Nothing Special   »   [go: up one dir, main page]

CN101154741B - 燃料处理方法和系统 - Google Patents

燃料处理方法和系统 Download PDF

Info

Publication number
CN101154741B
CN101154741B CN200610143780.0A CN200610143780A CN101154741B CN 101154741 B CN101154741 B CN 101154741B CN 200610143780 A CN200610143780 A CN 200610143780A CN 101154741 B CN101154741 B CN 101154741B
Authority
CN
China
Prior art keywords
methanator
fuel cell
ethanol
oxide fuel
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610143780.0A
Other languages
English (en)
Other versions
CN101154741A (zh
Inventor
J·B·汉森
S·达尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN101154741A publication Critical patent/CN101154741A/zh
Application granted granted Critical
Publication of CN101154741B publication Critical patent/CN101154741B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于固体氧化物燃料电池堆的燃料处理方法,包括步骤:(a)向含使乙醇甲烷化的催化材料的甲烷化反应器供给含乙醇的原料蒸汽;(b)在甲烷化反应器中,绝热条件下处理含乙醇的原料蒸汽,制备含甲烷的流出燃料;(c)将含甲烷的流出燃料转移到含至少一个固体氧化物燃料电池的固体氧化物燃料电池堆的阳极;(d)为固体氧化物燃料电池堆的阴极提供含氧气体;(e)在固体氧化物燃料电池堆中,将包含甲烷和含氧气体的燃料转化为电。

Description

燃料处理方法和系统
本发明涉及一种含乙醇的液体燃料的处理方法,和实施该燃料处理方法的系统。
背景技术
乙醇作为一种有吸引力的燃料可用于将加热和发电装置结合的SOFC,例如这类设备可用作卡车和船舶用辅助动力单元。在这类设备中潜在的燃料处理步骤最终可以是非常简单的乙醇汽化处理,和注入SOFC的阳极室中。
然而,这种方法可能导致很多问题和缺陷:
Saunders,G.J.等人(制备SOFC用液态碳氢燃料(Formulating liquidhydrocarbon fuels for SOFCs),第23-26页,Journal of Power Sources第131卷,第1-2章,第1-367页(2004年5月14日))表明常规情况下干燥乙醇在使用最活泼的Ni-陶瓷作为阳极材料的SOFC阳极室中,极易炭化,导致运行数小时后SOFC失活。众所周知,在使乙醇与水蒸汽作用的水蒸汽重整条件下,极难避免乙醇在含Ni催化剂上炭化。其原因是乙醇脱水形成乙烯,而后乙烯聚合,如反应[1]所示:
CH3CH2OH→CH2CH2→-[CH2-CH2]n-→C2nH2(n+m)+mH2         [1]
由乙醇重整催化剂导致的焦化问题记载在例如Haga等人Nippon KagakuKaishi,33-6(1997)和Freni等人React.Kinet.Catal.Lett.71,第143-52页(2000)。由此在阳极室终通过添加水的乙醇重整(内部重整),并不是一种缓解炭化问题的简单方法。
在水蒸汽重整催化剂上和SOFC设备中,炭化也会按照下述可逆反应发生。
Figure G061E3780020070105D000011
Figure G061E3780020070105D000012
反应[3]是已知的Boudouard反应。乙醇按照反应[4]分解成CO
Figure G061E3780020070105D000013
由于CO非常活泼,因此知晓不会导致反应[3]发生的温度和气体组成范围很重要。这可以采用“the principle of the equilibrated gas”,假定甲烷化/水蒸汽重整(反应[5])和移位反应(反应[6])均达到平衡来研究,正如由Nielsen,J.R.(Catalytic Steam Reforming,Springer Verlag,Berlin 1984)所进一步描述的。
Figure G061E3780020070105D000021
Figure G061E3780020070105D000022
Sasaki,K.和Teraoka,Y.(Equilibria in Fuel Cell Gases——Solid Oxide Fuel CellVIII(SOFC VIII)第2003-07卷,第1225-1239页)已经研究了避免炭化所需要的用水量。
与使用甲烷相比,在SOFC中使用乙醇作为直接燃料的另外的不足是在水蒸汽重整该燃料时涉及的反应热。甲烷的水蒸汽重整在反应[5]中给出,而乙醇的重整反应记载于反应[7]中:
Figure G061E3780020070105D000023
Figure G061E3780020070105D000024
由于重整处理的吸热性质,在阳极室进行燃料重整(内部重整)有利于堆冷却。然而,用于乙醇重整的反应热与甲烷的水蒸汽重整相比,是小得多的吸热(产生pr H2),因此由乙醇的水蒸汽重整提供的堆冷却效率较低。
本发明的燃料处理方法描述了一种处理布局,其中通过将乙醇绝热地转化为甲烷、H2、CO、CO2和水的混合物,克服了上述所有问题。
本发明的一个目的是提供一种用于固体氧化物燃料电池的燃料处理方法,由此在固体氧化物燃料电池中转化前,将燃料乙醇绝热转化为甲烷、H2、CO、CO2和水的混合物。
                            发明概述
因此,本发明提供一种用于固体氧化物燃料电池堆的燃料处理方法,包括步骤:
(a)向含使乙醇甲烷化的催化材料的甲烷化反应器供给含乙醇的原料蒸汽;
(b)在甲烷化反应器中,在绝热条件下处理含乙醇的原料蒸汽,制备含甲烷的流出燃料;
(c)将含甲烷的流出燃料转移到含至少一个固体氧化物燃料电池的固体氧化物燃料电池堆阳极;
(d)为固体氧化物燃料电池堆的阴极提供含氧气体;
(e)在固体氧化物燃料电池堆中,将包含甲烷和含氧气体的燃料转化为电。
本发明还提供一种在燃料处理方法中使用的燃料处理系统,包括含使乙醇甲烷化的催化原料的甲烷化反应器,和一种包含至少一个固体氧化物燃料电池的固体氧化物燃料电池堆,该固体氧化物燃料电池堆设置于下游,并与甲烷化反应器相串联。
                           附图简述
图1是基于甲烷的常规燃料处理示意图。
图2是基于乙醇的燃料处理示意图。
图3是基于乙醇的对比燃料处理示意图。
                           发明详述
下述通过乙醇甲烷化是指将乙醇转化为含甲烷、H2、CO、CO2和水的混合物。
在本发明的燃料处理方法中,含乙醇的燃料被绝热转化为甲烷、氢气、一氧化碳和二氧化碳及水的混合物。采用这种方法将包含在进入甲烷化反应器中的含乙醇原料蒸汽的部分化学能,通过甲烷化反应器转化为温度的上升。这消除了对热交换器的需求,所述热交换器通常用于将SOFC燃料加热至在阳极入口处要求的温度。此外,与乙烯和一氧化碳相比,将乙醇转化为甲烷非常不易发生由原料形成的炭沉积。
氧和碳的比例(O/C比)在甲烷化反应中是非常重要的,因为该比例给出了潜在炭沉积的预示。乙醇经反应[4]分解形成一氧化碳,依次地一氧化碳经Boudouard反应[3]分解炭化。乙醇的固有O/C摩尔比为0.5。通常O/C比具有温度依赖性,且高于其最小值即可避免炭化发生。O/C比和炭化的关系详细记载于Nielsen,J.R,Catalytic Steam Reforming,Springer Verlag,Berlin 1984。
在本发明的燃料处理系统中,为处理方法提供额外的氧以增加O/C比。这可以通过从阴极空气经燃料电池电解质输送氧气至阳极排气来实现。而后阳极排气再循环至甲烷化反应器,并由此进入阳极入口。向系统中,例如与乙醇燃料一起添加大量水,也可以增加O/C比。
最适用于本发明的燃料处理方法的是含4体积%水的96体积%乙醇。而后O/C比可通过如前所述的循环来控制添加例如水。然而,也可以使用含有更大量水的更低纯度乙醇。由乙醇生产,例如发酵,产生的副产物也可以在乙醇中以特定范围内存在。
燃料中优选乙醇浓度为12-96体积%,更优选40-96体积%。最优选使用96体积%的乙醇。
一些阳极排气可以通过循环设备,例如循环鼓风机或其他机械驱动循环设备或喷射泵,循环回甲烷化反应器。
循环比是定义为循环进入甲烷化反应器的阳极排气摩尔数相对于阳极排气总摩尔数之比。可以使用0-80%的循环比。优选循环设备50%-60%的阳极排气循环至甲烷化反应器,即优选50%-60%的循环比。
同时在甲烷化反应器中转化为潜热(latent heat)的化学能,不需要通过SOFC中过量的阴极空气排出,从而提高了系统的整体电效率。
图1是基于甲烷的常规燃料处理示意图。天然气形式的甲烷1在热交换器E1 2中预热,然后在400℃用热氧化锌在加氢脱硫单元3脱硫,而后在预重整器4通过存在于天然气中的较高级烃预重整。这消除了在升温时,由上述高级烃脱氢形成不饱和化合物的风险。这些不饱和化合物(主要是烯烃)当加热至要求的堆入口温度时,容易炭化。通过由鼓风机6提供的、并由热交换器E2 7进行中间冷却的阳极排气5部分循环供应重整需要的水(和CO2)。
预重整器4的流出物包括有甲烷,并通过用热交换器E2 7中的循环阳极排气5热交换预热至阳极堆的入口温度,而后传输至阳极8。在阳极室中按照反应[5]产生甲烷的重整,由于该反应是吸热的,从而产生了堆冷却。
将空气9压缩,并传输至阴极10。堆通过过量的阴极空气19保持绝热,其在热交换器E3 11中通过与阴极排气12热交换而预热。阴极空气19也提供堆冷却。
未循环进入预重整器4的阳极8排气13和阴极10排气12最终在催化燃烧炉14中燃烧。催化燃烧炉14中排出的烟道气15的废热,当在热交换器E1 2中天然气预热启动时,在热交换器E6 18中为水16转化至蒸汽17而供热,并为加热空气或其他目的而供热。
除了SOFC堆本身和一些级别的热阳极循环鼓风机之外,在天然气燃料处理中使用的上述布局的所有组件是已知的。
在此类常规处理布局中用乙醇替代天然气会降低从乙醇的吸热重整反应(内部重整)中可得到的堆冷却的量。因此,除已经提供的量外,还需使用阴极空气进一步冷却以降低堆温度。随后,将需要相当大的热交换器E3 11。在空气压缩步骤中损失的电能也会增加。
图2是基于乙醇的燃料处理示意图,阐明了本发明的一个具体实施方式。将含乙醇1的液体通过泵2压缩,而后在热交换器E1 3中通过采用由催化燃烧炉5排出的烟道气4的废热汽化。离开热交换器E1 3的气态乙醇6在喷射泵7中作为动力,然后传输至甲烷化反应器8。甲烷化反应器8具有例如为350℃的入口温度和至少460℃的出口温度。从固体氧化物燃料电池10排出的含H2、H2O、CO、CO2和CH4的阳极排气9,经喷射泵7部分循环至甲烷化反应器8。甲烷化反应器8中装有对乙醇分解和甲烷化具有催化活性的物质。乙醇的甲烷化反应如下:
Figure G061E3780020070105D000051
Figure G061E3780020070105D000053
在甲烷化反应器8中,乙醇转化为CH4、H2、H2O、CO和CO2的混合物,甲烷化反应器8的流出物11传输至SOFC堆的阳极10。堆的入口温度至少为400℃,优选至少500℃。
将空气12压缩,并传输至阴极13。通过采用过量的压缩的阴极空气14保持堆绝热,在热交换器E3 15中通过阴极排气16热交换至温度典型地约为650℃而将其预热。
剩余未循环至喷射泵7的阳极排气17传输至催化燃烧炉5,与阴极排气16一起燃烧。催化燃烧炉5以基本上约700℃的出口温度运行。催化燃烧炉5排出的烟道气4的废热用于在热交换器E1 3中为乙醇汽化提供热量。未传至催化燃烧炉5的阴极排气18适于作为耗尽空气,并可用于热交换。
在本发明的一个实施方式中,50%的阳极排气9循环至喷射泵7,50%传输至催化燃烧炉5。所述50%的阳极排气循环用于提高整体电效率,同时由于更高的质量流动,在阳极室中提供了更好的流动分布。此外,在甲烷化反应器入口R1处的O/C比也增加了。
采用50%的循环比和96体积%乙醇的乙醇原料,得到了1.9的O/C比。这一数值保证了在固体氧化物燃料电池中,经反应[2]和[3]而不发生炭化。
在本发明的燃料处理方法中,阳极排气循环比不限于50%。为改变O/C比也可以选择其它数值。循环比可结合甲烷化催化剂的选择而优化。
在甲烷化反应器中适用的催化剂是对乙醇分解和甲烷化均具有催化活性,例如含镍、钴、铜或贵金属的催化剂。合适的含贵金属催化剂是例如含钌催化剂或含铑催化剂。
本发明的另一个实施方式中,在乙醇分解中的催化活性物质安装在甲烷化反应器中位于分解乙醇的甲烷化催化活性物质的上游。在甲烷化反应器中适用的上游催化剂是本领域公知的分解乙醇而不形成乙烯的催化剂。其可以是例如能够将乙醇分解为甲烷、CO和H2的催化剂。该反应由David A.Morgenstern和James P.Fornango(Energy Fuels,19(4),1708-1716,2005)通过含Ni和Cu催化剂描述,和由Galvita等人(Appl.Catal.A:General 220(2001)123)通过含Pd催化剂描述。
图3是对比燃料处理系统的示意图,其中省略了图2处理中显示的甲烷化反应器,并保留了阳极排气循环。如果不另外说明,则该图中的相关数字与图2中的一致。
在该处理系统中,在热交换器E2 19中预热进入阳极10的入口气体11是必要的,因为不这样的话,进入阳极10的入口气体11温度会过低。当燃料处理系统以阳极排气循环百分比仅为50%时,相应的O/C比为与图2中显示本发明的燃料处理系统相近的1.9时,热交换器E2 19容易直接发生由乙醇经乙烯聚合的炭沉积(反应[1])。
对热交换器E1、E2、E3的效率和负载,及图1-2中的燃料处理系统中空气压缩机功率进行了对比,主要结果总结在表1中。
                        表1
  常规系统(图1)   本发明系统(图2)
  电效率(%)   55.5   56.0
  总效率(%)   83.6   83.0
  原料流动(Nm3/h-kg/h)   40.8   32.6
  E1(kW)   9.8   31.6
  E2(kW)   23.4   -
  E3(kW)   557.0   538.5
  空气压缩机(kw)   29.6   23.2
在燃料电池堆中进一步处理前将乙醇转化为甲烷具有几种优势。与炭化有关的潜在问题减少了,用于将空气加热至阳极入口处要求温度的热交换器(E2)不再是必需的,电效率升高和结合的热交换器负载及空气压缩机功率降低。
在图1显示的常规系统中,在作为预重整器的相同尺寸乙醇甲烷化反应器中的投资是必需的。然而,有效的催化剂也可以降低所需要的反应器容积,还因为乙醇不含对催化剂有较强的毒性的硫。
表2显示了在基于乙醇和水的燃料中循环比及电效率
                                       表2
  燃料乙醇含量(体积%)   燃料的O/C比*   循环比   循环和燃料的总O/C比**   电效率(%)
  96   0.56   50   1.94   56.3
  96   0.56   60   2.24   55.9
  67   1.3   50   2.68   54.8
  61   1.55   50   2.93   54.4
  14   10.4   0   10.4   -***
*对应于图2中6处的气态蒸汽(gaseous steam)
**对应于图2中离开喷射泵7的蒸汽
***不可获得
可见,通过增加循环比来提高总的O/C比,同时维持燃料中相同的乙醇浓度,由于炭化导致了燃料处理方法电效率的轻微下降。通过燃料提供更多的水来提高总的O/C比,也仅导致了电效率的轻微下降。然而,当乙醇燃料具有高O/C比时,即使不存在循环,在任何情况下电效率都可以接受。

Claims (12)

1.一种用于使用固体氧化物燃料电池堆与甲烷化反应器发电的方法,包括步骤:
(a)向装有根据反应[4]、[6]和[8]对乙醇分解和甲烷化具有活性的催化材料的甲烷化反应器供给含乙醇的原料蒸汽;
Figure FDA0000448548150000011
Figure FDA0000448548150000012
Figure FDA0000448548150000013
(b)在甲烷化反应器中,在绝热条件下将含乙醇的原料蒸汽转化以制备含甲烷、一氧化碳、二氧化碳、氢气及水的流出燃料和通过甲烷化反应器的温度的上升;
(c)将含甲烷、一氧化碳、二氧化碳、氢气及水的流出燃料转移到含至少一个固体氧化物燃料电池的固体氧化物燃料电池堆的阳极;
(d)为固体氧化物燃料电池堆的阴极提供含氧气体;
(e)在固体氧化物燃料电池堆中,将包含甲烷、一氧化碳、二氧化碳、氢气及水的燃料和含氧气体转化为电。
2.根据权利要求1的方法,其中含乙醇的原料蒸汽在供给到甲烷化反应器之前汽化。
3.根据权利要求1或2的方法,其中在固体氧化物燃料电池堆阳极产生的排气,经安置在甲烷化反应器上游的循环设备部分地循环。
4.根据权利要求3的方法,其中大于0%且小于或等于80%的阳极排气经循环设备循环。
5.根据权利要求4的方法,其中50-60%的阳极排气经循环设备循环。
6.根据权利要求3的方法,其中循环设备是循环鼓风机或喷射泵。
7.根据权利要求1的方法,其中催化材料包含对将乙醇分解为含甲烷、氢气、一氧化碳、二氧化碳和水的混合物具有活性的催化剂。
8.根据权利要求1或7的方法,其中催化材料是含镍、钴、铜、铑、钌或其他贵金属的催化剂。
9.—种用于权利要求1的方法的燃料处理系统,包括含使乙醇甲烷化的催化材料的甲烷化反应器,和一种包含至少一个固体氧化物燃料电池的固体氧化物燃料电池堆,该固体氧化物燃料电池堆设置于甲烷化反应器的下游,并与甲烷化反应器相串联,所述甲烷化反应器装有根据反应[4]、[6]和[8]对乙醇分解和甲烷化具有活性的催化材料:
Figure FDA0000448548150000022
10.根据权利要求9的系统,其中循环设备设置于甲烷化反应器的上游,并与甲烷化反应器相串联。
11.根据权利要求10的系统,其中固体氧化物燃料电池堆阳极产生的排气经循环设备循环至甲烷化反应器。
12.根据权利要求10或11的系统,其中循环设备是循环鼓风机或喷射泵。
CN200610143780.0A 2005-09-27 2006-09-27 燃料处理方法和系统 Expired - Fee Related CN101154741B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200501349 2005-09-27
DKPA200501349 2005-09-27

Publications (2)

Publication Number Publication Date
CN101154741A CN101154741A (zh) 2008-04-02
CN101154741B true CN101154741B (zh) 2014-06-25

Family

ID=37529406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610143780.0A Expired - Fee Related CN101154741B (zh) 2005-09-27 2006-09-27 燃料处理方法和系统

Country Status (13)

Country Link
EP (1) EP1768207B1 (zh)
JP (1) JP5252795B2 (zh)
KR (1) KR101364999B1 (zh)
CN (1) CN101154741B (zh)
AT (1) ATE478445T1 (zh)
AU (1) AU2006222723B2 (zh)
CA (1) CA2561025C (zh)
DE (1) DE602006016203D1 (zh)
DK (1) DK1768207T3 (zh)
HK (1) HK1118958A1 (zh)
NO (1) NO20064382L (zh)
RU (1) RU2407113C2 (zh)
SG (1) SG131086A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910375B (zh) 2007-12-28 2014-11-05 格雷特波因特能源公司 用于碳质原料的催化气化的蒸汽发生浆液气化器
US20090217575A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
CA2716135C (en) 2008-02-29 2013-05-28 Greatpoint Energy, Inc. Particulate composition for gasification, preparation and continuous conversion thereof
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
WO2009111345A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
KR101290477B1 (ko) 2008-09-19 2013-07-29 그레이트포인트 에너지, 인크. 탄소질 공급원료의 기체화 방법
JP5384649B2 (ja) 2008-09-19 2014-01-08 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックのガス化のための方法
AU2009335163B2 (en) 2008-12-30 2013-02-21 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
WO2010132549A2 (en) 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CN102459525B (zh) 2009-05-13 2016-09-21 格雷特波因特能源公司 进行含碳原料的加氢甲烷化的方法
FR2949020B1 (fr) * 2009-08-06 2012-01-13 Franco Cell Dispositif de production d'electricite et de chaleur, incluant une pile a combustible admettant au moins du methane comme combustible
CA2773845C (en) 2009-10-19 2014-06-03 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
CA2780375A1 (en) 2009-12-17 2011-07-14 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
CN102906230B (zh) 2010-05-28 2015-09-02 格雷特波因特能源公司 液体重烃进料向气态产物的转化
AU2011292046B2 (en) 2010-08-18 2014-06-12 Sure Champion Investment Limited Hydromethanation of carbonaceous feedstock
AU2011323645A1 (en) 2010-11-01 2013-05-02 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012116003A1 (en) 2011-02-23 2012-08-30 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
CN103582693A (zh) 2011-06-03 2014-02-12 格雷特波因特能源公司 碳质原料的加氢甲烷化
DE102011082498A1 (de) * 2011-09-12 2013-03-14 Robert Bosch Gmbh Brennstoffzellensystem mit verbesserter Anodengasrezirkulation und Verfahren zum Betreiben eines Brennstoffzellensystems
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CA2859186A1 (en) * 2011-12-15 2013-06-20 Topsoe Fuel Cell A/S Method and system for liquid fuel desulphurization for fuel cell application
KR101646890B1 (ko) 2012-10-01 2016-08-12 그레이트포인트 에너지, 인크. 응집된 미립자 저등급 석탄 공급원료 및 그의 용도
KR101576781B1 (ko) 2012-10-01 2015-12-10 그레이트포인트 에너지, 인크. 응집된 미립자 저등급 석탄 공급원료 및 그의 용도
CN104685039B (zh) 2012-10-01 2016-09-07 格雷特波因特能源公司 附聚的颗粒状低煤阶煤原料及其用途
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
JP5769695B2 (ja) * 2012-12-25 2015-08-26 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの停止方法
BR112016003156A2 (pt) * 2013-06-17 2024-01-23 Hitachi Zosen Corp Método de poupar energia em um sistema combinado de um dispositivo para produção de bioetanol e uma célula de combustível de óxido sólido
WO2015124183A1 (en) * 2014-02-19 2015-08-27 Htceramix S.A. Method and system for producing carbon dioxide, purified hydrogen and electricity from a reformed process gas feed
KR101589243B1 (ko) * 2014-04-07 2016-01-29 삼성중공업(주) 연료 공급 장치
FR3034570B1 (fr) 2015-03-30 2019-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de production d'electricite par pile a combustible sofc avec circulation des especes carbonees en boucle fermee
JP6893308B2 (ja) * 2016-04-26 2021-06-23 パナソニックIpマネジメント株式会社 燃料電池装置
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
CN1540790A (zh) * 2003-03-31 2004-10-27 株式会社东芝 燃料电池系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK143162C (da) * 1978-12-12 1981-12-14 Topsoee H A S Fremgangsmaade og anlaeg til fremstilling af en metanrig gas
JPH03123737A (ja) * 1989-10-05 1991-05-27 Mitsubishi Gas Chem Co Inc メタン含有ガス製造法および反応器
DK162961C (da) * 1989-11-20 1992-05-25 Haldor Topsoe As Braendselscellekraftvaerk
JP2796181B2 (ja) * 1990-07-23 1998-09-10 三菱電機株式会社 燃料電池発電システム
US5736026A (en) * 1996-02-05 1998-04-07 Energy Research Corporation Biomass-fuel cell cogeneration apparatus and method
JPH10177864A (ja) * 1996-10-18 1998-06-30 Toshiba Corp 燃料電池
JP3071158B2 (ja) * 1997-07-02 2000-07-31 溶融炭酸塩型燃料電池発電システム技術研究組合 燃料電池発電装置
AUPR324201A0 (en) * 2001-02-21 2001-03-15 Ceramic Fuel Cells Limited Fuel cell system
DE10143656B4 (de) * 2001-09-05 2005-10-13 Mahlendorf, Falko, Dr. rer.nat. Verfahren zur Erzeugung von Energie in einem Brennstoffzellen-Gesamtsystem mit Crackreaktor und Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens
US7045231B2 (en) * 2002-05-22 2006-05-16 Protonetics International, Inc. Direct hydrocarbon reforming in protonic ceramic fuel cells by electrolyte steam permeation
US7682724B2 (en) * 2002-10-18 2010-03-23 Monsanto Technology Llc Use of metal supported copper catalysts for reforming alcohols
ES2341776T3 (es) * 2004-06-04 2010-06-28 Haldor Topsoe A/S Metodo y sistema para procesamiento de combustible.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
CN1540790A (zh) * 2003-03-31 2004-10-27 株式会社东芝 燃料电池系统

Also Published As

Publication number Publication date
JP2007095686A (ja) 2007-04-12
AU2006222723B2 (en) 2011-05-26
JP5252795B2 (ja) 2013-07-31
EP1768207B1 (en) 2010-08-18
CA2561025C (en) 2014-09-16
KR101364999B1 (ko) 2014-02-20
AU2006222723A1 (en) 2007-04-19
DK1768207T3 (da) 2010-12-13
RU2006134001A (ru) 2008-04-10
HK1118958A1 (zh) 2009-02-20
CA2561025A1 (en) 2007-03-27
CN101154741A (zh) 2008-04-02
RU2407113C2 (ru) 2010-12-20
KR20070035439A (ko) 2007-03-30
SG131086A1 (en) 2007-04-26
DE602006016203D1 (de) 2010-09-30
NO20064382L (no) 2007-03-28
ATE478445T1 (de) 2010-09-15
EP1768207A1 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
CN101154741B (zh) 燃料处理方法和系统
JP4515253B2 (ja) 燃料電池システム
EP0430017A2 (en) Fuel cell power plant
EP1470605B1 (en) Thermal managment of fuel cells
JP7155241B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
US7648541B2 (en) Desulfurisation of fuel
AU2003201391A1 (en) Thermal managment of fuel cells
US6805721B2 (en) Fuel processor thermal management system
CN100479250C (zh) 燃料处理方法和系统
JPWO2003038934A1 (ja) 燃料電池システム
JPH05506741A (ja) 電気エネルギーを発生させるための装置
JP2021031369A (ja) 改質ガスを消費するプラント及び原料ガスを改質する方法
GB2405028A (en) Method and device for operating an immediate temperature solid oxide fuel cell
JP2008282599A (ja) メタノール/ジメチルエーテルを原料とする燃料電池発電システム
CN116454331A (zh) 一种用于碳捕捉的固体氧化物燃料电池热平衡系统及方法
US8202638B2 (en) Fuel processing method and system
JP7575643B1 (ja) 発熱体による昇温が適用されるアンモニアベース固体酸化物燃料電池(sofc)システム、およびその作動方法
JP2004247247A (ja) 固体酸化物形燃料電池システム
JP2024541144A (ja) 発熱体による昇温が適用されるアンモニアベース固体酸化物燃料電池(sofc)システム、およびその作動方法
AU2022266955A1 (en) Fuel cell system and method for operating the same
JP2003272690A (ja) 燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1118958

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1118958

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20150927

EXPY Termination of patent right or utility model