Nothing Special   »   [go: up one dir, main page]

CN101049517A - 具有降低的磨损率的医用移植物支承材料和降低磨损率的方法 - Google Patents

具有降低的磨损率的医用移植物支承材料和降低磨损率的方法 Download PDF

Info

Publication number
CN101049517A
CN101049517A CNA2007101016191A CN200710101619A CN101049517A CN 101049517 A CN101049517 A CN 101049517A CN A2007101016191 A CNA2007101016191 A CN A2007101016191A CN 200710101619 A CN200710101619 A CN 200710101619A CN 101049517 A CN101049517 A CN 101049517A
Authority
CN
China
Prior art keywords
surfactant
supporting material
wear rate
medical implant
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101016191A
Other languages
English (en)
Inventor
C·埃恩斯伯格
Y·-S·廖
L·萨尔瓦蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Products Inc
Original Assignee
DePuy Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DePuy Products Inc filed Critical DePuy Products Inc
Publication of CN101049517A publication Critical patent/CN101049517A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

公开了一种医用移植物的支承材料,其包括聚合物如UHMWPE和不与聚合物共价连接的表面活性剂。支承材料具有降低的磨损率。也公开了一种当医用移植物的聚合支承材料在滑液的存在下活动连接硬配合面时降低其磨损率的方法,该方法包括在支承表面、硬配合面或两者附近的滑液中提供表面活性剂。

Description

具有降低的磨损率的医用移植物支承材料和降低磨损率的方法
背景技术
医用移植物使用聚合材料如超高分子量聚乙烯(UHMWPE)作为关节连接移植物的硬配合面如金属配合面的支承材料。然而,聚合材料在使用时容易磨损,伴生出包含微观聚合物颗粒的磨损碎屑。这些颗粒能引起不利的反应,如发炎和细胞组织恶化,或组织的骨质溶解。
已经尝试了例如通过改变聚合物的整体性能来降低支承材料特别是UHMWPE的磨损率。改变支承材料的整体性能的途径包括使聚合物辐射交联和使缔合的自由基稳定抗氧化。当高度交联的UHMWPE的磨损率低于未交联的材料时,高度交联的材料也容易产生更细微的磨损碎屑以及更高的骨质溶解可能性。
上述内容显示了需要一种具有降低的磨损率的医用移植物或医用移植物部件如支承材料。本发明提供一种这样的移植物或移植物部件。本发明也提供一种降低磨损率的方法。
发明概述
本发明提供一种医用移植物支承材料,其包括聚合物如UHMWPE和不与聚合物共价连接的表面活性剂。该支承材料具有降低的磨损率;其产生降低数量的磨损碎屑。该支承材料能提供降低的骨质溶解作用。该表面活性剂起边界润滑剂的作用,当支承材料关节连接硬配合面时,该表面活性剂降低支承材料聚合物之间的摩擦。本发明的支承材料具有一个或多个优点。例如,由UHMWPE构成并包含表面活性剂的本发明的支承材料的磨损率比由交联的UHMWPE构成的支承材料更低。
本发明也提供一种当医用移植物的聚合支承材料在滑液的存在下关节连接硬配合面时降低其磨损率的方法,该方法包括在支承表面、硬配合面或两者附近的滑液中提供表面活性剂。
附图简要描述
图1描述了已知的UHMWPE支承材料针对不同的配合面的磨损率,它是血清中蛋白质浓度的函数。
图2A描述了在水中和在根据本发明实施方式加入了1%重量表面活性剂的小牛血清(bovine calf serum)中UHMWPE针在摩擦浇铸的CoCrMo配合面时的重量变化。图2B描述了UHMWPE针在只有小牛血清中的重量变化。
图3描述了UHMWPE针和CoCrMo配合面之间的摩擦系数,它是在血清(菱形)、1%重量表面活性剂(三角形)和根据本发明实施方式加入了1%重量表面活性剂的血清(×)中的循环次数的函数。
发明详述
以下述观察为基础预测本发明,在液体介质如包含蛋白质的血清中关节连接硬配合面的聚合物表面之间,表面活性剂降低摩擦和/或提供润滑效果。因此,在一个实施方式中,本发明提供了一种医用移植物支承材料,其包括聚合物和不与聚合物共价连接的表面活性剂,其中支承材料用于关节连接医用移植物的硬配合面。
根据本发明的支承材料可以是任何适合的医用移植物或医用移植物部件。适合的医用植物或医用移植物部件包括但不局限于髋臼杯、髋臼杯的插入物或衬垫、或人造髋关节的耳轴承(例如,模头(modular head)和茎之间)、胫骨平台、髌骨钮(髌股关节)、和人造膝关节的耳轴或其它支承组分、人造踝关节的距骨表面(胫骨距骨关节)和其它支承组分、桡骨-数骨关节、尺肱关节、和人造肘关节的其它支承组分、人造肩关节的盂肱关节和其它支承组分、脊柱的椎间盘复位和面关节复位、颞下颌关节(颌骨)和指关节。
支承材料聚合物可以由任何适合的聚合物,尤其是聚乙烯构成,特别是由具有大约400,000原子质量单位重均分子量或更多的超高分子量聚乙烯构成。在此使用的术语“超高分子量聚乙烯”是指具有大约400,000原子质量单位重均分子量或更多的聚乙烯聚合物。优选超高分子量聚乙烯具有大约1,000,000(例如,大约2,000,000或大约3,000,000)原子质量单位的重均分子量或更多。典型地,超高分子量聚乙烯的重均分子量少于10,000,000原子质量单位或更少,更优选大约6,000,000原子质量单位或更少。适用作本发明的超高分子量聚乙烯包括但不局限于市场上买得到的超高分子量聚乙烯,如来自Ticona(Summit,N.j.)的粉末状超高分子量聚乙烯GUR 1050(大约5,000,000至大约6,000,000原子质量单位的重均分子量)或GUR 1020(大约3,000,000至大约4,000,000原子质量单位的重均分子量)。
包括疏水和亲水两部分的表面活性剂可以是任何适合的表面活性剂,例如阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂或两性表面活性剂,优选非离子表面活性剂。表面活性剂是一种添加的(内生的)表面活性剂,并不是指任何自然存在于滑液中的表面活性剂。表面活性剂可以具有任何适合的分子量,例如从大约100至大约20,000g/mol,在一实施方式中从大约1000至大约20,000g/mol。在一实施方式中,非离子表面活性剂包括亲水和疏水嵌段的嵌段共聚物,例如表面活性剂是A-B、A-B-A或B-A-B或其组合的嵌段共聚物,其中A是亲水嵌段并且B是疏水嵌段。作为实例,A是聚环氧乙烷(PEO)并且B是聚环氧丙烷(PPO)。在一种实施方式中,表面活性剂是购自BASF的PLURONICTMF127,其具有大约12,600g/mol的分子量。
可以以任何适合的数量,例如支承材料的大约0.01%的重量或更多,例如从大约0.1%至大约5%,优选从大约0.5%至大约1%的重量将表面活性剂混入支承材料中。
相对于未改性的聚合物,特别是当以1%的水平将表面活性剂添加到液体例如滑液或血清中时,聚合物特别是UHMWPE的磨损率降低了至少大约2倍,优选5倍,更优选大约10倍。例如,当以血清的1%重量将PLURONIC F127添加到血清中时,它使UHMWPE的磨损率降低了10倍。可以根据本领域已知的方法测定磨损率和摩擦系数,例如通过在Pin-on-Disk法中测量重量损失和法向力。
本发明进一步提供一种降低医用移植物的聚合物支承材料的磨损率的方法,支承材料具有支承表面,支承表面在存在滑液的情况下关节连接医用移植物的硬配合面,该方法包括在支承表面、硬配合面或两者附近的滑液中提供表面活性剂。在一具体实施方式中,支承材料包括迁移到支承表面和滑液之间界面的表面活性剂。
可以通过任何适合的方法将表面活性剂包括在支承材料中,例如通过模塑、柱塞挤出或用在适合溶剂中的表面活性剂渗透入完成聚合(例如,UHMWPE)的制品。因而,例如可以将粉末状或颗粒状UHMWPE与表面活性剂以预期的浓度混合,例如干混合,然后可以通过压模或柱塞挤出模塑得到的混合物。
表面活性剂最初可以广泛分布于支承材料或仅仅存在于支承材料的小部分上,例如在表面上。因而,例如表面活性剂可以存在于具有大约0.5mm厚度或更多的表面层中,例如从大约0.5mm至大约2mm或更多。可以用聚合物和表面活性剂的混合物完全填充压模的内体积,或者,可以用混合物填充一部分内体积,而用聚合物填充剩余的体积。在后者情形中,表面活性剂将包含在支承材料的表面中。
或者,可以在适合的温度下将支承材料浸入表面活性剂溶液中并保持适合的时间长度,以获得表面活性剂在聚合物中的足够浓度。可以通过适合的干燥除去溶剂。
在另一实施方式中,硬配合面包括表面活性剂并将表面活性剂释放进硬配合面附近的滑液中。例如,表面活性剂可以被包括在水凝胶中,水凝胶可以被混入关节连接表面附近的多孔载体中。例如,可以由疏水和亲水的大分子单体形成水凝胶,参见例如美国专利6,916,857和6,846,875。得到的水凝胶可以装载表面活性剂。水凝胶可以被涂层在硬配合面上。
在本发明的另一实施方式中,可以通过将表面活性剂注入滑液中来提供表面活性剂。如果将表面活性剂注入液体中,根据本发明的实施方式,例如可以以占液体重量的大约0.01%重量或更多,例如从大约0.1至大约5%,优选0.5至大约1%的重量注入表面活性剂。
在另一实施方式中,可以提供表面活性剂,使得它从医用移植物的非关节连接部分洗提。
不管表面活性剂最初存在于血清中(或滑液)还是存在于聚合物整体中,由于表面能的降低,它迁移到聚合物和血清之间的界面。
移植物的硬配合面可以由任何适合的材料,例如金属、陶瓷或它们的组合构成。适合的金属包括钛、钽和不锈钢。通常,硬配合面由使用时呈现适当强度和挠曲的金属合金形成。可以使用的金属合金的实例包括钛合金如钛-铝-钒合金,和钴-铬合金如钴-铬-钼合金,和不锈钢。在一具体实例中,硬配合面包括钴-铬-钼合金。
已知蛋白质容易改变UHMWPE的磨损率。例如图1所示,磨损率随着蛋白质浓度增加而增加,直至某一特定蛋白质浓度。超过此浓度,磨损率趋于减小。根据本发明,通过使用表面活性剂,甚至能够进一步降低磨损率。如图2所描述的,在包含1%表面活性剂的血清中的UHMWPE的磨损率比仅在血清中的小。此外,如图3所示,通过在血清中使用表面活性剂降低了UHMWPE对Co-Cr-Mo配合面的摩擦系数。
以下实施例进一步说明本发明,当然不应以任何方式将它们理解为限制本发明的范围。
实施例1
该实施例说明表面活性剂的一个优点,即,它降低了UHMWPE的磨损率。
将由GUR 1020树脂制造的0.7英寸长和0.375英寸直径的UHMWPE针柱塞挤压成棒料。通过辐射将针灭菌。由浇铸68%的钴、26%的铬、6%的钼和0.2%的碳制作1.5英寸直径和0.5英寸厚的金属配合面。通过热处理使配合面热等压压制和匀化,并磨光到在10至20nm之间的平均表面粗糙度。获得了三个圆盘,用于每个磨损测试组。包括相同标识的样品配对图显示在表1中。
表1样品配对和标识
  样品组   针   圆盘   位置
  血清和表面活性剂   S1S2S3   2B5B6   123
  W1W2W3   789   456
血清   456   434445   456
在Pin-on-Disk(POD)机器(AMTI OrthoPOD)上进行磨损测试。针在10mm×10mm的正方形图样内相对于圆盘移动,提供最大量的横向剪切运动。施加峰值为330N的Paul负荷循环(Paul,J.,Forces transmitted by joints in the humanbody,Proc.Inst.Mech.Eng.,181,8-15(1967))。频率为1.6Hz。对于1.98百万次循环测试时间,进行六个0.33百万次循环的数据收集间隔。大约每24小时补充由于蒸发损失的水。在每个测试间隔末抛弃测试润滑剂,并添加新的润滑剂。
在每个数据收集间隔之后,将每个样品对顺时针旋转一个站,用于下一个间隔。在测试过程中,所有样品在所有站都受到测试。测试了三种不同的润滑剂:反渗透处理的水、牛血清(Hyclone Inc.稀释到初始浓度的90%并使用EDTA和叠氮化钠处理)、包含1%重量PLURONIC F127表面活性剂的上述牛血清制剂。将整个血清温度保持在37±℃。
如下从针获得重量分析数据。将针清洗并在具有0.01mg分辨率的微量天平称重。使用标准重量校准天平。使用标准浸透的控制针实施液体摄取的校正。在Taylor-Hobson Form Talysurf Series II轮廓测定仪上测量圆盘的接触轮廓度。使用250微米的切断长度、100∶1的带宽和1mm的规格范围。在每个样品上取得两对垂直的痕迹。使用Nikon Epiphot 200/300倒置显微镜摄取针的图片(金相照片)。使用Nikon D1数字照相机摄取圆盘的图片。
图2A-B描述了UHMWPE针的磨损率。当使用表面活性剂时,针的磨损率较小。
实施例2
该实施例说明本发明的一个优点,即,降低了聚合物表面和硬配合面之间的摩擦系数。
在实施例1中举例说明的同样类型的针和圆盘上收集摩擦数据。在配备多轴应变仪的AMTI OrthoPOD上获得数据。在用于磨损测试的同样的10mm×10mm的测试图样和Paul负荷循环期间,通过水平力除以法向力获得摩擦系数。在Paul负荷曲线的峰值之间于小部分测试图样上收集摩擦数据。图3描述了通过使用表面活性剂引起的摩擦系数的降低。图3中的每个点是大约30个数值点的平均值。
在此引用的所有参考包括出版物、专利申请和专利都同样程度地并入本文作为参考,如同每个参考单独和具体指明作为参考一样,并在此作为整体加以阐明。
除非在此另外指出或明显地与上下文矛盾,在描述本发明的上下文中(尤其在以下权利要求的上下文中)使用的术语“一个”和“一种”和“所述的”和类似的指示应理解为涵盖单数或复数。除非另有注解,术语“包括(comprising)”、“具有(having)”、“包括(including)”和“包含(containing)”应理解为开放式术语(即,意思为“包括但不局限于”)。除非在此另外指出,在此列举的数值范围仅仅意在用作分别指示落入此范围的个别值的一种简明的方法,并如同在此单独引用一样将每一个别值引入说明书中。除非另外指出或明显地与上下文矛盾,在此描述的所有方法可以以任何顺序进行。除非另外要求保护,在此提供的任何和所有实例或示例性语言(例如,“如”)仅仅意在更好地说明本发明,而不是对本发明的范围施加限定。说明书中的语言不应理解为指示任何未要求保护的要素作为实施本发明的必要条件。
在此描述了本发明的优选实施方式,包括本发明人已知的用于实施本发明的最佳方式。在阅读上述说明书后,那些优选实施方式的改型对于本领域技术人员是显而易见的。本发明者期望本领域技术人员使用这些适宜的改型,且本发明者意料本发明的实施不同于在此的具体描述。因此,本发明包括由适用法律许可的本文所附权利要求所述主题的所有修改和等同物。此外,除非本文另外指出或明显与上下文相冲突,本发明包括上述要素以其所有可能改型的任意组合。

Claims (10)

1、一种医用移植物的支承材料,包括聚合物和不与聚合物共价连接的表面活性剂,其中支承材料用于关节连接医用移植物的硬配合面。
2、权利要求1的支承材料,其中所述的聚合物包括聚乙烯。
3、权利要求2的支承材料,其中所述的聚乙烯是超高分子量的聚乙烯(UHMWPE)。
4、权利要求1的支承材料,其中所述的表面活性剂是阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂或两性表面活性剂。
5、权利要求4的支承材料,其中所述的表面活性剂是非离子表面活性剂。
6、权利要求5的支承材料,其中所述的非离子表面活性剂包括亲水嵌段和疏水嵌段的嵌段共聚物。
7、权利要求6的支承材料,其中所述的嵌段共聚物是A-B、A-B-A或B-A-B嵌段共聚物,其中A是亲水嵌段并且B是疏水嵌段。
8、权利要求7的支承材料,其中A是聚环氧乙烷(PEO)并且B是聚环氧丙烷(PPO)。
9、权利要求8的支承材料,其中所述的共聚物的分子量为大约100至大约20,000g/mol。
10、权利要求9的支承材料,其中所述的共聚物的分子量为大约12,600g/mol。
CNA2007101016191A 2006-03-31 2007-03-30 具有降低的磨损率的医用移植物支承材料和降低磨损率的方法 Pending CN101049517A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/394423 2006-03-31
US11/394,423 US7812098B2 (en) 2006-03-31 2006-03-31 Bearing material of medical implant having reduced wear rate and method for reducing wear rate

Publications (1)

Publication Number Publication Date
CN101049517A true CN101049517A (zh) 2007-10-10

Family

ID=38331498

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101016191A Pending CN101049517A (zh) 2006-03-31 2007-03-30 具有降低的磨损率的医用移植物支承材料和降低磨损率的方法

Country Status (6)

Country Link
US (1) US7812098B2 (zh)
EP (1) EP1839685B1 (zh)
JP (1) JP5128158B2 (zh)
CN (1) CN101049517A (zh)
AT (1) ATE527002T1 (zh)
AU (1) AU2007201379B2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152072A (zh) * 2019-06-27 2019-08-23 合肥工业大学 降低钛合金人工关节材料磨损的关节滑液制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812098B2 (en) 2006-03-31 2010-10-12 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate
US20070232762A1 (en) * 2006-03-31 2007-10-04 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate
US20110066253A1 (en) * 2008-11-24 2011-03-17 Depuy Products, Inc. Ceramic coated orthopaedic implants and method of making such implants
CN101810884A (zh) * 2010-03-19 2010-08-25 中国矿业大学 抗氧化超低磨损超高分子量聚乙烯髋关节臼
WO2016014408A1 (en) 2014-07-21 2016-01-28 Board Of Regents, The University Of Texas System Formulations of intraarticular pharmaceutical agents and methods for preparing and using the same
CN105031721A (zh) * 2015-06-16 2015-11-11 江南大学 一种髋关节臼的制备方法及其应用
CN110607014A (zh) * 2019-08-29 2019-12-24 福建师范大学 一种高强度高韧性电磁屏蔽复合材料的制备方法

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US62264A (en) * 1867-02-19 Improvement in land conveyance
DE227328C (zh)
NL262650A (zh) * 1960-03-23
JPS5018909B2 (zh) 1971-11-09 1975-07-02
US3954927A (en) * 1973-02-05 1976-05-04 Sun Ventures, Inc. Method of making porous objects of ultra high molecular weight polyethylene
US4454612A (en) * 1980-05-07 1984-06-19 Biomet, Inc. Prosthesis formation having solid and porous polymeric components
CA1142883A (en) 1980-09-04 1983-03-15 George White Process for irradiation of polyethylene
JPS60252645A (ja) 1984-05-30 1985-12-13 Sekisui Chem Co Ltd 超高分子量ポリエチレン組成物
EP0148743B1 (en) * 1984-01-06 1991-04-10 Mitsui Petrochemical Industries, Ltd. Thermoplastic resin composition
CA1247795A (en) 1984-03-29 1988-12-28 George S. Van Delinder Polyethylene moulding composition and process
US5082655A (en) * 1984-07-23 1992-01-21 Zetachron, Inc. Pharmaceutical composition for drugs subject to supercooling
US4778601A (en) * 1984-10-09 1988-10-18 Millipore Corporation Microporous membranes of ultrahigh molecular weight polyethylene
WO1986002656A1 (en) 1984-10-24 1986-05-09 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US5403592A (en) 1987-08-25 1995-04-04 Macnaught Pty Limited Lubricant composition for rheumatism
US4880843A (en) * 1988-03-28 1989-11-14 Hoechst Celanese Corporation Composition and process for making porous articles from ultra high molecular weight polyethylene
US5275838A (en) 1990-02-28 1994-01-04 Massachusetts Institute Of Technology Immobilized polyethylene oxide star molecules for bioapplications
JP2957021B2 (ja) * 1991-01-25 1999-10-04 テルモ株式会社 医療用材料および医療用器具ならびに医療用材料の製造方法
JP3008507B2 (ja) * 1991-01-28 2000-02-14 松下電器産業株式会社 人工関節およびその製造方法
US5288818A (en) * 1991-08-20 1994-02-22 Exxon Chemical Patents Inc. Method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5593719A (en) 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
EP0681845B1 (en) 1994-04-11 1999-09-22 Bristol-Myers Squibb Company Polymer composite implant and method of making the same
DE4421270A1 (de) * 1994-06-20 1995-12-21 Henkel Kgaa Wäßrige Fettalkoholdispersionen
CA2166450C (en) 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US5594055A (en) 1995-02-22 1997-01-14 Hoffmann-La Roche Inc. Antioxidant system for polyolefins
US5641502A (en) * 1995-06-07 1997-06-24 United States Surgical Corporation Biodegradable moldable surgical material
AUPN723395A0 (en) * 1995-12-19 1996-01-18 Macnaught Medical Pty Limited Lubrication methods
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US5721334A (en) 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
US5844027A (en) * 1996-05-03 1998-12-01 Ciba Specialty Chemicals Corporation Stabilizer composition for thermoplastic materials
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
EP0935446B1 (en) * 1996-07-09 2007-02-07 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US5827904A (en) * 1996-09-27 1998-10-27 Hahn; David Medical implant composition
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
WO1998016258A1 (en) * 1996-10-15 1998-04-23 The Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
DE19750121C1 (de) 1997-11-13 1999-04-08 Eska Implants Gmbh & Co Gleitpartner
US6123990A (en) * 1998-05-26 2000-09-26 Henkel Corporation Anti-static lubricant composition and method of making same
US6443991B1 (en) * 1998-09-21 2002-09-03 Depuy Orthopaedics, Inc. Posterior stabilized mobile bearing knee
EP0995449A1 (de) * 1998-10-21 2000-04-26 Sulzer Orthopädie AG UHMW-Polyethylen für Implantate
US6379741B1 (en) * 1998-11-30 2002-04-30 The Regents Of The University Of California Plasma-assisted surface modification of polymers for medical device applications
SE9900519D0 (sv) * 1999-02-17 1999-02-17 Lars Lidgren A method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof
ATE386075T1 (de) * 1999-04-12 2008-03-15 Cornell Res Foundation Inc Hydrogel-formendes system mit hydrophoben und hydrophilen komponenten
FR2793245B1 (fr) * 1999-05-05 2002-10-11 Adir Nouveaux composes pyridiniques ou piperidiniques substitues, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
US6365089B1 (en) * 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
US6395799B1 (en) * 2000-02-21 2002-05-28 Smith & Nephew, Inc. Electromagnetic and mechanical wave energy treatments of UHMWPE
US6846875B2 (en) * 2000-04-10 2005-01-25 Pharmacia Groningen Bv Hydrogels and methods for their production
AU6108301A (en) * 2000-04-27 2001-11-07 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US6800298B1 (en) 2000-05-11 2004-10-05 Clemson University Biological lubricant composition and method of applying lubricant composition
JP4489914B2 (ja) * 2000-07-27 2010-06-23 浜松ホトニクス株式会社 A/d変換装置および固体撮像装置
US20030208278A1 (en) 2000-09-29 2003-11-06 Robert Richard Supercritical fluid treatment of irradiated polyethylene
US6818172B2 (en) * 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
US7662954B2 (en) * 2001-10-30 2010-02-16 Colorado State University Research Foundation Outer layer having entanglement of hydrophobic polymer host and hydrophilic polymer guest
AU2002364530B2 (en) * 2001-12-12 2008-09-25 Depuy Products, Inc. Orthopaedic device and method for making same
US6743388B2 (en) 2001-12-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Process of making polymer articles
EP1463457A4 (en) 2002-01-04 2006-12-20 Massachusetts Gen Hospital RETICULATED POLYETHYLENE WITH A HIGH MODULE AND REDUCED CONCENTRATION IN RESIDUAL FREE RADICALS DEVELOPED UNDER THE FUSION POINT
US7819925B2 (en) * 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
US7186364B2 (en) * 2002-01-28 2007-03-06 Depuy Products, Inc. Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same
DE60334767D1 (de) * 2002-02-19 2010-12-16 Kazuhiko Ishihara Künstliches gelenkglied aus einem polymeren material
US7238744B2 (en) * 2002-04-12 2007-07-03 Daramic, Inc. Ultrahigh molecular weight polyethylene articles and method of manufacture
US20040019366A1 (en) * 2002-07-25 2004-01-29 Rottenberg William B. System and method for classification of cardiac activity using multiple sensing locations
US20040068322A1 (en) * 2002-10-04 2004-04-08 Ferree Bret A. Reduced-friction artificial joints and components therefor
US20060085080A1 (en) 2002-10-11 2006-04-20 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
US20050019366A1 (en) 2002-12-31 2005-01-27 Zeldis Jerome B. Drug-coated stents and methods of use therefor
EP1596755B1 (en) 2003-01-16 2016-10-12 Massachusetts General Hospital Methods for making oxidation resistant polymeric material
ES2695401T3 (es) 2003-02-12 2019-01-04 Syncera Inc Composiciones de aleación de polímeros de óxido de alquileno aleatorios y no aleatorios
US7938861B2 (en) * 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US7214764B2 (en) 2003-06-30 2007-05-08 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US20040265165A1 (en) * 2003-06-30 2004-12-30 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US20040262809A1 (en) * 2003-06-30 2004-12-30 Smith Todd S. Crosslinked polymeric composite for orthopaedic implants
US20050065307A1 (en) * 2003-09-19 2005-03-24 Depuy Products, Inc. Medical implant or medical implant part comprising porous UHMWPE and process for producing the same
US7205051B2 (en) 2003-09-30 2007-04-17 Depuy Products, Inc. Medical implant or medical implant part
JP4482379B2 (ja) * 2004-06-15 2010-06-16 瑞穂医科工業株式会社 人工関節用インプラント及びその製造方法
US7384430B2 (en) 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7335697B2 (en) * 2004-12-23 2008-02-26 Depuy Products, Inc. Polymer composition comprising cross-linked polyethylene and methods for making the same
US7879275B2 (en) * 2004-12-30 2011-02-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7896921B2 (en) * 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US8343230B2 (en) 2005-09-22 2013-01-01 Depuy Products, Inc. Orthopaedic bearing material
US7812098B2 (en) 2006-03-31 2010-10-12 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152072A (zh) * 2019-06-27 2019-08-23 合肥工业大学 降低钛合金人工关节材料磨损的关节滑液制备方法
CN110152072B (zh) * 2019-06-27 2021-09-21 合肥工业大学 降低钛合金人工关节材料磨损的关节滑液制备方法

Also Published As

Publication number Publication date
EP1839685A3 (en) 2008-01-02
AU2007201379A1 (en) 2007-10-18
ATE527002T1 (de) 2011-10-15
EP1839685B1 (en) 2011-10-05
JP2007268277A (ja) 2007-10-18
JP5128158B2 (ja) 2013-01-23
EP1839685A2 (en) 2007-10-03
US20070232761A1 (en) 2007-10-04
AU2007201379B2 (en) 2011-12-01
US7812098B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
CN101049517A (zh) 具有降低的磨损率的医用移植物支承材料和降低磨损率的方法
KR101079923B1 (ko) 의학적 이식 용도를 위한 가교된 초고분자량 폴리에틸렌
US20200017676A1 (en) Orthopedic implants having gradient polymer alloys
US11957813B2 (en) Double network hydrogel with anionic polymer and uses thereof
EP1882483B1 (en) Medical implant bearing material
JP5752035B2 (ja) 疎水性ポリマーに由来する親水性相互貫入ポリマーネットワーク
EP2609154B1 (en) Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
Kyomoto et al. Poly (ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly (2-methacryloyloxyethyl phosphorylcholine)
AU2002245513A1 (en) Cross-linked ultra-high molecular weight polyethylene for use as medical implant
US20100137522A1 (en) Bearing material of medical implant and methods for making it
EP2663341A2 (en) Orthopedic implants having gradient polymer alloys
Kyomoto et al. Hydrated phospholipid polymer gel-like layer for increased durability of orthopedic bearing surfaces
Komoto et al. Poly (vinyl alcohol)-grafted polyethylene as a model for an artificial joint
CN118252973A (zh) 一种与骨水泥之间具有高粘接强度的paek关节假体及其处理方法
EP2196171A1 (en) Wear resistant gradient polymeric material and process for the preparation of the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20071010