Nothing Special   »   [go: up one dir, main page]

CN101165544A - A High Precision Star Simulator - Google Patents

A High Precision Star Simulator Download PDF

Info

Publication number
CN101165544A
CN101165544A CNA200610104766XA CN200610104766A CN101165544A CN 101165544 A CN101165544 A CN 101165544A CN A200610104766X A CNA200610104766X A CN A200610104766XA CN 200610104766 A CN200610104766 A CN 200610104766A CN 101165544 A CN101165544 A CN 101165544A
Authority
CN
China
Prior art keywords
condenser
star
star simulator
attenuator
transmitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200610104766XA
Other languages
Chinese (zh)
Other versions
CN100510849C (en
Inventor
何俊华
谢廷毅
董晓娜
闫亚东
白秋菊
仓玉萍
郑承栋
朱彩霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Ruixin Microelectronics Co ltd
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CNB200610104766XA priority Critical patent/CN100510849C/en
Publication of CN101165544A publication Critical patent/CN101165544A/en
Application granted granted Critical
Publication of CN100510849C publication Critical patent/CN100510849C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及一种高精度星模拟器,包括光源和依次设置在光路上的红外反射镜、毛玻璃、聚光镜A、胶合棱镜、衰减片组、滤光片、聚光镜B、星点板和平行光管;为了使光源稳定,本发明还可包括光源亮度控制电路、设置在聚光镜A之后的胶合棱镜以及设置胶合棱镜透射光路上的光电二极管。本发明解决了现有星模拟器精度低、成本高的缺点,具有可直接模拟十七个星等、模拟精度可达±0.05等、单星平行度模拟精度高达±1″、成本低、系统稳定性高、操作方便等优点。

Figure 200610104766

The invention relates to a high-precision star simulator, which includes a light source, an infrared reflector, frosted glass, a condenser lens A, a glued prism, an attenuation sheet group, a filter, a condenser lens B, a star point plate and a collimator, which are sequentially arranged on the optical path ; In order to stabilize the light source, the present invention may also include a light source brightness control circuit, a cemented prism arranged behind the condenser A and a photodiode arranged on the transmitted light path of the cemented prism. The present invention solves the shortcomings of low precision and high cost of existing star simulators, and has the advantages of direct simulation of seventeen magnitudes, simulation precision of up to ±0.05, single star parallelism simulation precision of up to ±1", low cost, and systematic It has the advantages of high stability and convenient operation.

Figure 200610104766

Description

一种高精度星模拟器 A High Precision Star Simulator

技术领域 technical field

本发明涉及一种星模拟器。The invention relates to a star simulator.

背景技术 Background technique

随着我国空间技术的发展,卫星、载人飞船等航天器需要更长的寿命、更高的控制精度和可靠性。在航天器姿态控制系统中,恒星敏感器(以下简称星敏感器)是测量精度最高的姿态敏感器,它本身无机械活动部件,有利于长寿命和小型化,因此是航天器中最有前途和精度最高的姿态敏感器之一。星敏感器确定姿态的参照物是恒星,对其进行地面检测时主要使用恒星模拟器(以下简称星模拟器)。星模拟器的功能主要是对无穷远恒星的光谱、照度、平行性以及色温等特性进行模拟。因此星模拟器模拟星光的质量至关重要,其性能直接决定星敏感器测量结果的可信程度。With the development of my country's space technology, satellites, manned spacecraft and other spacecraft need longer life, higher control accuracy and reliability. In the spacecraft attitude control system, the star sensor (hereinafter referred to as the star sensor) is the attitude sensor with the highest measurement accuracy. It has no mechanical moving parts itself, which is conducive to long life and miniaturization, so it is the most promising in the spacecraft. and one of the most accurate attitude sensors. The reference object of the star sensor to determine the attitude is the star, and the star simulator (hereinafter referred to as the star simulator) is mainly used for ground detection. The function of the star simulator is mainly to simulate the characteristics of infinite stars such as spectrum, illuminance, parallelism and color temperature. Therefore, the quality of the simulated starlight of the star simulator is very important, and its performance directly determines the reliability of the measurement results of the star sensor.

星模拟器的技术方案之一是采用天穹式光导纤维方案,将星敏感器固定在天穹下的转台上进行测试。这种方案十分逼真,但是成本很高。星模拟器的技术方案之二是利用计算机作为星图发生器,在液晶显示屏上生成天空星图,再用广角物镜将显示屏中星体发出的球面光波变为平行光,以模拟无穷远的星体。但是其精度较差。星模拟器的技术方案之三是利用液晶光阀代替液晶显示屏生成天空星图,现在的液晶光阀是1024×768像元,对比度超过1000∶1,模拟星等+2~+6.5等,星等精度±0.3等。但是目前液晶光阀还不能满足星等覆盖-2~+6星等的需要,星光平行度等指标也不能满足要求。为此,必须寻找第一种方案的替代方案来高质量、高逼真地模拟天穹。One of the technical schemes of the star simulator is to use the skydome optical fiber scheme, and fix the star sensor on the turntable under the sky for testing. This solution is very realistic, but the cost is high. The second technical solution of the star simulator is to use the computer as a star map generator to generate a sky star map on the LCD screen, and then use a wide-angle objective lens to convert the spherical light waves emitted by the stars in the display screen into parallel light to simulate infinite distance. astral body. But its accuracy is poor. The third technical solution of the star simulator is to use liquid crystal light valves instead of liquid crystal display screens to generate sky star maps. The current liquid crystal light valves are 1024×768 pixels, with a contrast ratio of more than 1000:1, and simulated magnitudes of +2 to +6.5. Magnitude accuracy ±0.3 magnitude. However, at present, the liquid crystal light valve cannot meet the requirement of covering -2 to +6 magnitudes, and the indicators such as the parallelism of starlight cannot meet the requirements. For this reason, an alternative to the first solution must be found to simulate the sky dome with high quality and high fidelity.

发明内容 Contents of the invention

本发明目的是提供一种高质量、高逼真、低成本的星模拟器,其解决了现有星模拟器精度低、成本高的缺点。The object of the present invention is to provide a star simulator with high quality, high fidelity and low cost, which solves the shortcomings of low precision and high cost of existing star simulators.

本发明的技术解决方案是:一种高精度星模拟器,包括光源1和平行光管12,其特殊之处是,所述星模拟器还包括设置在光源1和平行光管12之间的聚光镜系统、衰减片组7和星点板10。The technical solution of the present invention is: a kind of high-precision star simulator, comprises light source 1 and collimator 12, and its special feature is, described star simulator also comprises that is arranged between light source 1 and collimator 12 Condenser lens system, attenuation film group 7 and star point plate 10.

上述聚光镜系统包括聚光镜A4和聚光镜B9;所述衰减片组7设置在聚光镜A4和聚光镜B9之间,所述星点板10设置在聚光镜B9之后。The above condenser lens system includes a condenser lens A4 and a condenser lens B9; the attenuation sheet group 7 is arranged between the condenser lens A4 and the condenser lens B9, and the star point plate 10 is arranged behind the condenser lens B9.

上述星模拟器还包括滤光片8;所述滤光片8设置在衰减片组7之前或之后。The above-mentioned star simulator also includes a filter 8; the filter 8 is arranged before or after the attenuation film group 7.

上述聚光镜系统包括聚光镜A4和聚光镜B9;所述衰减片组7和滤光片8设置在聚光镜A4和聚光镜B9之间,所述星点板10设置在聚光镜B9之后。The condenser lens system includes a condenser lens A4 and a condenser lens B9; the attenuation sheet group 7 and the filter 8 are arranged between the condenser lens A4 and the condenser lens B9, and the star point plate 10 is arranged behind the condenser lens B9.

上述星模拟器还包括光源亮度控制电路、设置在聚光镜A4之后的胶合棱镜5以及设置胶合棱镜5透射光路上的光电二极管6;所述光源亮度控制电路包括依次连接在光电二极管6输出端之后的第一功率放大器15、低通滤波器16、模数转换器17、单片机18、数模转换器19和第二功率放大器20;所述衰减片组7和聚光镜B9设置在胶合棱镜5反射光路上;所述第二功率放大器20的输出端与光源1的电源端相连。The above-mentioned star simulator also includes a light source brightness control circuit, a cemented prism 5 arranged behind the condenser A4, and a photodiode 6 on the transmission light path of the cemented prism 5; First power amplifier 15, low-pass filter 16, analog-to-digital converter 17, single-chip microcomputer 18, digital-to-analog converter 19 and the second power amplifier 20; Described attenuation sheet group 7 and condenser lens B9 are arranged on cemented prism 5 reflected light paths ; The output terminal of the second power amplifier 20 is connected to the power supply terminal of the light source 1 .

上述衰减片组7是在以下五种固定透过率的衰减片中选择四个衰减片进行组合:透过率为99.8%的0号衰减片、透过率为63.00%的1号衰减片、透过率为39.73%的2号衰减片、透过率为15.82%的4号衰减片、透过率为2.51%的8号衰减片。The above-mentioned attenuating sheet group 7 is composed of four attenuating sheets selected from the following five kinds of attenuating sheets with fixed transmittance: No. 0 attenuating sheet with a transmittance of 99.8%, No. 1 attenuating sheet with a transmittance of 63.00%, Attenuator No. 2 with a transmittance of 39.73%, No. 4 attenuator with a transmittance of 15.82%, and No. 8 attenuator with a transmittance of 2.51%.

上述衰减片组7是在以下四种固定透过率的衰减片中进行组合:透过率为63.00%的1号衰减片、透过率为39.73%的2号衰减片、透过率为15.82%的4号衰减片、透过率为2.51%的8号衰减片。The above-mentioned attenuating sheet group 7 is combined in the following four kinds of attenuating sheets with fixed transmittance: No. 1 attenuating sheet with a transmittance of 63.00%, No. 2 attenuating sheet with a transmittance of 39.73%, and a transmittance of 15.82 % of the No. 4 attenuation film, and the No. 8 attenuation film with a transmittance of 2.51%.

上述星模拟器还包括设置在光源1和聚光镜系统之间的毛玻璃3和红外反射镜2。The above-mentioned star simulator also includes a ground glass 3 and an infrared reflector 2 arranged between the light source 1 and the condenser lens system.

上述星点板10的小孔直径为8-20um。The diameter of the small hole of the above-mentioned star point plate 10 is 8-20um.

本发明的优点是:The advantages of the present invention are:

1、可直接模拟星空。摆放在不同的空间方位多台不同高度的星模拟器,每台星模拟器自身允许方位、俯仰角度的精密调节,每台星模拟器均可以模拟500nm~650nm,600nm~750nm和650nm~850nm三个光谱段的-2,-1.5,-1,-0.5,0,+0.5,+1,+1.5,+2,+2.5,+3,+3.5,+4,+4.5,+5,+5.5,+6十七个星等。1. It can directly simulate the starry sky. Multiple star simulators at different heights are placed in different spatial orientations. Each star simulator allows precise adjustment of azimuth and pitch angle. Each star simulator can simulate 500nm~650nm, 600nm~750nm and 650nm~850nm -2, -1.5, -1, -0.5, 0, +0.5, +1, +1.5, +2, +2.5, +3, +3.5, +4, +4.5, +5, + 5.5, +6 seventeen magnitudes.

2、模拟精度高。通过有意识选择任意一个衰减片进行精度调整,因此大大降低了衰减片镀膜成本和镀膜精度的苛刻要求;通过衰减片选配,反而能够达到高精度的透过率要求;模拟精度可以达±0.05等,性能与星图模拟器相比均有较大改善。2. High simulation accuracy. By consciously selecting any attenuator for precision adjustment, the cost of attenuator coating and the harsh requirements for coating accuracy are greatly reduced; through the selection of attenuators, high-precision transmittance requirements can be achieved; the simulation accuracy can reach ±0.05, etc. , the performance has been greatly improved compared with the star map simulator.

3、单星平行度模拟精度高。由于本发明采用了全新的设计思路,用星点板直径为20um的小孔模拟无限远处的恒星光源,相对于光纤或液晶光阀100um左右的发光点直径,本发明的单星平行度模拟精度可高达±1″。3. The simulation accuracy of single star parallelism is high. Since the present invention adopts a brand-new design idea, a small hole with a star point plate diameter of 20um is used to simulate a star light source at infinity. Compared with an optical fiber or a liquid crystal light valve with a light-emitting point diameter of about 100um, the single star parallelism simulation of the present invention Accuracy can be as high as ±1″.

4、应用范围宽。可模拟500nm~650nm,600nm~750nm和650nm~850nm三个光谱段的-2,-1.5,-1,-0.5,0,+0.5,+1,+1.5,+2,+2.5,+3,+3.5,+4,+4.5,+5,+5.5,+6十七个星等。4. Wide application range. Can simulate -2, -1.5, -1, -0.5, 0, +0.5, +1, +1.5, +2, +2.5, +3, +3.5, +4, +4.5, +5, +5.5, +6 seventeen magnitudes.

5、成本低。本发明星模拟器所用衰减片的镀膜只需五次,每一种衰减片在组合17种星等时有多次使用,这样大大降低了衰减片的镀膜精度要求。因为虽然每一次镀膜的衰减片的透过率会在理想值附近上下摆动,但有可能出现这种情况:已选择的三片衰减片的整体透过率与理想值相比偏大(或偏小),在选择第四片衰减片的时候就有意识地选择与理想值偏小(或偏大)的衰减片。这样,与理想值相比,原来与理论衰减率偏差较大的衰减片也能调整使用。5. Low cost. The coating of the attenuation sheet used in the star simulator of the present invention only needs five times, and each attenuation sheet is used multiple times when combining 17 kinds of magnitudes, which greatly reduces the coating accuracy requirement of the attenuation sheet. Because although the transmittance of each coated attenuator will fluctuate around the ideal value, it may happen that the overall transmittance of the three selected attenuators is larger than the ideal value (or slightly higher than the ideal value). Small), when selecting the fourth attenuator, consciously choose an attenuator that is smaller (or larger) than the ideal value. In this way, compared with the ideal value, the attenuation sheet whose original attenuation rate deviates greatly from the theoretical attenuation rate can also be adjusted and used.

6、系统具有24小时×7天的高稳定性。本发明通过在光路中设置胶合棱镜将光束分束,利用光电二极管取样,通过光源亮度控制电路,以闭环控制的方式对光源的稳定度进行自动控制。6. The system has a high stability of 24 hours x 7 days. The invention splits the light beam by setting a glued prism in the light path, uses a photodiode to sample, and controls the stability of the light source automatically in a closed-loop control manner through a light source brightness control circuit.

7、操作方便。本发明中的滤光片和衰减片组都是可以根据需要进行即时更换,更换时只需将相应的滤光片或衰减片组插入相应的部位即可。7. Easy to operate. Both the optical filter and the attenuating sheet group in the present invention can be replaced in real time as required, and only need to insert the corresponding optical filter or attenuating sheet group into the corresponding position when replacing.

附图说明 Description of drawings

图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2是本发明的最佳光学结构示意图;Fig. 2 is a schematic diagram of the best optical structure of the present invention;

图3是光电二极管和光源亮度控制电路的连接关系示意图;Fig. 3 is a schematic diagram of the connection relationship between the photodiode and the brightness control circuit of the light source;

其中:1-光源,2-红外反射镜,3-毛玻璃,4-聚光镜A,5-胶合棱镜,6-光电二极管,7-衰减片组,8-滤光片,9-聚光镜B,10-星点板,11-平行光管物镜,12-平行光管,13-二维调整机构,14-底座,15-第一功率放大器,16-低通滤波器,17-模数转换器,18-单片机,19-数模转换器,20-第二功率放大器。Among them: 1-light source, 2-infrared reflector, 3-ground glass, 4-condenser A, 5-glued prism, 6-photodiode, 7-attenuation film group, 8-filter, 9-condenser B, 10- Star point plate, 11-collimator objective lens, 12-collimator, 13-two-dimensional adjustment mechanism, 14-base, 15-first power amplifier, 16-low-pass filter, 17-analog-to-digital converter, 18 -Single-chip microcomputer, 19-digital-to-analog converter, 20-second power amplifier.

具体实施方式 Detailed ways

本发明的一种具体的实施方式见图2,包括光源和依次设置在光路上的红外反射镜、毛玻璃、聚光镜A、胶合棱镜、衰减片组、滤光片、聚光镜B、星点板和平行光管;光源采用组合式卤钨灯泡,其参数为:电压12V,功率35W,发光强度5000cd,平均寿命1000h;组合式卤钨灯泡发光含有大量的红外线,为了降低星点附近的温度,采用红外反射镜使灯泡发出的红外线反射回来并散热;因为灯泡汇聚在毛玻璃的光能量大部分在直径8mm以内,聚光系统将该范围内具有相同角度的光会聚在星点板上的一个点上,即星点板上光斑的每一点都是毛玻璃8mm范围的光线共同作用的结果,所以毛玻璃的作用是使最终到达星点板小孔处的光点分布更加均匀;聚光镜系统是聚光镜A与聚光镜B组成,聚光镜A与聚光镜B的放大倍率为0.4,其中聚光镜A设置在胶合棱镜之前,聚光镜B设置在胶合棱镜反射光路上;每个光谱段的衰减片组有17种,满足17个星等亮度的要求;滤光片有三种,分别透过500nm~650nm,600nm~750nm和650nm~850nm的光线;衰减片组与滤光片直接插在光路中,便于更换;星点板的直径为20um;平行光管的物镜采用三片镜组形式;光电二极管设置在胶合棱镜的透射光路上,光电二极管的输出端与光源亮度控制电路的信号输入端相连,光源亮度控制电路的控制输出端与光源的电源端相连;衰减片组是在以下五种固定透过率的衰减片中选择四个衰减片进行组合:透过率为99.8%的0号衰减片、透过率为63.00%的1号衰减片、透过率为39.73%的2号衰减片、透过率为15.82%的4号衰减片、透过率为2.51%的8号衰减片;衰减片组也可以在以下四种固定透过率的衰减片中进行组合:透过率为63.00%的1号衰减片、透过率为39.73%的2号衰减片、透过率为15.82%的4号衰减片、透过率为2.51%的8号衰减片;星点板设置有星点调节机构,星点调节机构采用细螺纹,其位置精度为10um;平行光管的焦距为1000mm,孔径:100mm,分辨率:2″,视场:2.4′;物镜组要保证三个镜片的严格同心,确保加工与装调误差引起的平行度误差不超差。A specific embodiment of the present invention is shown in Fig. 2, including light source and infrared reflector, frosted glass, condenser A, cemented prism, attenuation sheet group, optical filter, condenser B, star point plate and parallel Light tube; the light source adopts a combined halogen tungsten bulb, its parameters are: voltage 12V, power 35W, luminous intensity 5000cd, average lifespan 1000h; combined halogen tungsten bulb contains a lot of infrared light, in order to reduce the temperature near the star point, infrared The reflector makes the infrared rays emitted by the bulb reflect back and dissipate heat; because most of the light energy gathered by the bulb on the frosted glass is within a diameter of 8mm, the light concentrating system focuses the light with the same angle within this range on a point on the star point plate, That is to say, each point of the light spot on the star point plate is the result of the joint action of light within 8mm of the ground glass, so the function of the ground glass is to make the distribution of the light spots that finally reach the small hole of the star point plate more uniform; the condenser lens system is the condenser A and the condenser B Composition, the magnification of condenser A and condenser B is 0.4, where condenser A is set in front of the cemented prism, and condenser B is set on the reflected light path of the cemented prism; there are 17 kinds of attenuation film groups for each spectral segment, satisfying the brightness of 17 magnitudes requirements; there are three kinds of filters, respectively through 500nm ~ 650nm, 600nm ~ 750nm and 650nm ~ 850nm of light; the attenuation film group and the filter are directly inserted in the optical path, easy to replace; the diameter of the star point plate is 20um; The objective lens of the collimator adopts the form of three mirror groups; the photodiode is arranged on the transmitted light path of the cemented prism, the output end of the photodiode is connected with the signal input end of the light source brightness control circuit, and the control output end of the light source brightness control circuit is connected with the light source brightness control circuit. The power terminal is connected; the attenuator group is a combination of four attenuators selected from the following five kinds of attenuators with fixed transmittance: No. 0 attenuator with a transmittance of 99.8%, No. 1 attenuator with a transmittance of 63.00% No. 2 attenuating sheet with a transmittance of 39.73%, No. 4 attenuating sheet with a transmittance of 15.82%, and No. 8 attenuating sheet with a transmittance of 2.51%. The attenuating sheet group can also be fixed in the following four types: Combination in attenuating sheets with high transmittance: No. 1 attenuating sheet with 63.00% transmittance, No. 2 attenuating sheet with 39.73% transmittance, No. 4 attenuating sheet with 15.82% transmittance, and 2.51% transmittance No. 8 attenuation film; the star point plate is equipped with a star point adjustment mechanism, the star point adjustment mechanism adopts fine threads, and its position accuracy is 10um; the focal length of the collimator is 1000mm, the aperture: 100mm, the resolution: 2″, the field of view : 2.4′; the objective lens group must ensure the strict concentricity of the three lenses, and ensure that the parallelism error caused by processing and assembly errors does not exceed the tolerance.

高精度星模拟器使用时还应包括二维支架和底座。支架和底座的结构见图1,二维支架由固定板、活动板、水平微调机构、垂直微调机构组成;平行光管一端与活动板相连,另一端与微调机构相接触;底座起支撑与水平调节作用。When the high-precision star simulator is used, it should also include a two-dimensional support and a base. The structure of the bracket and the base is shown in Figure 1. The two-dimensional bracket is composed of a fixed plate, a movable plate, a horizontal fine-tuning mechanism, and a vertical fine-tuning mechanism; one end of the collimator is connected with the movable plate, and the other end is in contact with the fine-tuning mechanism; Regulatory effect.

本发明原理:采用平行光管产生无穷远的星点,通过滤光片与衰减片模拟不同光谱、亮度的星等。星点板小孔直径的大小直接决定模拟星光的平行度指标:星点板小孔直径过小,对光源要求很高,难于模拟较亮的星等;星点板小孔直径过大,模拟星光平行度质量较差。本发明通过权衡选择小孔直径为8-20um之间,以10um的小孔直径较佳。The principle of the present invention is to use a collimator to generate an infinite star point, and simulate stars with different spectra and brightness through a filter and an attenuation sheet. The diameter of the small hole of the star point plate directly determines the parallelism index of the simulated starlight: if the diameter of the small hole of the star point plate is too small, it has high requirements on the light source, and it is difficult to simulate brighter magnitudes; if the diameter of the small hole of the star point plate is too large, the simulation Astral parallelism is of poor quality. In the present invention, the diameter of the small hole is selected to be between 8-20um by weighing, and the diameter of the small hole is preferably 10um.

为此在星模拟器中设计了闭环反馈控制的高稳恒光源系统,本发明星模拟器选择了稳定的宽光谱光源,然后分别设计了滤色片和衰减片。滤色片用于选择与模拟的恒星具有相同光谱特性的光,650~850nm波段的滤光片呈现暗红色,600~750nm波段的滤光片呈现红色,500~650nm波段的滤光片呈现黄色;衰减片用于对过滤之后的光进行不同比率的衰减,用于模拟不同的星等。衰减片组由四片衰减片组成,如何由四个衰减片组成17个星等是这种方式的关键,根据天文定义,每6个整数星等的亮度差100倍,所以每2个整数星等差 100 5 = 2.512 倍,每半个星等差 2.512 = 1.5848 倍。以-2等星为基础,其它星等依次按1.5848倍的衰减就可组成不同的星等。本方案首先将衰减片作成表1所示的5种形式,再通过表2或表3的组合,就可构成17个星等所需的衰减片。For this reason, a high-stable constant light source system with closed-loop feedback control is designed in the star simulator. The star simulator of the present invention selects a stable wide-spectrum light source, and then designs a color filter and an attenuation film respectively. The color filter is used to select the light with the same spectral characteristics as the simulated star, the filter in the 650-850nm band is dark red, the filter in the 600-750nm band is red, and the filter in the 500-650nm band is yellow ; The attenuation sheet is used to attenuate the filtered light at different ratios to simulate different magnitudes. The attenuation film group is composed of four attenuation films. How to form 17 magnitudes from four attenuation films is the key to this method. According to the astronomical definition, the brightness difference of every 6 integer magnitudes is 100 times, so every 2 integer magnitudes arithmetic difference 100 5 = 2.512 times, every half magnitude difference 2.512 = 1.5848 times. Based on -2 magnitude stars, other magnitudes can be composed of different magnitudes by successively attenuating 1.5848 times. In this scheme, the attenuators are first made into the five forms shown in Table 1, and then through the combination of Table 2 or Table 3, the attenuators required for 17 magnitudes can be formed.

表1衰减片的透过率Table 1 Transmittance of attenuation sheet

  透过率Transmittance   衰减片代号值Attenuation sheet code value   相当于基准片衰减数Equivalent to the attenuation number of the reference chip   99.8%99.8%   0号No. 0   0平板不镀膜0 plate without coating   63.00%63.00%   1号 number 1   1次基准衰减片1 primary reference attenuator   39.73%39.73%   2号 number 2   2次基准衰减片2nd reference attenuator   15.82%15.82%   4号 No 4   4次基准衰减片4 reference attenuators   2.51%2.51%   8号 number 8   8次基准衰减片8 reference attenuators

表2 17个星等的衰减片组合形式一Table 2 Combination Form 1 of Attenuation Sheets for 17 Magnitudes

  序号serial number   星等 Magnitude   衰减百分比Decay percentage  组合方式(表1中衰减片代号值)Combination mode (attenuation sheet code value in Table 1)   00   -2 -2   99.20%99.20%   0+0+0+00+0+0+0   1 1   -1.5-1.5   62.72%62.72%   1+0+0+01+0+0+0   2 2   -1 -1   39.57%39.57%   2+0+0+02+0+0+0   33   -0.5-0.5   25.02%25.02%   1+2+0+01+2+0+0   44   00   15.75%15.75%   4+0+0+04+0+0+0

  55   +0.5+0.5   9.96%9.96%   4+1+0+04+1+0+0   66   +1+1   6.28%6.28%   4+2+0+04+2+0+0   77   +1.5+1.5   3.97%3.97%   4+2+1+04+2+1+0   8 8   +2+2   2.50%2.50%   8+0+0+08+0+0+0   9 9   +2.5+2.5   1.58%1.58%   8+1+0+08+1+0+0   1010   +3+3   1.00%1.00%   8+2+0+08+2+0+0   1111   +3.5+3.5   0.63%0.63%   8+2+1+08+2+1+0   1212   +4+4   0.397%0.397%   8+4+0+08+4+0+0   1313   +4.5+4.5   0.251%0.251%   8+4+1+08+4+1+0   1414   +5+5   0.158%0.158%   8+4+2+08+4+2+0   1515   +5.5+5.5   0.100%0.100%   8+4+2+18+4+2+1   1616   +6+6   0.063%0.063%   8+8+0+08+8+0+0

表3 17个星等的衰减片组合形式二Table 3 Combination Form 2 of Attenuation Sheets for 17 Magnitudes

  序号serial number   星等 Magnitude   衰减百分比Decay percentage   组合方式(表1中衰减片代号值)Combination mode (attenuation sheet code value in Table 1)   00   -2 -2   99.20%99.20%   0+0+0+00+0+0+0   1 1   -1.5-1.5   62.72%62.72%   1+0+0+01+0+0+0   2 2   -1 -1   39.65%39.65%   1+1+0+01+1+0+0   33   -0.5-0.5   25.02%25.02%   2+1+0+02+1+0+0   44   00   15.79%15.79%   2+2+0+02+2+0+0   55   +0.5+0.5   9.98%9.98%   2+2+1+02+2+1+0   66   +1+1   6.30%6.30%   2+2+2+02+2+2+0   77   +1.5+1.5   3.97%3.97%   4+2+1+04+2+1+0   8 8   +2+2   2.50%2.50%   4+4+0+04+4+0+0   9 9   +2.5+2.5   1.58%1.58%   4+4+1+04+4+1+0   1010   +3+3   1.00%1.00%   4+4+2+04+4+2+0   1111   +3.5+3.5   0.63%0.63%   8+2+1+08+2+1+0   1212   +4+4   0.397%0.397%   4+4+4+04+4+4+0   1313   +4.5+4.5   0.251%0.251%   8+4+1+08+4+1+0   1414   +5+5   0.158%0.158%   8+4+2+08+4+2+0   1515   +5.5+5.5   0.100%0.100%   8+4+2+18+4+2+1   1616   +6+6   0.063%0.063%   4+4+4+44+4+4+4

光源亮度控制电路的电路原理参见图3。卤钨灯泡发光经光学系统照射到光电二极管的光敏面,产生光电流,光电流的强弱与光的强弱成正比关系。光电流信号经功率放大器放大,再通过低通滤波器滤除高频杂量后,送给模数转换器,由单片机读取其值,并经过处理,所给出的调节量送入数模转换器,经转换后由功率放大器放大输出,达到对卤钨灯泡稳定的作用。Refer to Figure 3 for the circuit principle of the light source brightness control circuit. The tungsten-halogen bulb irradiates the photosensitive surface of the photodiode through the optical system to generate photocurrent, and the intensity of the photocurrent is proportional to the intensity of light. The photocurrent signal is amplified by the power amplifier, and then filtered by the low-pass filter to remove high-frequency impurities, and then sent to the analog-to-digital converter. The converter, after conversion, is amplified and output by the power amplifier to stabilize the halogen tungsten bulb.

由上述衰减片组合思路可以看出,镀膜过程只需四次,最多五次。对每一种衰减片来说,一次镀膜过程可同时镀膜多片,在组合17种星等时可以多次使用。虽然每一次镀膜的衰减片的透过率会在理想值附近上下摆动,但组合使用时会出现以下情况:已选择的其中三片衰减片的整体透过率与理想值相比偏大(或偏小)。此时根据不同星等所对应的照度,在选择第四个衰减片时对其透过率进行调整,调整一般是在该批镀膜产品中进行选配,即在选择第四片衰减片的时候就有意识地选择与理想值偏小(或偏大)的衰减片。这样进行有意识的选择大大降低了对衰减片的镀膜精度要求,而且原来是次品的衰减片也能在调整时使用。因此,上述衰减片组合思路大大降低了衰减片镀膜成本和镀膜精度的苛刻要求,而且能够达到高精度的透过率要求。It can be seen from the combination of the above attenuation sheets that the coating process only needs four times, at most five times. For each type of attenuator, one coating process can coat multiple pieces at the same time, and it can be used multiple times when combining 17 kinds of magnitudes. Although the transmittance of each coated attenuator will fluctuate around the ideal value, the following situations will occur when the combination is used: the overall transmittance of the three selected attenuators is larger than the ideal value (or too small). At this time, according to the illuminance corresponding to different magnitudes, the transmittance of the fourth attenuator is adjusted when selecting the fourth attenuator. The adjustment is generally made in the batch of coated products, that is, when the fourth attenuator is selected Consciously choose an attenuator that is smaller (or larger) than the ideal value. This conscious choice greatly reduces the coating accuracy requirements for the attenuator, and the attenuator that was originally a defective product can also be used during adjustment. Therefore, the combination of attenuators greatly reduces the cost of the attenuator coating and the strict requirements of coating accuracy, and can meet the high-precision transmittance requirements.

Claims (10)

1. a high precision star simulator comprises light source (1) and parallel light tube (12), it is characterized in that: described star simulator also comprises condenser system, attenuator group (7) and the star tester (10) that is arranged between light source (1) and the parallel light tube (12).
2. a kind of high precision star simulator according to claim 1 is characterized in that: described condenser system comprises condenser A (4) and condenser B (9); Described attenuator group (7) is arranged between condenser A (4) and the condenser B (9), and described star tester (10) is arranged on condenser B (9) afterwards.
3. a kind of high precision star simulator according to claim 2 is characterized in that: described star simulator also comprises the light-source brightness control circuit, be arranged on condenser A (4) afterwards cemented prism (5) and photodiode (6) on cemented prism (5) transmitted light path is set; Described light-source brightness control circuit comprises first power amplifier (15), low-pass filter (16), analog to digital converter (17), single-chip microcomputer (18), digital to analog converter (19) and second power amplifier (20) that is connected in turn after photodiode (6) output terminal; Described attenuator group (7) and condenser B (9) are arranged on cemented prism (5) reflected light path; The output terminal of described second power amplifier (20) links to each other with the power end of light source (1).
4. a kind of high precision star simulator according to claim 1 is characterized in that: described star simulator also comprises optical filter (8); Described optical filter (8) is arranged on before or after the attenuator group (7).
5. a kind of high precision star simulator according to claim 4 is characterized in that: described condenser system comprises condenser A (4) and condenser B (9); Described attenuator group (7) and optical filter (8) are arranged between condenser A (4) and the condenser B (9), and described star tester (10) is arranged on condenser B (9) afterwards.
6. a kind of high precision star simulator according to claim 5 is characterized in that: described star simulator also comprises the light-source brightness control circuit, be arranged on condenser A (4) afterwards cemented prism (5) and photodiode (6) on cemented prism (5) transmitted light path is set; Described light-source brightness control circuit comprises first power amplifier (15), low-pass filter (16), analog to digital converter (17), single-chip microcomputer (8), digital to analog converter (19) and second power amplifier (20) that is connected in turn after photodiode (6) output terminal; Described attenuator group (7) and condenser B (9) are arranged on cemented prism (5) reflected light path; The output terminal of described second power amplifier (20) links to each other with the power end of light source (1).
7. according to the described a kind of high precision star simulator of arbitrary claim of claim 1 to 6, it is characterized in that: described attenuator group (7) is fixedly to select four attenuators to make up in the attenuator of transmitance at following five kinds: transmitance is that 99.8% No. 0 attenuator, transmitance are that 63.00% No. 1 attenuator, transmitance are that 39.73% No. 2 attenuators, transmitance are that 15.82% No. 4 attenuators, transmitance are 2.51% No. 8 attenuators.
8. according to the described a kind of high precision star simulator of arbitrary claim of claim 1 to 6, it is characterized in that: described attenuator group (7) is fixedly to make up in the attenuator of transmitance at following four kinds: transmitance is that 63.00% No. 1 attenuator, transmitance are that 39.73% 2 attenuators, transmitance are that 15.82% No. 4 attenuators, transmitance are 2.51% No. 8 attenuators.
9. according to the described a kind of high precision star simulator of arbitrary claim of claim 1 to 6, it is characterized in that: described star simulator also comprises frosted glass (3) and the ir reflector (2) that is arranged between light source (1) and the condenser system.
10. a kind of high precision star simulator according to claim 9 is characterized in that: the hole diameter of described star tester (10) is 8-20um.
CNB200610104766XA 2006-10-19 2006-10-19 A High Precision Star Simulator Expired - Fee Related CN100510849C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200610104766XA CN100510849C (en) 2006-10-19 2006-10-19 A High Precision Star Simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200610104766XA CN100510849C (en) 2006-10-19 2006-10-19 A High Precision Star Simulator

Publications (2)

Publication Number Publication Date
CN101165544A true CN101165544A (en) 2008-04-23
CN100510849C CN100510849C (en) 2009-07-08

Family

ID=39334295

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610104766XA Expired - Fee Related CN100510849C (en) 2006-10-19 2006-10-19 A High Precision Star Simulator

Country Status (1)

Country Link
CN (1) CN100510849C (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168988A (en) * 2010-12-28 2011-08-31 哈尔滨工业大学 Double-waveband collimator-tube target simulator
CN102116935B (en) * 2009-12-31 2012-08-08 北京控制工程研究所 High-precision long-focus large-visual-field projection optical system
CN102830498A (en) * 2011-06-17 2012-12-19 中国科学院西安光学精密机械研究所 Dynamic large-view-field small-distortion star simulator optical system
CN103207063A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Spectrum weight adjustable spectrum simulation system
CN103206964A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Spectrum weight tunable weak light star simulation system
CN103206963A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Large-caliber stray light eliminating star simulator system
CN105067567A (en) * 2015-06-29 2015-11-18 江苏中科国腾科技有限公司 Method for increasing calibration accuracy by combined use of attenuation slices
CN105098583A (en) * 2015-09-29 2015-11-25 孝感华中精密仪器有限公司 Laser radiator
CN105606388A (en) * 2016-02-14 2016-05-25 长春理工大学 Split magnitude adjustable star map variable static star simulator having sky background
CN109084962A (en) * 2018-08-02 2018-12-25 重庆港宇高科技开发有限公司 A kind of fiber coupling CCD component tester and test method
CN111796419A (en) * 2020-07-31 2020-10-20 华北水利水电大学 Multi-lens spacer optical system suitable for large temperature difference environment and design method thereof
CN112067017A (en) * 2020-09-04 2020-12-11 西安中科微星光电科技有限公司 Large-view-field high-resolution star simulator
CN112833911A (en) * 2020-12-30 2021-05-25 中国科学院西安光学精密机械研究所 A sky area star simulator with high-precision inter-satellite angular distance and its calibration method
CN118377147A (en) * 2024-06-21 2024-07-23 中国科学院长春光学精密机械与物理研究所 A high contrast star point target light source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426026B (en) * 2010-10-22 2013-06-12 长春理工大学 Star simulator and star sensor ground calibration device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU505003A1 (en) * 1973-09-10 1976-02-28 Предприятие П/Я Х-5827 Collimator simulator of the starry sky
SU573809A1 (en) * 1975-10-13 1977-09-25 Предприятие П/Я А-1001 Planet simulator
SU934535A2 (en) * 1980-01-09 1982-06-07 Предприятие П/Я А-3771 Starry sky simulator
SU1164774A1 (en) * 1984-03-11 1985-06-30 Особое Конструкторское Бюро Института Космических Исследований Ан Ссср Simulator of starry sky
US4955714A (en) * 1986-06-26 1990-09-11 Stotler James G System for simulating the appearance of the night sky inside a room
CN2738341Y (en) * 2004-02-09 2005-11-02 曾乐元 Analog starry sky demonstration instrument
CN1707580A (en) * 2005-04-11 2005-12-14 张杨敬 Production of analog starry sky with LED, CCFL or LED-CCFL mixed subdued light planar illuminating plate

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116935B (en) * 2009-12-31 2012-08-08 北京控制工程研究所 High-precision long-focus large-visual-field projection optical system
CN102168988A (en) * 2010-12-28 2011-08-31 哈尔滨工业大学 Double-waveband collimator-tube target simulator
CN102830498A (en) * 2011-06-17 2012-12-19 中国科学院西安光学精密机械研究所 Dynamic large-view-field small-distortion star simulator optical system
CN102830498B (en) * 2011-06-17 2014-10-15 中国科学院西安光学精密机械研究所 Dynamic large-view-field small-distortion star simulator optical system
CN103207063B (en) * 2012-01-16 2015-12-09 中国科学院西安光学精密机械研究所 Spectrum weight adjustable spectrum simulation system
CN103207063A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Spectrum weight adjustable spectrum simulation system
CN103206964A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Spectrum weight tunable weak light star simulation system
CN103206963A (en) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 Large-caliber stray light eliminating star simulator system
CN103206963B (en) * 2012-01-16 2015-05-20 中国科学院西安光学精密机械研究所 Large-caliber stray light eliminating star simulator system
CN103206964B (en) * 2012-01-16 2015-05-20 中国科学院西安光学精密机械研究所 Spectrum weight tunable weak light star simulation system
CN105067567A (en) * 2015-06-29 2015-11-18 江苏中科国腾科技有限公司 Method for increasing calibration accuracy by combined use of attenuation slices
CN105098583A (en) * 2015-09-29 2015-11-25 孝感华中精密仪器有限公司 Laser radiator
CN105098583B (en) * 2015-09-29 2018-08-31 孝感华中精密仪器有限公司 A kind of laser irradiator
CN105606388A (en) * 2016-02-14 2016-05-25 长春理工大学 Split magnitude adjustable star map variable static star simulator having sky background
CN105606388B (en) * 2016-02-14 2018-05-08 长春理工大学 The variable static star simulator of the split type magnitude with sky background is adjustable star chart
CN109084962A (en) * 2018-08-02 2018-12-25 重庆港宇高科技开发有限公司 A kind of fiber coupling CCD component tester and test method
CN111796419A (en) * 2020-07-31 2020-10-20 华北水利水电大学 Multi-lens spacer optical system suitable for large temperature difference environment and design method thereof
CN112067017A (en) * 2020-09-04 2020-12-11 西安中科微星光电科技有限公司 Large-view-field high-resolution star simulator
CN112833911A (en) * 2020-12-30 2021-05-25 中国科学院西安光学精密机械研究所 A sky area star simulator with high-precision inter-satellite angular distance and its calibration method
CN112833911B (en) * 2020-12-30 2023-12-08 中国科学院西安光学精密机械研究所 High-precision space star simulator with inter-star angular distance and calibration method thereof
CN118377147A (en) * 2024-06-21 2024-07-23 中国科学院长春光学精密机械与物理研究所 A high contrast star point target light source

Also Published As

Publication number Publication date
CN100510849C (en) 2009-07-08

Similar Documents

Publication Publication Date Title
CN100510849C (en) A High Precision Star Simulator
CN102426026B (en) Star simulator and star sensor ground calibration device
CN103364011B (en) Multi-target scenery simulation system with super-large field of view
CN110044381B (en) A star simulator with adjustable magnitude and color temperature for multiple stars
CN113029195B (en) A static star simulator based on LED switching of three sky areas and its production method
CN103047998A (en) Detection capability detection system and detection method for space optical system
Zong et al. NIST measurement services: photometric calibrations
US8462328B2 (en) Efficient telecentric optical system (ETOS)
CN217586041U (en) White light illuminometer, ultraviolet irradiance meter and luminance meter integrated calibration device
CN105606388B (en) The variable static star simulator of the split type magnitude with sky background is adjustable star chart
CN214951383U (en) Auto-collimation single-star simulator
CN203364837U (en) Multi-target scenery simulation system with super-large field of view
CN110460839A (en) A kind of optical testing system and testing method
CN113823160A (en) Rainbow display and measurement and control device
CN106248105B (en) Double-collimation tolerance calibration system of auto-collimation theodolite
CN101165545B (en) Method for simulating stars and the like
CN117647309A (en) Traceable power and irradiance integrated calibration device for SI
Liu et al. Optical Design of a Solar Simulator With Large Irradiation Surface and High Irradiation Uniformity
CN215296620U (en) A Wide Range Distortion Measurement Device
CN116296280A (en) AR waveguide sheet optical detection system
US20110007284A1 (en) Method and apparatus for use in projecting images
CN208689239U (en) High efficiency light integrator
CN108050477B (en) Color temperature compensation pattern piece, color temperature compensation system and color temperature compensation method thereof
Park et al. Six-port integrating sphere photometer with uniform spatial response
CN114323074B (en) Large-view-field wide-spectrum high-precision static star chart simulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: XI'AN CHINA SCIENCES GROUP BUFFING MACHINE INVESTM

Free format text: FORMER OWNER: XI-AN INST. OF OPTICS AND FINE MECHANICS, CHINESE ACADEMY OF SCIENCES

Effective date: 20131206

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 710068 XI'AN, SHAANXI PROVINCE TO: 710119 XI'AN, SHAANXI PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20131206

Address after: 710119, Shaanxi Province, Xi'an hi tech Zone, new industrial park, 17 information Avenue, ancestral building on the third floor, room 323

Patentee after: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICSOF CAS

Address before: 710068 No. 234 Youyi West Road, Shaanxi, Xi'an

Patentee before: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

ASS Succession or assignment of patent right

Owner name: XI'AN RUIXIN MICROELECTRONICS CO., LTD.

Free format text: FORMER OWNER: XI'AN CHINA SCIENCES GROUP BUFFING MACHINE INVESTMENT HOLDING CO., LTD.

Effective date: 20141115

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141115

Address after: 710119, building 11, building 60, 106 West Avenue, hi tech Zone, Shaanxi, Xi'an

Patentee after: Xi'an Ruixin Microelectronics Co.,Ltd.

Address before: 710119, Shaanxi Province, Xi'an hi tech Zone, new industrial park, 17 information Avenue, ancestral building on the third floor, room 323

Patentee before: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICSOF CAS

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20171019

CF01 Termination of patent right due to non-payment of annual fee
DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Guangzhou Ruixin Microelectronics Co.,Ltd.

Document name: Deemed not to have been notified