“热分解区域”是指地层的某一体积(例如,较可渗透的地层,比如,焦油砂地层)该地层可以反应以形成热分解流体。
“热传导性”是材料的一种性能,它描述在静态下在材料的两个表面之间对于两表面之间一给定的温差下热量流动的速率。
在地层内的碳氢化合物和其它希望的产品可以使用各种原地过程产生。能够用于产生碳氢化合物或希望的产品的某些原地过程是原地转换过程、蒸气驱(flooding)、火焰驱、蒸气辅助重力排泄以及溶液开采。在某些原地转换过程中,阻挡层可能是需要或要求的。阻挡层可以阻止流体,比如地层水进入处理区域。阻挡层还可以阻止流体从处理区域不被希望的排出。阻止流体从处理区域不被希望的排出可以减少或消除原地过程对处理区域的邻近区域的影响。
图1示出用于处理含碳氢化合物的地层的原地转换系统100的一部分的一个实施例的示意图。原地转换系统100可以包括阻挡层钻井102。阻挡层钻井102用于形成围绕处理区域的阻挡层。阻挡层阻止流体流入和/或流出处理区域。阻挡层钻井包括,但不局限于脱水钻井、真空钻井、捕获钻井、注射钻井、灌浆钻井、冷冻井或它们的组合。在图1所示的实施例中,阻挡层钻井102被示出为仅沿着热源104一侧延伸,但是阻挡层钻井典型地环绕已使用的或待使用的用于加热地层的处理区域的全部热源104。
热源104放置在地层的至少一部分内。热源104可以包括加热器,比如绝缘导体、导管内导体加热器、地面燃烧器、无火焰分布燃烧室式燃烧器和/或天然分布燃烧室式燃烧器。热源104还可以包括其它类型的加热器。热源104提供热量至地层的至少一部分,以加热地层内的碳氢化合物。能量可以通过供给管路106供给至热源104。供给管路106根据用于加热地层的热源的类型而在结构上是不同的。用于热源的供给管路106可以传送用于电加热器的电能,可以传送用于燃烧器的燃料,或可以传送在地层内循环的热交换流体。
生产钻井108使用于从地层移出地层流体。在某些实施例中,生产钻井108可包括一个或更多个热源。在生产钻井内的热源可以加热在生产钻井处或接近生产钻井的地层的一个或更多个部分。在生产钻井内的热源可以阻止从地层移出的地层流体的冷凝和回流。
从生产钻井108生产的地层流体可以通过收集管路110运输至处理设备112。地层流体还可以从热源104产生。例如,流体可以从热源104产生以控制邻近热源的地层内的压力。从热源104产生的流体可以通过管道或管路运输至收集管路110或产生的流体可以通过管道或管路直接运输至处理设备112。处理设备112可以包括分离单元、反应单元、提质(upgrading)单元、燃料电池、涡轮、储存罐和/或用于加工生产的地层流体的其它系统和装置。处理设备可以由从地层生产的碳氢化合物的至少一部分形成运输燃料。
在地层内形成的某些井孔可以用于方便形成围绕处理区域的周边阻挡层。周边阻挡层可以是,但不局限于:由形成在地层内的冷冻井、脱水钻井、灌浆钻井形成的低温或冷冻阻挡层,硫化水泥阻挡层;由在地层中产生的凝胶形成的阻挡层;由地层内盐分的沉积形成的阻挡层;由地层内热分解反应形成的阻挡层;和/或插入地层的钢板。热源、生产钻井、注射钻井、脱水钻井和/或监测钻井可以在设置阻挡层之前、同时或之后设置在由阻挡层限定的处理区域内。
围绕处理区域的至少一部分的低温区域可以由冷冻井形成。在一个实施例中,致冷剂通过冷冻井循环,以形成围绕每个冷冻井的低温区域。各冷冻井设置在地层内,从而使低温区域重叠并形成围绕处理区域的低温区域。借助冷冻井建立的低温区域保持在低于地层内水流体的冰点。进入低温区域的水流体冻结和形成冷冻阻挡层。在其它实施例中,冷冻阻挡层是借助成批工作的冷冻井形成的。一种冷流体,比如液氮,被引入冷冻井,以形成围绕冷冻井的低温区域。该流体按照需要补充。
在某些实施例中,两排或更多排冷冻井位于处理区域周边的全部或一部分周围,以形成厚的互相连接的低温区域。厚的低温区域可以形成在地层内水流体流动速率高的地层内的区域附近,厚的阻挡层可以保证由冷冻井建立的冷冻阻挡层不会被穿透。
竖直定位的冷冻井和/或水平定位的冷冻井可以定位成围绕处理区域的各侧。如果地层的上层(上覆岩层)或下层(下伏岩层)有可能允许流体流入或流出处理区域,则水平定位的冷冻井可以用于形成用于处理区域的上和/或下阻挡层。在某些实施例中,如果上层和/或下层是至少基本上不可渗透的,则上阻挡层和/或下阻挡层可能是不需要的。如果上冷冻阻挡层形成,则穿过由冷冻井产生的低温区域形成上冷冻阻挡层钻井的热源、生产钻井、注射钻井和/或脱水钻井的各部分可以被隔离和/或热跟踪,从而使低温区域不会不利地影响穿过低温区域的热源、生产钻井、注射钻井和/或脱水钻井的功能。
相邻的冷冻井之间的间距是一系列不同因数的函数。这些因数可以包括,但不局限于地层材料的物理性能、冷冻系统的类型、致冷剂的冷度和热性能、流入和流出处理区域的材料的流动速率、用于形成低温区域的时间以及经济性的考虑。固结的或部分固结的地层材料可以允许冷冻井之间大的分离距离。在固结的或部分固结的地层材料内的冷冻井之间的分离距离为从约3m至约20m,从约4m至约15m或从约5m至约10m。在一个实施例中,相邻的冷冻井之间的间距为约5m。在非固结的或基本上非固结的地层材料内,比如在焦油砂内,冷冻井之间的间距可能需要小于在固结的地层材料内的间距。在非固结的地层材料内冷冻井之间的分离距离可以为从约1m至约5m。
冷冻井可以设置在地层内,从而使一个冷冻井相对于一相邻的冷冻井的取向偏移最小。过大的偏移可能导致相邻的冷冻井之间大的分离距离,这样的分离距离可能不允许在相邻的冷冻井之间形成互相连接的低温区域。影响冷冻井插入地层的方式的因素包括,但不局限于冷冻井的插入时间、冷冻井的插入深度、地层性能、希望的钻井取向以及经济性。
用于冷冻井的较低深度井孔,可以采用冲击和/或振动方式插入某些地层。在某些类型的地层内,用于冷冻井的井孔可以采用冲击和/或振动方式插入地层的深度从约1m至约100m,冷冻井相对于相邻的冷冻井没有过大的取向偏移。
用于设置在地层深处的冷冻井的井孔或用于设置在带有难以用冲击或振动方式钻穿钻井的岩层的地层内的冷冻井的井孔可以借助定向钻进和/或地质导向(geosteering)设置在地层内。在第一井孔内产生的声频信号、电信号、磁信号和/或其它信号可以用于引导相邻井孔的钻进,从而能够保持相邻的钻井之间希望的间距。严格控制用于冷冻井的井孔之间的间距是减少阻挡地层构造完成时间的一个重要因素。
在用于冷冻井的井孔形成之后,井孔可以使用邻近准备降低温度以形成冷冻阻挡层一部分的地层部分的水反冲洗(backflush)。该水可以排出保留在井孔内的钻进流体。该水可以排出在邻近地层的空穴内的固有的气体。在某些实施例中,井孔用来自上通至上覆岩层水平的管路的水充填。在某些实施例中,井孔分段用水反冲洗。井孔可以按长度为约6m、10m、14m、17m或更大的分段进行处理。在井孔内的水的压力保持低于地层的断裂压力。在某些实施例中,水或部分水从井孔移出,并在地层内设置冷冻井。
图2示出冷冻井114的一个实施例。冷冻井114可以包括筒罐116、入口管路118、隔片120和钻井帽122。隔片120可以将入口管路118定位在筒罐116内,从而在筒罐和管路之间形成一个环形空隙。隔片120可以促进在入口管路118和筒罐116之间的环形空隙内致冷剂的紊流,但该隔片也会引起流体压力的显著降低。紊流流体在环形空间内的流动可以借助下列措施增强:将筒罐116的内表面粗糙化,将入口管路118的外表面粗糙化和/或将环形空间的横截面缩小,从而允许在环形空间内高的致冷剂流速。在某些实施例中,不使用隔片。
地层致冷剂可以通过冷侧面管路124从一致冷单元流至冷冻井114的入口管路118。地层致冷剂可以通过入口管路118和筒罐116之间的环形空间流动至暖侧面管路126。热量可以从地层传送至筒罐116,并从筒罐传送至环形空间内的地层致冷剂。入口管路118可以是隔热的,以阻止在地层致冷剂移动进入冷冻井114时热量传递至地层致冷剂。在一个实施例中,入口管道118是高密度聚乙烯管。在冷温度下,某些聚合物可以显示出大量热收缩。例如,一条260m初始长度的聚乙烯管路经受约-25℃的温度,收缩可能达6m或更大。如果使用高密度聚乙烯管路或其它聚合物管路,在确定冷冻井的最终深度时,材料的大的热收缩必须考虑在内。例如,冷冻井可能钻得比需要的深,以及管路可能允许在使用时缩回。在某些实施例中,入口管路118是隔热的金属管。在某些实施例中,隔热层可以是聚合物涂层,比如,但不局限于聚氯乙烯、高密度聚乙烯和/或聚苯乙烯。
冷冻井114可以使用螺旋管钻具引导进入地层。在一个实施例中,筒罐116和入口管路118缠绕在一个单独卷轴上。螺旋管钻具引导筒罐和入口管路118进入地层。在一个实施例中,筒罐116缠绕在第一卷轴上,并且入口管路118缠绕在第二轴上。螺旋管钻具引导筒罐116进入地层。随后,螺旋管钻具用于引导入口管路118进入筒罐。在其它实施例中,冷冻井在井孔位置分段组装,并被引导进入地层。
冷冻井114的隔离段可以放置成邻接上覆岩层128。冷冻井114的非隔离段可以放置成邻接将形成低温区域的一个或更多个层130。在某些实施例中,冷冻井的非隔离段可以定位成仅邻近允许流体流入或流出处理区域的地层的含水层或其它可渗透部分。准备放置冷冻井的非隔离段的地层部分可以使用钻芯分析和/或测井技术确定。
各种类型的致冷系统可以用于形成低温区域。合适的致冷系统的确定可以根据许多因素,包括,但不局限于:冷冻井类型;相邻的冷冻井之间的距离;致冷剂;形成低温区域的时限;低温区域的深度;致冷剂将经受的温差;致冷剂的化学和物理性能;有关潜在的致冷剂释放、泄漏或溢出的环境考虑;经济性;在地层内地层水的流动;地层水的成分和性能,包括地层水的盐浓度;以及地层的各种性能,比如,热传导性、热扩散性和热容。
循环流体致冷系统可以使用通过冷冻井循环的液体致冷剂(地层致冷剂)。对于地层致冷剂的某些希望的性能是:低的工作温度、处在和接近工作温度时的低粘度、高密度、高比热容、高热传导性,低成本、低腐蚀性和低毒性。地层致冷剂的低工作温度允许围绕冷冻井建立大的低温区域。地层致冷剂的低工作温度应为约-20℃或更低。具有至少为-60℃的低工作温度的地层致冷剂可以包括:氨水、甲酸钾溶液,比如,DynaleneHC-50(Dynalene热传递流体公司(美国宾夕法尼亚州的怀特霍尔镇))或FREEZIUM(Kemira化学品公司(芬兰的赫尔辛基));硅酮热传递流体,比如,Syltherm XLT(Dow Corning公司(美国密歇根州的米德兰市));碳氢化合物致冷剂,比如,丙烯;以及氯氟化烃,比如R-22。氨水是氨和水的溶液,氨的重量百分比在约20%和约40%之间。氨水具有一些性能和特点,使得氨水可作为希望的地层致冷剂使用,这些性能和特点包括,但不局限于极低的冰点、低粘度、易获取性和低成本。
能够急冷至水地层流体的冰点以下温度的地层致冷剂可以用于形成围绕处理区域的低温区域。下列公式(Sanger公式)可以为用于形成围绕具有表面温度Ts的冷冻井半径为R的冷冻阻挡层所需时间t1建模:
(1)
式中:
在这些公式中,kf是冷冻材料的热导率;cvf和cvu分别是冷冻的和未冷冻的材料的体积热容;ro是冷冻井的半径;vs是冷冻井表面温度Ts和水的冰点To之间的温差;vo是周围地层温度Tg和水的冰点To之间的温差;L是地层冷冻的体积潜热;R是冷冻-未冷冻界面处的半径;以及RA是没有受到致冷管的影响的半径。Sanger公式可提供形成半径为R的冷冻阻挡层所需时间的保守估计,因为该公式没有考虑来自其它冷冻井的冷却的重叠。地层致冷剂的温度是一个可调节的变量,它可以显著地影响冷冻井之间的间距。
公式1意味着可以使用具有非常低的初始温度的致冷剂形成大的低温区域。使用初始冷温度为约-30℃或更低的地层致冷剂是希望的。初始温度暖于约-30℃的地层致冷剂也可以使用,但这种地层致冷剂对于借助单独的冷冻井连接产生的低温区域需要较长的时间。此外,这种地层致冷剂可能需要使用更近的冷冻井间距和/或更多的冷冻井。
用于建造冷冻井的材料的物理性能可以是确定用于形成围绕处理区域的低温区域的地层致冷剂的最冷温度的一个因素。碳钢可以用作冷冻井的结构材料。ASTM A333,6级钢合金和ASTM A333,3级钢合金可以用于低温用途。ASTM A333,6级钢合金典型地含有少量或不含镍,并具有约-50℃的低工作温度极限。ASTM A333,3级钢合金典型地含有镍和具有冷得多的低工作温度极限。ASTM A333,3级合金增加在冷温度时的延展性,但也显著地提高金属的成本。在某些实施例中,致冷剂的最冷温度为从约-35℃至约-55℃,从约-38℃至约-47℃,或从约-40℃至约-45℃,以允许使用ASTM A333,6级钢合金以建造用于冷冻井的筒罐。不锈钢,比如304不锈钢,可以用于形成冷冻井,但不锈钢的成本典型地大大高于ASTM A333,6级钢合金。
在某些实施例中,用于形成冷冻井的筒罐的金属可以作为管子提供。在某些实施例中,用于形成冷冻井的筒罐的金属可以作为板材形式提供。金属板可以被纵向地焊接,以形成管子和/或螺旋管。使用板材金属成形筒罐通过允许螺旋管绝热和减少使用管子形成和安装筒罐所需的设备和人力而改进系统的经济性。
一种致冷单元可用于降低地层致冷剂的温度至低工作温度。在某些实施例中,致冷单元使用氨蒸发循环。致冷单元可以从下列公司买到:Cool Man公司(美国威斯康星州密尔沃基市),GartnerRefrigeration & Manufacturing公司(美国明尼苏达州明尼阿波利斯市),以及其它供应商。在某些实施例中,可以使用级联的致冷系统,其第一级为氨以及第二级为二氧化碳。通过冷冻井的循环致冷剂可以是在水中30%重量的氨(氨水)。或者,也使用单级二氧化碳致冷系统。
在某些实施例中,使用双阻挡层系统以隔离处理区域。双阻挡层系统可以由第一阻挡层和第二阻挡层组成。第一阻挡层可以围绕处理区域的至少一部分形成,以阻止流体流入或排出处理区域。第二阻挡层可以围绕第一阻挡层的至少一部分形成,以隔离在第一阻挡层和第二阻挡层之间的阻挡层间区域。双阻挡层系统可以允许比单阻挡层系统大的设计深度。使用双阻挡层系统可以实现较大深度是因为跨过第一阻挡层和第二阻挡层的阶梯压差小于跨过一个单独阻挡层的压差。对于双阻挡层系统,跨过第一阻挡层和第二阻挡层较小的压差使得双阻挡层系统的缺口比单阻挡层系统在此深度处发生的可能性小。
双阻挡层系统减少阻挡层缺口影响处理区域或缺口形成在双阻挡层外侧的可能性。这就是说,在第一阻挡层内缺口发生的位置和/或时间与在第二阻挡层内缺口发生的位置和/或时间重合的可能性低,尤其是,如果在第一阻挡层和第二阻挡层之间的距离较大时(例如,大于约15m)。具有双阻挡层可以减少或消除流体跟随第一或第二阻挡层的缺口流入处理区域。如果第二阻挡层出现缺口,处理区域不会受影响。如果第一阻挡层出现缺口,仅有阻挡层间区域中的一部分流体能够进入保持区域。而且,来自保持区域的流体将不会通过第二阻挡层。修复双阻挡层系统的一个阻挡层的一个缺口比修复一个单独阻挡层系统的一个缺口需要更少时间和资源。例如,跟随一个双阻挡层系统的一个缺口的处理区域的再加热比跟随一个单独阻挡层的一个缺口的同样尺寸处理区域的再加热需要更少的能量。
第一阻挡层和第二阻挡层可以是相同类型的阻挡层或不同类型的阻挡层。在某些实施例中,第一阻挡层和第二阻挡层是通过冷冻井形成的。在某些实施例中,第一阻挡层是通过冷冻井形成的,以及第二阻挡层是灌浆墙。灌浆墙可以由水泥、硫胶浆(sulfur)、硫水泥或它们的组合形成。在某些实施例中,第一阻挡层的一部分和/或第二阻挡层的一部分是一个天然阻挡层,比如,不可渗透的岩石地层。
图3示出双阻挡层系统132的一个实施例。处理区域134的周边可以被第一阻挡层136围绕。第一阻挡层136可以被第二阻挡层138围绕。阻挡层间区域140可以隔离在第一阻挡层136、第二阻挡层138以及分隔部142之间。用分隔部142在第一阻挡层136和第二阻挡层138之间产生的分段限制保持在单独的阻挡层间区域140内的流体的量。分隔部142可以增强双阻挡层系统132。在某些实施例中,双阻挡层系统可以不包括分隔部。
阻挡层间区域可以具有从约1m至约300m的厚度。在某些实施例中,阻挡层间区域的厚度为从10m至约100m,或从约20m至约50m。
泵送/监测钻井144可以定位在保持区域134、阻挡层间区域140和/或第二阻挡层138外侧的外部区域146内。泵送/监测钻井144允许从处理区域134、阻挡层间区域140或外部区域146移出流体。泵送/监测钻井144还允许监测在处理区域134、阻挡层间区域140和外部区域146内的流体水平。
在某些实施例中,由热源加热处理区域134的一部分。最接近第一阻挡层136的热源可以安装在离开第一阻挡层的一个希望的距离处。在某些实施例中,在最近热源和第一阻挡层136之间的希望的距离在约5m和约300m之间范围内,在约10m和约200m之间或在约15m和约50m之间范围内。例如,在最近热源和第一阻挡层136之间希望的距离可以是约40m。
图4示出使用于隔离在地层内的处理区域134的双阻挡层系统132的横剖面图。地层可以包括一个或更多个流体承载区域148以及一个或更多个不可渗透的区域150。第一阻挡层136可以至少部分地围绕处理区域134。第二阻挡层138可以至少部分地围绕第一阻挡层136。在某些实施例中,不可渗透的区域150位于处理区域134的上面和/或下面。因此,处理区域134围绕各侧面和从顶部和底部被密封。在某些实施例中,形成一条或多条路径152以允许在处理区域134内的两个或更多个流体承载区域148之间的连通。在处理区域134内的流体可以从此区域被泵送。在阻挡层间区域140和外部区域146内的流体被阻止到达处理区域。在处理区域134内碳氢化合物的原地转换期间,在处理区域内产生的地层流体被阻止移动进入阻挡层间区域140和外部区域146。
在密封处理区域134之后,在一个给定的流体承载区域148内的流体水平可以改变,从而使在阻挡层间区域140内的流体高差和在外部区域146内的流体高差是不同的。在第一阻挡层136和第二阻挡层138形成之后,各个流体承载区域148内的流体压力和/或流体的量可以被调节。在各流体承载区域148内保持流体不同的量和/或压力的能力可以指示第一阻挡层136和第二阻挡层138的形成和完整性。具有在处理区域134、流体承载区域148、阻挡层间区域140以及在外部区域146的流体承载区域内不同的流体高差水平允许确定在第一阻挡层136和/或第二阻挡层138内的缺口的发生。在某些实施例中,跨过第一阻挡层136和第二阻挡层138的不同压差可以被调节以减少施加至第一阻挡层136和/或第二阻挡层138的应力,以及地层的某一岩层上的应力。
某些流体承载区域148可能含有天然流体,这些流体由于高的盐含量或化合物而使得流体的冰点降低,因而是难以冷冻的。如果第一阻挡层136和/或第二阻挡层138是通过冷冻井建立的低温区域,则难以冷冻的天然流体可以通过泵送/监测钻井144从阻挡层间区域140内的流体承载区域148移出。天然流体被冷冻井更容易冷冻的流体代替。
在某些实施例中,泵送/监测钻井144可以定位在处理区域134、阻挡层间区域140和/或外部区域146内。泵送/监测钻井144可用于测试冷冻的阻挡层的冷冻完成和/或压力测试冷冻的阻挡层和/或岩层。泵送/监测钻井144可用于移出流体和/或监测在处理区域134、阻挡层间区域140和/或外部区域146内的流体水平。使用泵送/监测钻井144监测在保持区域134、阻挡层间区域140和/或外部区域146内的流体水平可允许探测在第一阻挡层136和/或第二阻挡层138内的缺口。泵送/监测钻井144允许在处理区域134、阻挡层间区域140内每个流体承载区域148和外部区域146内每个流体承载区域内的压力被独立地监测,从而使在第一阻挡层136和/或第二阻挡层138内的缺口的发生和/或位置能够被确定。
在某些实施例中,在阻挡层间区域140内的流体压力保持大于在处理区域134内的流体压力,并小于在外部区域146内的流体压力。如果出现第一阻挡层136的缺口,则流体从阻挡层间区域140流动进入处理区域134,结果在阻挡层间区域内可探测的流体水平下降。如果出现第二阻挡层138的缺口,则流体从外部区域流动进入阻挡层间区域140,结果在阻挡层间区域内可探测的流体水平升高。
第一阻挡层136的缺口可以允许流体从阻挡层间区域140进入处理区域134。
图5示出双阻挡层保持系统132的第一阻挡层136中的缺口154。箭头156指示从阻挡层间区域140通过缺口154至处理区域134的流体158的流动方向。在流体承载区域148内,阻挡层间区域140的缺口154附近的流体水平下降至缺口的高度。
路径152允许流体158从缺口154流至处理区域134的底部,增加在保持区域的底部内的流体水平。从阻挡层间区域140流动进入处理区域134的流体体积典型地比处理区域的体积小。能够从阻挡层间区域140流动进入处理区域134的流体体积是受限制的,因为第二阻挡层138阻止流体158再充入受影响的流体承载区域。在某些实施例中,进入处理区域134的流体可以用在处理区域内的泵送/监测钻井144从处理区域泵送。在某些实施例中,进入处理区域134的流体可以使用处理区域中的组成原地转换过程系统一部分的加热器蒸发。从阻挡层间区域140吸入流体引起的冷却用于处理区域134的加热部分的恢复时间是短暂的。恢复时间可以是小于一个月、小于一星期或小于一天。
在阻挡层间区域140内的泵送/监测钻井144可以允许估计缺口154的位置。当缺口154开始形成时,从缺口附近的流体承载区域148流动进入处理区域134的流体在阻挡层间区域140内产生受影响的流体承载区域的流体水平降低的锥形。来自与缺口154相同的流体承载区域的泵送/监测钻井144的流体水平数据的时间分析可用于确定缺口的大致位置。
当第一阻挡层136的缺口154被探测到时,位于允许流体流动进入处理区域134流体承载区域内的泵送/监测钻井144可以被激励,以泵出阻挡层间区域的流体。泵出阻挡层间区域的流体减少了能够移动通过缺口154进入处理区域134的流体158的量。
缺口154可以是由于大地移动引起的。如果第一阻挡层136是由冷冻井形成的低温区域,则在第一阻挡层内缺口154处的地层温度低于阻挡层间区域140内流体158的冰点。流体158从阻挡层间区域140通过缺口154的移动可以导致缺口内的流体冻结和第一阻挡层136的自修复。
第二阻挡层的缺口可允许外部区域内的流体进入阻挡层间区域。第一阻挡层可以阻止进入阻挡层间区域的流体到达处理区域。
图6示出在双阻挡层系统132的第二阻挡层138内的缺口154。箭头156指示从第二阻挡层138的外侧通过缺口154至阻挡层间区域140的流体158的流动方向。当流体158流动通过在第二阻挡层138内的缺口154时,在缺口附近的阻挡层间区域140部分内的流体水平从开始水平160升高至等于外部区域146内相同的流体承载区域内的流体水平162之水平。在流体承载区域146内流体158的增加可以通过位于缺口154附近流体承载区域内的泵送/监测钻井144探测。
缺口154可以是由大地移动引起的。如果第二阻挡层138是通过冷冻井形成的低温区域,则在第二阻挡层内缺口154处的地层温度低于从外部区域146进入的流体的冰点。来自外部区域146的流体在缺口154内可以冻结和自修复第二阻挡层138。
双阻挡层保持系统的第一阻挡层和第二阻挡层可以通过冷冻井形成。在一个实施例中,首先形成第一阻挡层。保持第一阻挡层所需要的冷却负荷显著地小于形成第一阻挡层需要的冷却负荷。在第一阻挡层形成之后,致冷系统用于形成第一阻挡层的多余的冷却能力可用于形成第二阻挡层的一部分。在某些实施例中,首先形成第二阻挡层,以及致冷系统用于形成第二阻挡层的多余的冷却能力可用于形成第一阻挡层的一部分。在第一和第二阻挡层形成之后,通过用于形成第一阻挡层和第二阻挡层的一个或更多个致冷系统提供的多余的冷却能力可用于形成围绕待通过原地转换过程处理的下一个保持区域的一个或更多个阻挡层。
灌浆可以与冷冻井组合使用以提供用于原地转换过程的阻挡层。灌浆填充入地层内的空穴(岩孔)并减小地层的可渗透性。灌浆可以具有比填入地层空穴内的气体和/或地层流体更好的热传导性。将灌浆放置入空穴内允许较快地形成低温区域。灌浆形成在地层内的永久的阻挡层,该阻挡层可以增强地层。在非固结的或基本上非固结的地层材料内使用灌浆可以允许比不使用灌浆可能实现的更大的钻井间距。灌浆与通过冷冻井形成的低温区域的组合可以组成用于环境管理目的的双阻挡层。
灌浆可以通过冷冻井井孔引入地层。灌浆可以允许被设置。灌浆墙的整体性可以被检查。灌浆墙的整体性可以借助测井技术和/或液压静力测试检查。如果一个灌浆段的可渗透性过高,则额外的灌浆可以通过冷冻井井孔引入到地层中。在灌浆段的可渗透性充分地降低后,冷冻井可以安装到冷冻井井孔内。
灌浆在一高压,但低于地层的破坏压力下注射进入地层。在某些实施例中,灌浆在冷冻井井孔内以16m增量进行。如果希望,可以使用较大或较小的增量。在某些实施例中,灌浆仅施加至地层的某一些部分。例如,灌浆可以通过仅邻近蓄水区域和/或较高可渗透性区域(例如,具有可渗透性大于约0.1达西的区域)的冷冻井井孔施加至地层。施加灌浆至蓄水层可以防止当一个建立好的低温区域解冻时,水从一个蓄水层迁移至不同的蓄水层。
在地层内使用的灌浆可以是包括但不局限于细水泥、微细水泥、硫胶浆、硫水泥、粘性热塑性塑料或它们的组合中的任何类型的灌浆。细水泥可以是ASTM 3型波特兰水泥。细水泥比微细水泥价廉。在一个实施例中,一个冷冻井井孔成形在地层内。冷冻井井孔的选择部分使用细水泥灌浆。随后微细水泥通过冷冻井井孔注射入地层。细水泥可以将可渗透性降低至约10毫达西。微细水泥可以将可渗透性进一步降低至约0.1毫达西。在灌浆引入地层之后,冷冻井井孔的筒罐可以被插入地层。此过程可以对于将用于形成阻挡层的每个冷冻井重复进行。
在某些实施例中,细水泥被每隔一个地引导进入冷冻井井孔内。微细水泥被引导进入剩余的井孔内。例如,灌浆可用于带有设置为约5m间距的冷冻井井孔的地层内。第一井孔被钻出,并且细水泥通过该井孔引导进入地层。在第一井孔内定位有冷冻井筒罐。第二井孔在距第一井孔10m处钻出。细水泥通过第二井孔引导进入地层。在第二井孔内定位有冷冻井筒罐。第三井孔在第一井孔和第二井孔之间钻出。在某些实施例中,来自第一和/或第二井孔的灌浆可以在第三井孔的切缝内被探测到。微细水泥通过第三井孔引导进入地层。在第三井孔内定位有冷冻井筒罐。相同的程序用于形成其余的冷冻井,这些冷冻井将形成围绕处理区域的阻挡层。
本发明的各个方面的其它变型和替代实施例在技术熟练人员了解本说明后显而易见。因此,本说明应考虑仅作为示范性的,并仅用于本领域技术熟练人员以一般的方式实现本发明时的教导目的。应该理解,在文中所示和说明的本发明的形式被认为是现在优选的实施例。对于在文中所示和说明的元件和材料可以被代替,部件和过程可以修改,以及本发明的一定的特征可以单独地使用,在本领域技术熟练人员了解本发明的说明的利益之后全部将变得明显。在不脱离本发明所附权利要求书中所述本发明的精神和范围条件下,文中所述的部件可以改变。此外,应该理解,在文中独立描述的特征,在某些实施例中可以组合。
Claims (19)
1.一种用于地下处理区域的双阻挡层系统,所述双阻挡层系统包括:
围绕地下处理区域的至少一部分形成的第一阻挡层,所述第一阻挡层构造为阻止流体排出或进入地下处理层;以及
围绕第一阻挡层的至少一部分形成的第二阻挡层,其中第一阻挡层和第二阻挡层之间存在分离空间。
2.按照权利要求1的阻挡层系统,其特征在于,第一阻挡层是通过若干冷冻井建立的冷冻阻挡层。
3.按照权利要求2的阻挡层系统,还包括通过用于形成第一阻挡层的冷冻井的至少一个冷冻井井孔引导入地层中的灌浆。
4.按照权利要求1-3中的任何一项的阻挡层系统,其特征在于,第二阻挡层是通过若干冷冻井建立的冷冻阻挡层。
5.按照权利要求4的阻挡层系统,还包括通过用于形成第二阻挡层的冷冻井的至少一个冷冻井井孔引导入地层中的灌浆。
6.按照权利要求1-5中的任何一项的阻挡层系统,其特征在于,处理区域包括含碳氢化合物的地层,并且该阻挡层系统还包括在处理区域内的多个加热器,加热器构造为加热含碳氢化合物的地层的碳氢化合物层。
7.按照权利要求1-6中的任何一项的阻挡层系统,还包括在第一阻挡层和第二阻挡层之间形成的阻挡层分段,其中,阻挡层分段构造为分隔在第一阻挡层和第二阻挡层之间的空间。
8.按照权利要求1-7中的任何一项的阻挡层系统,还包括在第一阻挡层和第二阻挡层之间的空间内的至少一个监测钻井,其中,至少一个监测钻井构造为监测第一阻挡层和/或第二阻挡层的完整性。
9.按照权利要求1-7中的任何一项的阻挡层系统,还包括在第一阻挡层和第二阻挡层之间的空间内的第一监测钻井,以及位于第一阻挡层对面的第二监测钻井,其中,第一监测钻井和第二监测钻井构造为监测第一阻挡层的整体性。
10.按照权利要求1-7中的任何一项的阻挡层系统,还包括在第一阻挡层和第二阻挡层之间的空间内的第一监测钻井,以及位于第二阻挡层外侧的第二监测钻井,其中,第一监测钻井和第二监测钻井构造为监测第二阻挡层的整体性。
11.建立按照权利要求1-8中的任何一项的双阻挡层的方法,所述方法包括:
围绕地下处理区域的至少一部分形成第一阻挡层;以及
围绕第一阻挡层形成第二阻挡层,其中,一个空间存在于第一阻挡层和第二阻挡层之间。
12.按照权利要求11的方法,还包括在第一阻挡层和第二阻挡层之间形成一个或更多个阻挡层分段,以将在第一阻挡层和第二阻挡层之间的空间分隔成为不同的部分。
13.按照权利要求12的方法,还包括监测所述部分中的一个或更多个,以监测第一阻挡层和/或第二阻挡层的整体性。
14.按照权利要求11-13中的任何一项的方法,还包括加热地下处理区域内的碳氢化合物。
15.按照权利要求11-14中的任何一项的方法,还包括降低在第一阻挡层和第二阻挡层之间的空间内水的盐度。
16.按照权利要求11-15中的任何一项的方法,还包括监测该空间以监测第一阻挡层和/或第二阻挡层的整体性。
17.按照权利要求11-16中的任何一项的方法,还包括将灌浆引导入地层中。
18.包括从地下地层产生的碳氢化合物的合成物,所述地下地层包括按照权利要求1-10中的任何一项的双阻挡层系统,或包括使用按照权利要求11-17中的任何一项的方法形成的双阻挡层。
19.一种由按照权利要求18的合成物制成的包括碳氢化合物的运输燃料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67408105P | 2005-04-22 | 2005-04-22 | |
US60/674,081 | 2005-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101163851A true CN101163851A (zh) | 2008-04-16 |
Family
ID=36655240
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013121.3A Expired - Fee Related CN101163858B (zh) | 2005-04-22 | 2006-04-21 | 从地下地层生产碳氢化合物的现场转换系统及相关方法 |
CN200680013090.1A Expired - Fee Related CN101163854B (zh) | 2005-04-22 | 2006-04-21 | 利用非铁磁导体的温度限制加热器 |
CN200680013101.6A Expired - Fee Related CN101163855B (zh) | 2005-04-22 | 2006-04-21 | 用于加热地表下地层的系统及耦联该系统中加热器的方法 |
CN200680013103.5A Expired - Fee Related CN101163857B (zh) | 2005-04-22 | 2006-04-21 | 用于对地下岩层进行加热的系统和方法 |
CN200680013092.0A Pending CN101163851A (zh) | 2005-04-22 | 2006-04-21 | 用于原地转换过程的双阻挡层系统 |
CN200680013122.8A Expired - Fee Related CN101163852B (zh) | 2005-04-22 | 2006-04-21 | 用于现场方法的低温屏障 |
CN200680013320.4A Expired - Fee Related CN101163856B (zh) | 2005-04-22 | 2006-04-21 | 成组的暴露金属加热器 |
CN200680013322.3A Expired - Fee Related CN101163853B (zh) | 2005-04-22 | 2006-04-21 | 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器 |
CN200680013093.5A Expired - Fee Related CN101300401B (zh) | 2005-04-22 | 2006-04-21 | 用于通过现场转化工艺生产流体的方法及系统 |
CN200680013312.XA Expired - Fee Related CN101163859B (zh) | 2005-04-22 | 2006-04-21 | 利用井眼在地层的至少两个区域中的现场转化处理系统 |
CN200680013123.2A Expired - Fee Related CN101163860B (zh) | 2005-04-22 | 2006-04-21 | 用于地下屏障的低温监视系统 |
CN200680013130.2A Expired - Fee Related CN101163780B (zh) | 2005-04-22 | 2006-04-24 | 来自原位转化工艺的气体的处理 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013121.3A Expired - Fee Related CN101163858B (zh) | 2005-04-22 | 2006-04-21 | 从地下地层生产碳氢化合物的现场转换系统及相关方法 |
CN200680013090.1A Expired - Fee Related CN101163854B (zh) | 2005-04-22 | 2006-04-21 | 利用非铁磁导体的温度限制加热器 |
CN200680013101.6A Expired - Fee Related CN101163855B (zh) | 2005-04-22 | 2006-04-21 | 用于加热地表下地层的系统及耦联该系统中加热器的方法 |
CN200680013103.5A Expired - Fee Related CN101163857B (zh) | 2005-04-22 | 2006-04-21 | 用于对地下岩层进行加热的系统和方法 |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013122.8A Expired - Fee Related CN101163852B (zh) | 2005-04-22 | 2006-04-21 | 用于现场方法的低温屏障 |
CN200680013320.4A Expired - Fee Related CN101163856B (zh) | 2005-04-22 | 2006-04-21 | 成组的暴露金属加热器 |
CN200680013322.3A Expired - Fee Related CN101163853B (zh) | 2005-04-22 | 2006-04-21 | 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器 |
CN200680013093.5A Expired - Fee Related CN101300401B (zh) | 2005-04-22 | 2006-04-21 | 用于通过现场转化工艺生产流体的方法及系统 |
CN200680013312.XA Expired - Fee Related CN101163859B (zh) | 2005-04-22 | 2006-04-21 | 利用井眼在地层的至少两个区域中的现场转化处理系统 |
CN200680013123.2A Expired - Fee Related CN101163860B (zh) | 2005-04-22 | 2006-04-21 | 用于地下屏障的低温监视系统 |
CN200680013130.2A Expired - Fee Related CN101163780B (zh) | 2005-04-22 | 2006-04-24 | 来自原位转化工艺的气体的处理 |
Country Status (14)
Country | Link |
---|---|
US (1) | US7831133B2 (zh) |
EP (12) | EP1871982B1 (zh) |
CN (12) | CN101163858B (zh) |
AT (5) | ATE437290T1 (zh) |
AU (13) | AU2006240173B2 (zh) |
CA (12) | CA2606210C (zh) |
DE (5) | DE602006006042D1 (zh) |
EA (12) | EA012554B1 (zh) |
IL (12) | IL186212A (zh) |
IN (1) | IN266867B (zh) |
MA (12) | MA29719B1 (zh) |
NZ (12) | NZ562240A (zh) |
WO (12) | WO2006116133A1 (zh) |
ZA (13) | ZA200708020B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834585A (zh) * | 2010-04-09 | 2012-12-19 | 国际壳牌研究有限公司 | 地下地层的低温感应加热 |
CN107558950A (zh) * | 2017-09-13 | 2018-01-09 | 吉林大学 | 用于油页岩地下原位开采区域封闭的定向堵漏方法 |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020036089A1 (en) | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
CN1671944B (zh) | 2001-10-24 | 2011-06-08 | 国际壳牌研究有限公司 | 可拆卸加热器在含烃地层内的安装与使用 |
US20040144541A1 (en) | 2002-10-24 | 2004-07-29 | Picha Mark Gregory | Forming wellbores using acoustic methods |
US7121342B2 (en) * | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
CN1946919B (zh) | 2004-04-23 | 2011-11-16 | 国际壳牌研究有限公司 | 降低油的粘度以进行从包含碳氢化合物的地层的生产 |
US7024800B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7694523B2 (en) | 2004-07-19 | 2010-04-13 | Earthrenew, Inc. | Control system for gas turbine in material treatment unit |
US7024796B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7685737B2 (en) | 2004-07-19 | 2010-03-30 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
ATE437290T1 (de) | 2005-04-22 | 2009-08-15 | Shell Oil Co | Unterirdische verbindungsverfahren für unterirdische heizvorrichtungen |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
NZ567255A (en) | 2005-10-24 | 2011-05-27 | Shell Int Research | Coupling a conduit to a conductor inside the conduit so they have opposite current flow, giving zero potential at the conduit outer surface |
US7610692B2 (en) | 2006-01-18 | 2009-11-03 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
US8381806B2 (en) | 2006-04-21 | 2013-02-26 | Shell Oil Company | Joint used for coupling long heaters |
WO2008051833A2 (en) | 2006-10-20 | 2008-05-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
DE102007040606B3 (de) | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
AU2008227164B2 (en) | 2007-03-22 | 2014-07-17 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
BRPI0810026A2 (pt) | 2007-04-20 | 2017-06-06 | Shell Int Res Maartschappij B V | sistema de aquecimento para uma formação de subsuperfície, e, método para aquecer uma formação de subsuperfície |
US7697806B2 (en) * | 2007-05-07 | 2010-04-13 | Verizon Patent And Licensing Inc. | Fiber optic cable with detectable ferromagnetic components |
WO2008153697A1 (en) | 2007-05-25 | 2008-12-18 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
GB2467655B (en) * | 2007-10-19 | 2012-05-16 | Shell Int Research | In situ oxidation of subsurface formations |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
US8297355B2 (en) * | 2008-08-22 | 2012-10-30 | Texaco Inc. | Using heat from produced fluids of oil and gas operations to produce energy |
DE102008047219A1 (de) | 2008-09-15 | 2010-03-25 | Siemens Aktiengesellschaft | Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US20100114082A1 (en) | 2008-10-06 | 2010-05-06 | Sharma Virender K | Method and Apparatus for the Ablation of Endometrial Tissue |
US9561067B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
EP2361342A1 (en) | 2008-10-13 | 2011-08-31 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100200237A1 (en) * | 2009-02-12 | 2010-08-12 | Colgate Sam O | Methods for controlling temperatures in the environments of gas and oil wells |
US20100258291A1 (en) | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
FR2947587A1 (fr) | 2009-07-03 | 2011-01-07 | Total Sa | Procede d'extraction d'hydrocarbures par chauffage electromagnetique d'une formation souterraine in situ |
CN102031961A (zh) * | 2009-09-30 | 2011-04-27 | 西安威尔罗根能源科技有限公司 | 井眼温度测量探头 |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8602103B2 (en) | 2009-11-24 | 2013-12-10 | Conocophillips Company | Generation of fluid for hydrocarbon recovery |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8485256B2 (en) | 2010-04-09 | 2013-07-16 | Shell Oil Company | Variable thickness insulated conductors |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
CA2794569A1 (en) * | 2010-04-09 | 2011-10-13 | Ronald Marshall Bass | Helical winding of insulated conductor heaters for installation |
US8464792B2 (en) * | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
US8408287B2 (en) * | 2010-06-03 | 2013-04-02 | Electro-Petroleum, Inc. | Electrical jumper for a producing oil well |
US8476562B2 (en) | 2010-06-04 | 2013-07-02 | Watlow Electric Manufacturing Company | Inductive heater humidifier |
RU2444617C1 (ru) * | 2010-08-31 | 2012-03-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти методом парогравитационного воздействия на пласт |
AT12463U1 (de) * | 2010-09-27 | 2012-05-15 | Plansee Se | Heizleiteranordnung |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US8586866B2 (en) | 2010-10-08 | 2013-11-19 | Shell Oil Company | Hydroformed splice for insulated conductors |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US20120152570A1 (en) * | 2010-12-21 | 2012-06-21 | Chevron U.S.A. Inc. | System and Method For Enhancing Oil Recovery From A Subterranean Reservoir |
RU2473779C2 (ru) * | 2011-03-21 | 2013-01-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) | Способ глушения фонтана флюида из скважины |
CA2832295C (en) | 2011-04-08 | 2019-05-21 | Shell Internationale Research Maatschappij B.V. | Systems for joining insulated conductors |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
EP2520863B1 (en) * | 2011-05-05 | 2016-11-23 | General Electric Technology GmbH | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method |
US9010428B2 (en) * | 2011-09-06 | 2015-04-21 | Baker Hughes Incorporated | Swelling acceleration using inductively heated and embedded particles in a subterranean tool |
CN103958824B (zh) | 2011-10-07 | 2016-10-26 | 国际壳牌研究有限公司 | 用于加热地下地层的循环流体系统的热膨胀调节 |
CA2850756C (en) * | 2011-10-07 | 2019-09-03 | Scott Vinh Nguyen | Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
JO3141B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | الوصلات المتكاملة للموصلات المعزولة |
JO3139B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية. |
CN102505731A (zh) * | 2011-10-24 | 2012-06-20 | 武汉大学 | 一种毛细-引射协同作用的地下水采集系统 |
WO2013066772A1 (en) | 2011-11-04 | 2013-05-10 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
CN102434144A (zh) * | 2011-11-16 | 2012-05-02 | 中国石油集团长城钻探工程有限公司 | 一种油田用“u”形井采油方法 |
US8908031B2 (en) * | 2011-11-18 | 2014-12-09 | General Electric Company | Apparatus and method for measuring moisture content in steam flow |
CA2862463A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
CA2898956A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US9488027B2 (en) | 2012-02-10 | 2016-11-08 | Baker Hughes Incorporated | Fiber reinforced polymer matrix nanocomposite downhole member |
RU2496979C1 (ru) * | 2012-05-03 | 2013-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти и/или битума методом закачки пара в пласт |
US9291041B2 (en) * | 2013-02-06 | 2016-03-22 | Orbital Atk, Inc. | Downhole injector insert apparatus |
US9403328B1 (en) * | 2013-02-08 | 2016-08-02 | The Boeing Company | Magnetic compaction blanket for composite structure curing |
US10501348B1 (en) | 2013-03-14 | 2019-12-10 | Angel Water, Inc. | Water flow triggering of chlorination treatment |
RU2527446C1 (ru) * | 2013-04-15 | 2014-08-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
US9382785B2 (en) | 2013-06-17 | 2016-07-05 | Baker Hughes Incorporated | Shaped memory devices and method for using same in wellbores |
CN103321618A (zh) * | 2013-06-28 | 2013-09-25 | 中国地质大学(北京) | 油页岩原位开采方法 |
WO2015000065A1 (en) * | 2013-07-05 | 2015-01-08 | Nexen Energy Ulc | Accelerated solvent-aided sagd start-up |
RU2531965C1 (ru) * | 2013-08-23 | 2014-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
US9512699B2 (en) | 2013-10-22 | 2016-12-06 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
SG11201601552TA (en) * | 2013-10-28 | 2016-03-30 | Halliburton Energy Services Inc | Downhole communication between wellbores utilizing swellable materials |
CN109012760B (zh) * | 2013-10-31 | 2022-01-21 | 反应堆资源有限责任公司 | 原位催化剂硫化、钝化和焦化方法及系统 |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
CN103628856A (zh) * | 2013-12-11 | 2014-03-12 | 中国地质大学(北京) | 一种高产水煤层气区块的阻水产气布井方法 |
GB2523567B (en) | 2014-02-27 | 2017-12-06 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
US10669828B2 (en) * | 2014-04-01 | 2020-06-02 | Future Energy, Llc | Thermal energy delivery and oil production arrangements and methods thereof |
GB2526123A (en) * | 2014-05-14 | 2015-11-18 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
US20150360322A1 (en) * | 2014-06-12 | 2015-12-17 | Siemens Energy, Inc. | Laser deposition of iron-based austenitic alloy with flux |
RU2569102C1 (ru) * | 2014-08-12 | 2015-11-20 | Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" | Способ ликвидации отложений и предотвращения их образования в нефтяной скважине и устройство для его реализации |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
AU2015350481A1 (en) | 2014-11-21 | 2017-05-25 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation |
WO2016085869A1 (en) * | 2014-11-25 | 2016-06-02 | Shell Oil Company | Pyrolysis to pressurise oil formations |
US20160169451A1 (en) * | 2014-12-12 | 2016-06-16 | Fccl Partnership | Process and system for delivering steam |
CN105043449B (zh) * | 2015-08-10 | 2017-12-01 | 安徽理工大学 | 监测冻结壁温度、应力及变形的分布式光纤及其埋设方法 |
CA2991700C (en) * | 2015-08-31 | 2020-10-27 | Halliburton Energy Services, Inc. | Monitoring system for cold climate |
CN105257269B (zh) * | 2015-10-26 | 2017-10-17 | 中国石油天然气股份有限公司 | 一种蒸汽驱与火驱的联合采油方法 |
US10125604B2 (en) * | 2015-10-27 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Downhole zonal isolation detection system having conductor and method |
RU2620820C1 (ru) * | 2016-02-17 | 2017-05-30 | Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" | Индукционный скважинный нагреватель |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
RU2630018C1 (ru) * | 2016-06-29 | 2017-09-05 | Общество с ограниченной ответчственностью "Геобурсервис", ООО "Геобурсервис" | Способ ликвидации, предотвращения образования отложений и интенсификации добычи нефти в нефтегазодобывающих скважинах и устройство для его реализации |
US11486243B2 (en) * | 2016-08-04 | 2022-11-01 | Baker Hughes Esp, Inc. | ESP gas slug avoidance system |
RU2632791C1 (ru) * | 2016-11-02 | 2017-10-09 | Владимир Иванович Савичев | Способ стимуляции скважин путём закачки газовых композиций |
CN107289997B (zh) * | 2017-05-05 | 2019-08-13 | 济南轨道交通集团有限公司 | 一种岩溶裂隙水探测系统及方法 |
US10626709B2 (en) * | 2017-06-08 | 2020-04-21 | Saudi Arabian Oil Company | Steam driven submersible pump |
CN113015494A (zh) | 2018-06-01 | 2021-06-22 | 圣安娜技术有限公司 | 多级蒸汽消融治疗方法以及蒸汽产生和输送系统 |
EA202190515A1 (ru) * | 2018-08-16 | 2021-06-24 | Басф Се | Устройство и способ нагрева текучей среды в трубопроводе постоянным током |
US10927645B2 (en) * | 2018-08-20 | 2021-02-23 | Baker Hughes, A Ge Company, Llc | Heater cable with injectable fiber optics |
CN109379792B (zh) * | 2018-11-12 | 2024-05-28 | 山东华宁电伴热科技有限公司 | 一种油井加热电缆及油井加热方法 |
CN109396168B (zh) * | 2018-12-01 | 2023-12-26 | 中节能城市节能研究院有限公司 | 污染土壤原位热修复用组合换热器及土壤热修复系统 |
CN109399879B (zh) * | 2018-12-14 | 2023-10-20 | 江苏筑港建设集团有限公司 | 一种吹填泥被的固化方法 |
FR3093588B1 (fr) * | 2019-03-07 | 2021-02-26 | Socomec Sa | Dispositif de récupération d’energie sur au moins un conducteur de puissance et procédé de fabrication dudit dispositif de récupération |
US11708757B1 (en) * | 2019-05-14 | 2023-07-25 | Fortress Downhole Tools, Llc | Method and apparatus for testing setting tools and other assemblies used to set downhole plugs and other objects in wellbores |
US11136514B2 (en) | 2019-06-07 | 2021-10-05 | Uop Llc | Process and apparatus for recycling hydrogen to hydroprocess biorenewable feed |
WO2021116374A1 (en) * | 2019-12-11 | 2021-06-17 | Aker Solutions As | Skin-effect heating cable |
DE102020208178A1 (de) * | 2020-06-30 | 2021-12-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Aufheizen eines Brennstoffzellensystems, Brennstoffzellensystem, Verwendung eines elektrischen Heizelements |
CN112485119B (zh) * | 2020-11-09 | 2023-01-31 | 临沂矿业集团有限责任公司 | 一种矿用提升绞车钢丝绳静拉力试验车 |
EP4113768A1 (en) * | 2021-07-02 | 2023-01-04 | Nexans | Dry-mate wet-design branch joint and method for realizing a subsea distribution of electric power for wet cables |
US12037870B1 (en) | 2023-02-10 | 2024-07-16 | Newpark Drilling Fluids Llc | Mitigating lost circulation |
WO2024188630A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
WO2024188629A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
Family Cites Families (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2732195A (en) | 1956-01-24 | Ljungstrom | ||
US438461A (en) * | 1890-10-14 | Half to william j | ||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
US2734579A (en) * | 1956-02-14 | Production from bituminous sands | ||
US326439A (en) * | 1885-09-15 | Protecting wells | ||
US48994A (en) * | 1865-07-25 | Improvement in devices for oil-wells | ||
SE126674C1 (zh) | 1949-01-01 | |||
SE123138C1 (zh) | 1948-01-01 | |||
US345586A (en) * | 1886-07-13 | Oil from wells | ||
US94813A (en) * | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
SE123136C1 (zh) | 1948-01-01 | |||
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) * | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US1510655A (en) * | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) * | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US1913395A (en) * | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2244255A (en) * | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) * | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) * | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2390770A (en) * | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) * | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) * | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) * | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) * | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) * | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) * | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) * | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2757738A (en) * | 1948-09-20 | 1956-08-07 | Union Oil Co | Radiation heating |
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) * | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) * | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
US2670802A (en) * | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2714930A (en) * | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) * | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) * | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2777679A (en) * | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2789805A (en) | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
GB774283A (en) * | 1952-09-15 | 1957-05-08 | Ruhrchemie Ag | Process for the combined purification and methanisation of gas mixtures containing oxides of carbon and hydrogen |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) * | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) * | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) * | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) * | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2902270A (en) * | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) * | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) * | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) * | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2923535A (en) * | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2801089A (en) * | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) * | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) * | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) * | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) * | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) * | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US2942223A (en) * | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) * | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US2954826A (en) * | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US2911047A (en) * | 1958-03-11 | 1959-11-03 | John C Henderson | Apparatus for extracting naturally occurring difficultly flowable petroleum oil from a naturally located subterranean body |
US2958519A (en) * | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US2974937A (en) * | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) * | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3170519A (en) * | 1960-05-11 | 1965-02-23 | Gordon L Allot | Oil well microwave tools |
US3058730A (en) | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3194315A (en) * | 1962-06-26 | 1965-07-13 | Charles D Golson | Apparatus for isolating zones in wells |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3262741A (en) | 1965-04-01 | 1966-07-26 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3278234A (en) | 1965-05-17 | 1966-10-11 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3372754A (en) * | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
NL6803827A (zh) | 1967-03-22 | 1968-09-23 | ||
US3542276A (en) * | 1967-11-13 | 1970-11-24 | Ideal Ind | Open type explosion connector and method |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3513249A (en) | 1968-12-24 | 1970-05-19 | Ideal Ind | Explosion connector with improved insulating means |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3529075A (en) * | 1969-05-21 | 1970-09-15 | Ideal Ind | Explosion connector with ignition arrangement |
US3572838A (en) | 1969-07-07 | 1971-03-30 | Shell Oil Co | Recovery of aluminum compounds and oil from oil shale formations |
US3614387A (en) * | 1969-09-22 | 1971-10-19 | Watlow Electric Mfg Co | Electrical heater with an internal thermocouple |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4017319A (en) | 1976-01-06 | 1977-04-12 | General Electric Company | Si3 N4 formed by nitridation of sintered silicon compact containing boron |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4311340A (en) | 1978-11-27 | 1982-01-19 | Lyons William C | Uranium leeching process and insitu mining |
JPS5576586A (en) * | 1978-12-01 | 1980-06-09 | Tokyo Shibaura Electric Co | Heater |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4232902A (en) | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4289354A (en) | 1979-02-23 | 1981-09-15 | Edwin G. Higgins, Jr. | Borehole mining of solid mineral resources |
US4290650A (en) | 1979-08-03 | 1981-09-22 | Ppg Industries Canada Ltd. | Subterranean cavity chimney development for connecting solution mined cavities |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4401099A (en) * | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4382469A (en) * | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
GB2110231B (en) * | 1981-03-13 | 1984-11-14 | Jgc Corp | Process for converting solid wastes to gases for use as a town gas |
US4384614A (en) * | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
US4441985A (en) | 1982-03-08 | 1984-04-10 | Exxon Research And Engineering Co. | Process for supplying the heat requirement of a retort for recovering oil from solids by partial indirect heating of in situ combustion gases, and combustion air, without the use of supplemental fuel |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4498531A (en) * | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4545435A (en) * | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US4538682A (en) * | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4572229A (en) * | 1984-02-02 | 1986-02-25 | Thomas D. Mueller | Variable proportioner |
US4637464A (en) * | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4570715A (en) * | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
JPS61104582A (ja) * | 1984-10-25 | 1986-05-22 | 株式会社デンソー | シ−ズヒ−タ |
FR2575463B1 (fr) * | 1984-12-28 | 1987-03-20 | Gaz De France | Procede de production du methane a l'aide d'un catalyseur thioresistant et catalyseur pour la mise en oeuvre de ce procede |
US4662437A (en) * | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
CN1010864B (zh) * | 1985-12-09 | 1990-12-19 | 国际壳牌研究有限公司 | 安装电加热器到井中的方法和装置 |
CN1006920B (zh) * | 1985-12-09 | 1990-02-21 | 国际壳牌研究有限公司 | 小型井的温度测量方法 |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4852648A (en) | 1987-12-04 | 1989-08-01 | Ava International Corporation | Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5050601A (en) | 1990-05-29 | 1991-09-24 | Joel Kupersmith | Cardiac defibrillator electrode arrangement |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5823256A (en) | 1991-02-06 | 1998-10-20 | Moore; Boyd B. | Ferrule--type fitting for sealing an electrical conduit in a well head barrier |
CN2095278U (zh) * | 1991-06-19 | 1992-02-05 | 中国石油天然气总公司辽河设计院 | 油井电加热装置 |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5420402A (en) * | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
CN2183444Y (zh) * | 1993-10-19 | 1994-11-23 | 刘犹斌 | 深井石油电磁加热器 |
US5507149A (en) | 1994-12-15 | 1996-04-16 | Dash; J. Gregory | Nonporous liquid impermeable cryogenic barrier |
CA2173414C (en) * | 1995-04-07 | 2007-11-06 | Bruce Martin Escovedo | Oil production well and assembly of such wells |
US5730550A (en) * | 1995-08-15 | 1998-03-24 | Board Of Trustees Operating Michigan State University | Method for placement of a permeable remediation zone in situ |
US5759022A (en) * | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
US5619611A (en) | 1995-12-12 | 1997-04-08 | Tub Tauch-Und Baggertechnik Gmbh | Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein |
GB9526120D0 (en) * | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
CA2177726C (en) * | 1996-05-29 | 2000-06-27 | Theodore Wildi | Low-voltage and low flux density heating system |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6248230B1 (en) * | 1998-06-25 | 2001-06-19 | Sk Corporation | Method for manufacturing cleaner fuels |
US6130398A (en) * | 1998-07-09 | 2000-10-10 | Illinois Tool Works Inc. | Plasma cutter for auxiliary power output of a power source |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
DE69930290T2 (de) * | 1998-09-25 | 2006-12-14 | Tesco Corp., Calgary | System, vorrichtung und verfahren zur installierung von steuerleitungen in einer erdbohrung |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
JP2000340350A (ja) | 1999-05-28 | 2000-12-08 | Kyocera Corp | 窒化ケイ素製セラミックヒータおよびその製造方法 |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US20020036085A1 (en) | 2000-01-24 | 2002-03-28 | Bass Ronald Marshall | Toroidal choke inductor for wireless communication and control |
US6981553B2 (en) | 2000-01-24 | 2006-01-03 | Shell Oil Company | Controlled downhole chemical injection |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
EG22420A (en) | 2000-03-02 | 2003-01-29 | Shell Int Research | Use of downhole high pressure gas in a gas - lift well |
US6632047B2 (en) * | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
US20030075318A1 (en) | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US20030066642A1 (en) | 2000-04-24 | 2003-04-10 | Wellington Scott Lee | In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US20020036089A1 (en) * | 2000-04-24 | 2002-03-28 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources |
ATE313001T1 (de) * | 2000-04-24 | 2005-12-15 | Shell Int Research | Verfahren zur behandlung von erdöllagerstätten |
CA2412041A1 (en) * | 2000-06-29 | 2002-07-25 | Paulo S. Tubel | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
EA009350B1 (ru) | 2001-04-24 | 2007-12-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ обработки углеводородсодержащих подземных песчаных пластов, пропитанных дегтем, и смешивающий агент |
EA004696B1 (ru) * | 2001-04-24 | 2004-06-24 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Извлечение нефти путем сжигания на месте |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
AU2002303481A1 (en) | 2001-04-24 | 2002-11-05 | Shell Oil Company | In situ recovery from a relatively low permeability formation containing heavy hydrocarbons |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US6854929B2 (en) | 2001-10-24 | 2005-02-15 | Board Of Regents, The University Of Texas System | Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil |
CN1671944B (zh) * | 2001-10-24 | 2011-06-08 | 国际壳牌研究有限公司 | 可拆卸加热器在含烃地层内的安装与使用 |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
WO2003062596A1 (en) * | 2002-01-22 | 2003-07-31 | Weatherford/Lamb, Inc. | Gas operated pump for hydrocarbon wells |
US6958195B2 (en) * | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
CA2486582C (en) * | 2002-05-31 | 2008-07-22 | Sensor Highway Limited | Parameter sensing apparatus and method for subterranean wells |
US7204327B2 (en) * | 2002-08-21 | 2007-04-17 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric drill string |
US20040144541A1 (en) * | 2002-10-24 | 2004-07-29 | Picha Mark Gregory | Forming wellbores using acoustic methods |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US6796139B2 (en) | 2003-02-27 | 2004-09-28 | Layne Christensen Company | Method and apparatus for artificial ground freezing |
US7121342B2 (en) * | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7331385B2 (en) | 2003-06-24 | 2008-02-19 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US7337841B2 (en) | 2004-03-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Casing comprising stress-absorbing materials and associated methods of use |
CN1946919B (zh) | 2004-04-23 | 2011-11-16 | 国际壳牌研究有限公司 | 降低油的粘度以进行从包含碳氢化合物的地层的生产 |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
ATE437290T1 (de) | 2005-04-22 | 2009-08-15 | Shell Oil Co | Unterirdische verbindungsverfahren für unterirdische heizvorrichtungen |
NZ567255A (en) * | 2005-10-24 | 2011-05-27 | Shell Int Research | Coupling a conduit to a conductor inside the conduit so they have opposite current flow, giving zero potential at the conduit outer surface |
US7124584B1 (en) | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
US7500517B2 (en) | 2006-02-16 | 2009-03-10 | Chevron U.S.A. Inc. | Kerogen extraction from subterranean oil shale resources |
US8381806B2 (en) | 2006-04-21 | 2013-02-26 | Shell Oil Company | Joint used for coupling long heaters |
WO2008051833A2 (en) | 2006-10-20 | 2008-05-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080216323A1 (en) | 2007-03-09 | 2008-09-11 | Eveready Battery Company, Inc. | Shaving preparation delivery system for wet shaving system |
BRPI0810026A2 (pt) | 2007-04-20 | 2017-06-06 | Shell Int Res Maartschappij B V | sistema de aquecimento para uma formação de subsuperfície, e, método para aquecer uma formação de subsuperfície |
GB2467655B (en) | 2007-10-19 | 2012-05-16 | Shell Int Research | In situ oxidation of subsurface formations |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
-
2006
- 2006-04-21 AT AT06751032T patent/ATE437290T1/de not_active IP Right Cessation
- 2006-04-21 CA CA2606210A patent/CA2606210C/en not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015169 patent/WO2006116133A1/en active Application Filing
- 2006-04-21 EA EA200702306A patent/EA012554B1/ru not_active IP Right Cessation
- 2006-04-21 DE DE602006006042T patent/DE602006006042D1/de active Active
- 2006-04-21 CA CA2606181A patent/CA2606181C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013121.3A patent/CN101163858B/zh not_active Expired - Fee Related
- 2006-04-21 EA EA200702302A patent/EA014258B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013090.1A patent/CN101163854B/zh not_active Expired - Fee Related
- 2006-04-21 DE DE602006007693T patent/DE602006007693D1/de active Active
- 2006-04-21 AT AT06750976T patent/ATE463658T1/de not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015104 patent/WO2006116095A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/014776 patent/WO2006115943A1/en active Application Filing
- 2006-04-21 CA CA2606218A patent/CA2606218C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013101.6A patent/CN101163855B/zh not_active Expired - Fee Related
- 2006-04-21 EP EP06750976A patent/EP1871982B1/en not_active Not-in-force
- 2006-04-21 NZ NZ562240A patent/NZ562240A/en not_active IP Right Cessation
- 2006-04-21 CA CA2606295A patent/CA2606295C/en not_active Expired - Fee Related
- 2006-04-21 AT AT06750751T patent/ATE434713T1/de not_active IP Right Cessation
- 2006-04-21 NZ NZ562241A patent/NZ562241A/en not_active IP Right Cessation
- 2006-04-21 DE DE602006013437T patent/DE602006013437D1/de active Active
- 2006-04-21 EA EA200702305A patent/EA012171B1/ru not_active IP Right Cessation
- 2006-04-21 NZ NZ562239A patent/NZ562239A/en not_active IP Right Cessation
- 2006-04-21 AU AU2006240173A patent/AU2006240173B2/en not_active Ceased
- 2006-04-21 EA EA200702299A patent/EA013555B1/ru not_active IP Right Cessation
- 2006-04-21 AU AU2006239999A patent/AU2006239999B2/en not_active Ceased
- 2006-04-21 CA CA2606217A patent/CA2606217C/en not_active Expired - Fee Related
- 2006-04-21 EP EP06751031A patent/EP1871986A1/en not_active Withdrawn
- 2006-04-21 WO PCT/US2006/015095 patent/WO2006116087A1/en active Application Filing
- 2006-04-21 EA EA200702307A patent/EA011905B1/ru not_active IP Right Cessation
- 2006-04-21 AU AU2006239997A patent/AU2006239997B2/en not_active Ceased
- 2006-04-21 WO PCT/US2006/015105 patent/WO2006116096A1/en active Application Filing
- 2006-04-21 CN CN200680013103.5A patent/CN101163857B/zh not_active Expired - Fee Related
- 2006-04-21 CN CN200680013092.0A patent/CN101163851A/zh active Pending
- 2006-04-21 AU AU2006240175A patent/AU2006240175B2/en not_active Ceased
- 2006-04-21 AU AU2006239962A patent/AU2006239962B8/en not_active Ceased
- 2006-04-21 WO PCT/US2006/014778 patent/WO2006115945A1/en active Application Filing
- 2006-04-21 US US11/409,523 patent/US7831133B2/en not_active Expired - Fee Related
- 2006-04-21 EP EP06750974A patent/EP1871980A1/en not_active Withdrawn
- 2006-04-21 CA CA2605724A patent/CA2605724C/en not_active Expired - Fee Related
- 2006-04-21 EP EP06750751A patent/EP1871990B1/en not_active Not-in-force
- 2006-04-21 DE DE602006007450T patent/DE602006007450D1/de active Active
- 2006-04-21 EP EP06751034A patent/EP1871987B1/en not_active Not-in-force
- 2006-04-21 CA CA2606165A patent/CA2606165C/en not_active Expired - Fee Related
- 2006-04-21 NZ NZ562247A patent/NZ562247A/en not_active IP Right Cessation
- 2006-04-21 CN CN200680013122.8A patent/CN101163852B/zh not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015166 patent/WO2006116130A1/en active Application Filing
- 2006-04-21 AT AT06751034T patent/ATE427410T1/de not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015106 patent/WO2006116097A1/en active Application Filing
- 2006-04-21 EA EA200702300A patent/EA012767B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2605729A patent/CA2605729C/en not_active Expired - Fee Related
- 2006-04-21 NZ NZ562243A patent/NZ562243A/en not_active IP Right Cessation
- 2006-04-21 EA EA200702303A patent/EA014760B1/ru not_active IP Right Cessation
- 2006-04-21 AU AU2006240043A patent/AU2006240043B2/en not_active Ceased
- 2006-04-21 NZ NZ562249A patent/NZ562249A/en not_active IP Right Cessation
- 2006-04-21 IN IN4144CHN2007 patent/IN266867B/en unknown
- 2006-04-21 WO PCT/US2006/015084 patent/WO2006116078A1/en active Application Filing
- 2006-04-21 EA EA200702301A patent/EA012901B1/ru not_active IP Right Cessation
- 2006-04-21 EP EP06751032A patent/EP1871983B1/en not_active Not-in-force
- 2006-04-21 CN CN200680013320.4A patent/CN101163856B/zh not_active Expired - Fee Related
- 2006-04-21 CA CA2606176A patent/CA2606176C/en not_active Expired - Fee Related
- 2006-04-21 AT AT06750975T patent/ATE435964T1/de not_active IP Right Cessation
- 2006-04-21 NZ NZ562251A patent/NZ562251A/en not_active IP Right Cessation
- 2006-04-21 CA CA2605720A patent/CA2605720C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006239996A patent/AU2006239996B2/en not_active Ceased
- 2006-04-21 EP EP06750969A patent/EP1871979A1/en not_active Withdrawn
- 2006-04-21 AU AU2006239963A patent/AU2006239963B2/en not_active Ceased
- 2006-04-21 DE DE602006007974T patent/DE602006007974D1/de active Active
- 2006-04-21 NZ NZ562248A patent/NZ562248A/en not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015167 patent/WO2006116131A1/en active Application Filing
- 2006-04-21 EP EP06750975A patent/EP1871985B1/en not_active Not-in-force
- 2006-04-21 AU AU2006239961A patent/AU2006239961B2/en not_active Ceased
- 2006-04-21 EA EA200702297A patent/EA012900B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013322.3A patent/CN101163853B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562242A patent/NZ562242A/en not_active IP Right Cessation
- 2006-04-21 NZ NZ562252A patent/NZ562252A/en not_active IP Right Cessation
- 2006-04-21 AU AU2006240033A patent/AU2006240033B2/en not_active Ceased
- 2006-04-21 CA CA2606216A patent/CA2606216C/en not_active Expired - Fee Related
- 2006-04-21 NZ NZ562244A patent/NZ562244A/en not_active IP Right Cessation
- 2006-04-21 EP EP06758470A patent/EP1880078A1/en not_active Withdrawn
- 2006-04-21 EP EP06750964.6A patent/EP1871978B1/en not_active Not-in-force
- 2006-04-21 EP EP06750749A patent/EP1871981A1/en not_active Withdrawn
- 2006-04-21 EA EA200702304A patent/EA012077B1/ru not_active IP Right Cessation
- 2006-04-21 EA EA200702298A patent/EA011226B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013093.5A patent/CN101300401B/zh not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015101 patent/WO2006116092A1/en active Search and Examination
- 2006-04-21 CN CN200680013312.XA patent/CN101163859B/zh not_active Expired - Fee Related
- 2006-04-21 AU AU2006239958A patent/AU2006239958B2/en not_active Ceased
- 2006-04-21 CN CN200680013123.2A patent/CN101163860B/zh not_active Expired - Fee Related
- 2006-04-24 NZ NZ562250A patent/NZ562250A/en not_active IP Right Cessation
- 2006-04-24 AU AU2006239886A patent/AU2006239886B2/en not_active Ceased
- 2006-04-24 EP EP06758505A patent/EP1871858A2/en not_active Withdrawn
- 2006-04-24 WO PCT/US2006/015286 patent/WO2006116207A2/en active Application Filing
- 2006-04-24 CA CA2605737A patent/CA2605737C/en active Active
- 2006-04-24 EA EA200702296A patent/EA014031B1/ru not_active IP Right Cessation
- 2006-04-24 CN CN200680013130.2A patent/CN101163780B/zh not_active Expired - Fee Related
-
2007
- 2007-09-18 ZA ZA200708020A patent/ZA200708020B/xx unknown
- 2007-09-18 ZA ZA200708023A patent/ZA200708023B/en unknown
- 2007-09-18 ZA ZA200708021A patent/ZA200708021B/xx unknown
- 2007-09-18 ZA ZA200708022A patent/ZA200708022B/xx unknown
- 2007-09-20 ZA ZA200708089A patent/ZA200708089B/xx unknown
- 2007-09-20 ZA ZA200708087A patent/ZA200708087B/xx unknown
- 2007-09-20 ZA ZA200708090A patent/ZA200708090B/xx unknown
- 2007-09-20 ZA ZA200708088A patent/ZA200708088B/xx unknown
- 2007-09-21 ZA ZA200708135A patent/ZA200708135B/xx unknown
- 2007-09-21 ZA ZA200708137A patent/ZA200708137B/xx unknown
- 2007-09-21 ZA ZA200708134A patent/ZA200708134B/xx unknown
- 2007-09-21 ZA ZA200708136A patent/ZA200708136B/xx unknown
- 2007-09-24 IL IL186212A patent/IL186212A/en not_active IP Right Cessation
- 2007-09-24 IL IL186204A patent/IL186204A/en not_active IP Right Cessation
- 2007-09-24 IL IL186209A patent/IL186209A/en not_active IP Right Cessation
- 2007-09-24 IL IL186208A patent/IL186208A/en not_active IP Right Cessation
- 2007-09-24 IL IL186206A patent/IL186206A/en not_active IP Right Cessation
- 2007-09-24 IL IL186214A patent/IL186214A/en not_active IP Right Cessation
- 2007-09-24 IL IL186207A patent/IL186207A/en not_active IP Right Cessation
- 2007-09-24 IL IL186210A patent/IL186210A/en not_active IP Right Cessation
- 2007-09-24 IL IL186203A patent/IL186203A/en not_active IP Right Cessation
- 2007-09-24 IL IL186213A patent/IL186213A/en not_active IP Right Cessation
- 2007-09-24 IL IL186205A patent/IL186205A/en not_active IP Right Cessation
- 2007-09-24 IL IL186211A patent/IL186211A/en not_active IP Right Cessation
- 2007-09-28 ZA ZA200708316A patent/ZA200708316B/xx unknown
- 2007-11-21 MA MA30404A patent/MA29719B1/fr unknown
- 2007-11-21 MA MA30401A patent/MA29471B1/fr unknown
- 2007-11-21 MA MA30407A patent/MA29476B1/fr unknown
- 2007-11-21 MA MA30402A patent/MA29472B1/fr unknown
- 2007-11-21 MA MA30406A patent/MA29475B1/fr unknown
- 2007-11-21 MA MA30405A patent/MA29474B1/fr unknown
- 2007-11-21 MA MA30408A patent/MA29477B1/fr unknown
- 2007-11-21 MA MA30403A patent/MA29473B1/fr unknown
- 2007-11-21 MA MA30398A patent/MA29468B1/fr unknown
- 2007-11-21 MA MA30409A patent/MA29478B1/fr unknown
- 2007-11-21 MA MA30400A patent/MA29470B1/fr unknown
- 2007-11-21 MA MA30399A patent/MA29469B1/fr unknown
-
2011
- 2011-03-09 AU AU2011201030A patent/AU2011201030B2/en not_active Ceased
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834585A (zh) * | 2010-04-09 | 2012-12-19 | 国际壳牌研究有限公司 | 地下地层的低温感应加热 |
CN102834585B (zh) * | 2010-04-09 | 2015-06-17 | 国际壳牌研究有限公司 | 地下地层的低温感应加热 |
CN107558950A (zh) * | 2017-09-13 | 2018-01-09 | 吉林大学 | 用于油页岩地下原位开采区域封闭的定向堵漏方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101163851A (zh) | 用于原地转换过程的双阻挡层系统 | |
CN100513740C (zh) | 利用阻挡层就地回收含烃地层中的烃的方法 | |
US9033042B2 (en) | Forming bitumen barriers in subsurface hydrocarbon formations | |
AU2002342140A1 (en) | In situ recovery from a hydrocarbon containing formation using barriers | |
CN104583359A (zh) | 微波技术在用于深层和浅层应用的提高采油率工艺中的利用 | |
RU2305176C2 (ru) | Внутрипластовая добыча из содержащего углеводороды пласта с использованием барьеров | |
CN100359128C (zh) | 在对含烃地层进行就地热处理过程中阻止井眼变形的方法 | |
CN112983371A (zh) | 水平井同井缝间热流体及热流体耦合催化剂开采油页岩的方法 | |
Johnston et al. | Interpretation of Steam Drive Pilots in the Belridge Diatomite | |
WO2011127267A1 (en) | Barrier methods for use in subsurface hydrocarbon formations | |
BR112014006963A2 (pt) | dispositivo de transferência de fluidos verticalmente compactáveis | |
Towson | Canada's heavy oil industry: A technological revolution | |
Dusseault et al. | Heavy oil production from unconsolidated sandstones using sand production and SAGD | |
CN108979601B (zh) | 油页岩原位开采地层水的隔离控制装置及方法 | |
Tzanco et al. | Combustion performance in the Countess project |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20080416 |