CN100446544C - A Method for Extracting Outer Boundary of Video Object - Google Patents
A Method for Extracting Outer Boundary of Video Object Download PDFInfo
- Publication number
- CN100446544C CN100446544C CNB2005100215413A CN200510021541A CN100446544C CN 100446544 C CN100446544 C CN 100446544C CN B2005100215413 A CNB2005100215413 A CN B2005100215413A CN 200510021541 A CN200510021541 A CN 200510021541A CN 100446544 C CN100446544 C CN 100446544C
- Authority
- CN
- China
- Prior art keywords
- domain
- time
- image
- area
- seed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 230000033001 locomotion Effects 0.000 claims abstract description 52
- 230000012010 growth Effects 0.000 claims abstract description 24
- 238000004364 calculation method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims description 29
- 238000006073 displacement reaction Methods 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 12
- 230000000877 morphologic effect Effects 0.000 claims description 11
- 230000035040 seed growth Effects 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 3
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 239000000284 extract Substances 0.000 abstract description 6
- 230000011218 segmentation Effects 0.000 description 10
- 230000002123 temporal effect Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 238000013519 translation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
本发明提供的是一种视频对象外边界提取方法,它通过对全局运动补偿之后的相继两帧灰度图像进行高斯噪声模型的种子区域增长法生成帧差图像,提取时域变化区域后计算运动矢量,来区分运动模型区域和失效区域,然后提取运动对象并进行修补、检测空域外边界极大值点、连接空域极大值点所在的canny边界等手段得到运动对象外边界。采用本发明方法,不仅可以得到精确的外边界定位信息,而且整体方法具有很高的鲁棒性,同时其运算速度可以适用于实时系统,具有很强的实际应用前景。
The invention provides a method for extracting the outer boundary of a video object, which generates a frame difference image by performing a Gaussian noise model seed region growth method on two consecutive gray-scale images after global motion compensation, and calculates the motion after extracting the time-domain change area Vector, to distinguish the moving model area and the failure area, and then extract the moving object and repair it, detect the maximum point of the outer boundary of the airspace, and connect the canny boundary where the maximum point of the airspace is located to obtain the outer boundary of the moving object. By adopting the method of the invention, not only accurate outer boundary positioning information can be obtained, but also the whole method has high robustness, and at the same time, its calculation speed can be applied to real-time systems, and has strong practical application prospects.
Description
技术领域 technical field
本发明属于图像处理技术领域,特别涉及视频目标分割图像处理技术。The invention belongs to the technical field of image processing, in particular to the image processing technology of video object segmentation.
背景技术 Background technique
为了支持基于内容的交互性,即支持对内容独立地进行编、解码,MPEG-4视频检验模型引入了视频对象面(VOP:Video Object Plane)的概念。视频对象分割是指把图像序列或视频按一定的标准分割成区域,目的是为了从视频中分离出有一定语义的实体。这种有语义的实体在数字视频中称为视频对象。视频对象的外边界就是视频对象最外的轮廓。所以提取出来视频对象的外边界的信息就可以得到整个视频对象的在图像中的区域特性,从而实现视频对象的分割。相对于单张图片只是具有基于其坐标上的空间的图像信息(即图像的空域信息)而言,视频图像还具有每帧图像相对于前后帧之间的时间相关性的时域信息。所以,视频图像具有空域和时域双方向的信息。In order to support content-based interactivity, that is, to support independent encoding and decoding of content, the MPEG-4 video inspection model introduces the concept of Video Object Plane (VOP: Video Object Plane). Video object segmentation refers to dividing an image sequence or video into regions according to a certain standard, with the purpose of separating entities with certain semantics from the video. Such semantic entities are called video objects in digital video. The outer boundary of the video object is the outermost outline of the video object. Therefore, by extracting the information of the outer boundary of the video object, the regional characteristics of the entire video object in the image can be obtained, thereby realizing the segmentation of the video object. Compared with a single picture that only has image information based on the space on its coordinates (that is, image spatial domain information), video images also have time domain information of each frame of image relative to the time correlation between previous and subsequent frames. Therefore, a video image has information in both the spatial domain and the temporal domain.
视频对象分割是基于MEPG4视频处理计算的前提,在计算机视觉、交通监控、可视预警、机器导航等诸多民用领域有着广泛的应用,同时在靶场电视测量、飞行器电视制导等军用领域也发挥着重要作用。视频分割是面对对象视频编码、多媒体描述和智能信号处理的一个核心操作。但是有效的分割是在图像分析中的一个非常困难的任务和挑战。(参看文献Haritaoglu,I,Harwood,D.,Davis,L.S.″W4:real-time surveillance of people and theiractivities″,Pattern Analysis and Machine Intelligence,IEEE Transactions on,Volume:22,Issue:8,Aug.2000Pages:809-830。)Video object segmentation is based on the premise of MEPG4 video processing and calculation. It has a wide range of applications in many civilian fields such as computer vision, traffic monitoring, visual early warning, and machine navigation. It also plays an important role in military fields such as shooting range TV measurement and aircraft TV guidance. effect. Video segmentation is a core operation in object-oriented video coding, multimedia description, and intelligent signal processing. But effective segmentation is a very difficult task and challenge in image analysis. (See literature Haritaoglu, I, Harwood, D., Davis, L.S. "W4: real-time surveillance of people and their activities", Pattern Analysis and Machine Intelligence, IEEE Transactions on, Volume: 22, Issue: 8, Aug. 2000 Pages: 809-830.)
从目前研究者使用的信息以及其方法,视频对象分割可以分成三大类:(1)时域分割;(2)空域分割和时域跟踪;(3)时空结合分割。(参看文献Fuhui Long,Dagan Feng,Hanchuan Peng,Wan-Chi Siu,″Extracting semantic video objects″,Computer Graphics andApplications,IEEE Vol.21;Jan 2001;pages 48-55)From the current information and methods used by researchers, video object segmentation can be divided into three categories: (1) temporal segmentation; (2) spatial segmentation and temporal tracking; (3) combined temporal and spatial segmentation. (See literature Fuhui Long, Dagan Feng, Hanchuan Peng, Wan-Chi Siu, "Extracting semantic video objects", Computer Graphics and Applications, IEEE Vol.21; Jan 2001; pages 48-55)
第一种方法只是使用时域信息,但是由于目前所有此类方法不能解决计算量大和定位不准确的问题,所以此类方法得不到很好的结果。第二种方法是先在空域进行图像分割,然后对分割出来的图像区域进行时域跟踪。但是当面对当前大多数复杂背景的图像序列时候,此类方法通常都是又费时又得不到期望的结果。第三种方法现在由于其充分利用双方面的信息而得到了极大的推广,本发明提出的方法就属于该方案体系。但是因为这种方法中存在的信息量巨大,且同时时域和空域信息一般不一致,也就是说得到的时域结果和此帧图像中的空域信息并不相符。所以当前大部分研究者所使用的方法并不能很好的融合空域和时域信息,从而即造成计算量过大,也不能很好得到视频对象的完整信息。The first method just uses time-domain information, but because all such methods cannot solve the problem of large calculation and inaccurate positioning, such methods do not get good results. The second method is to perform image segmentation in the spatial domain first, and then track the segmented image regions in the temporal domain. But when faced with most of the current image sequences with complex backgrounds, such methods are usually time-consuming and fail to obtain expected results. The third method has been greatly promoted because it makes full use of both sides of the information, and the method proposed by the present invention belongs to this scheme system. However, because the amount of information in this method is huge, and the time domain and space domain information are generally inconsistent at the same time, that is to say, the obtained time domain result does not match the space domain information in this frame image. Therefore, the methods currently used by most researchers cannot fuse the spatial and temporal information well, which results in too much calculation and cannot obtain the complete information of the video object.
发明内容 Contents of the invention
本发明的目的是提供一种利用时域和空域信息的视频对象外边界提取方法,它具有抗噪强、空域时域信息融合合理快捷、运算速度快、鲁棒性强的等特点。The purpose of the present invention is to provide a method for extracting the outer boundary of a video object using time domain and space domain information, which has the characteristics of strong anti-noise, reasonable and fast fusion of space and time domain information, fast calculation speed, and strong robustness.
为了方便描述本发明地内容,首先作一个术语定义:In order to facilitate the description of the content of the present invention, a definition of terms is first made:
1.全局运动补偿:全局运动就是在视频流的记录过程中,摄像机不可避免做出缩放、水平运动、竖直运动和旋转运动等从而造成的整个图像的全部运动。全局运动补偿就是通过全局运动方法计算出的运动量对一帧图像相对于前一帧的补偿,使两帧图像去除掉摄像机运动做出的影响。(具体方法参看《数字视频处理》崔之枯译)1. Global motion compensation: Global motion is the total motion of the entire image caused by the unavoidable scaling, horizontal motion, vertical motion, and rotational motion of the camera during the recording process of the video stream. Global motion compensation is the compensation of one frame of image relative to the previous frame by the amount of motion calculated by the global motion method, so that the two frames of images can remove the influence of camera motion. (For specific methods, please refer to "Digital Video Processing" Cui Zhiku translation)
2.种子区域增长法:种子区域增长是将具有相似性质的像素集合起来构成区域。具体为先对每个需要分割的区域找一个像素作为增长的种子点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据事先确定的增长或相似准则来判断)合并到种于像素所在的区域。将这些新像素当作新的种子像素继续上面的过程,直到没有满足条件的像素被包括进来,这样一个区域就长成了。2. Seed region growth method: Seed region growth is to gather pixels with similar properties to form a region. Specifically, first find a pixel for each region that needs to be segmented as a seed point for growth, and then merge pixels that have the same or similar properties as the seed pixel in the neighborhood around the seed pixel (judged according to the pre-determined growth or similarity criteria) to the region where the pixel is located. Use these new pixels as new seed pixels to continue the above process until no pixels satisfying the condition are included, so that a region grows.
区域增长法需要解决三个问题:The regional growth method needs to solve three problems:
A、选择或确定一组能正确代表所需区域的种子像素;A. Select or determine a group of seed pixels that can correctly represent the desired area;
B、确定增长的准则;B. Criteria for determining growth;
C、制定让增长过程停止的条件。(具体方法参看《机器视觉》贾云得编著)C. Establish the conditions under which the growth process stops. (For specific methods, please refer to "Machine Vision" edited by Jia Yunde)
3.背景遮挡区域:在前一帧中未被运动物体遮盖的背景,而随着运动物体的运动在下一帧中被运动物体遮盖的背景区域。(参看《数字视频处理》崔之枯译)3. Background occlusion area: the background area not covered by the moving object in the previous frame, but the background area covered by the moving object in the next frame as the moving object moves. (See "Digital Video Processing" Cui Zhiku translation)
4.背景显露区域:在前一帧中被运动物体遮盖,而随着运动物体的运动在下一帧中出现的背景区域。(参看《数字视频处理》崔之枯译)4. Background exposed area: the background area that was covered by the moving object in the previous frame and appears in the next frame with the movement of the moving object. (See "Digital Video Processing" Cui Zhiku translation)
5.高斯噪声:其统计特性为高斯分布特性的噪声。一般信号处理中对于干扰的白噪声看成高斯噪声,进而在分析中统计出其均值和方法来便于处理。(参看《数字图像处理》冈萨雷斯)5. Gaussian noise: noise whose statistical characteristics are Gaussian distribution characteristics. In general signal processing, the interfering white noise is regarded as Gaussian noise, and its mean value and method are calculated in the analysis to facilitate processing. (See "Digital Image Processing" Gonzalez)
6.二值化:使用0,1来表示整个区域的二值特性。(参看《数字图像处理》冈萨雷斯)6. Binarization: use 0, 1 to represent the binary characteristics of the entire area. (See "Digital Image Processing" Gonzalez)
7.形态学滤波:使用数学形态学的方法来进行滤波。通常使用以形态学膨胀运算和腐蚀运算为基础,组合为开运算和闭运算来分别去除不同的二值化图像的噪声。(具体方法参看《图象处理与分析:数学形态学方法及应用》崔屹编著)7. Morphological filtering: use the method of mathematical morphology to filter. Usually, based on the morphological dilation operation and erosion operation, combined into an opening operation and a closing operation to remove the noise of different binarized images respectively. (For specific methods, please refer to "Image Processing and Analysis: Mathematical Morphological Methods and Applications" edited by Cui Yi)
8.结构元:是一个数学形态学的处理其它图像的图像集合。(具体方法参看《图象处理与分析:数学形态学方法及应用》崔屹编著)8. Structural element: It is a mathematical morphology processing image collection of other images. (For specific methods, please refer to "Image Processing and Analysis: Mathematical Morphological Methods and Applications" edited by Cui Yi)
9.形态学膨胀运算:为形态学的最基本算子,其意义为:
10.形态学腐蚀运算:为形态学的最基本算子,其意义为:
11.连通:已知象素p,q∈S,如果存在一条从p到q的路径,则路径上的全部象素都包含在S中,则称p与q是连通的。(参看《数字图像处理》冈萨雷斯)11. Connectivity: Known pixel p, q∈S, if there is a path from p to q, all the pixels on the path are included in S, then p and q are said to be connected. (See "Digital Image Processing" Gonzalez)
12.canny边界:使用canny原则得到图像边界的二值化图像。(参看《数字图像处理》冈萨雷斯)12. Canny boundary: use the canny principle to obtain the binarized image of the image boundary. (See "Digital Image Processing" Gonzalez)
13.掩膜:即一个二值化的区域,为1表示目标,为0的为不相关区域。使用掩膜于一幅图像上,就是保留对应掩膜图像为1的该图像的值,掩膜为0的地方改为0。(参看《数字图像处理》冈萨雷斯)13. Mask: a binarized area, 1 indicates the target, and 0 is an irrelevant area. Using a mask on an image is to retain the value of the image corresponding to the mask image as 1, and change the value of the mask to 0. (See "Digital Image Processing" Gonzalez)
14.区域连通标定方法:就是对整个二值化的图像进行连通标定,为每个连通的区域设置一个标志。(具体方法参看《机器视觉》贾云得编著)14. Regional connectivity calibration method: It is to perform connectivity calibration on the entire binarized image, and set a flag for each connected area. (For specific methods, please refer to "Machine Vision" edited by Jia Yunde)
15.相位相关法:利用相对应块的傅立叶变化求的相位关系,而求的光流运动矢量的方法。(具体方法参看《数字视频处理》崔之枯译)15. Phase correlation method: the method of obtaining the optical flow motion vector by using the phase relationship obtained by the Fourier transformation of the corresponding block. (For specific methods, please refer to "Digital Video Processing" Cui Zhiku translation)
16外轮廓边界提取方法:按照顺时针方向,逐点提取最外轮廓的外边界点。(具体方法参看《机器视觉》贾云得编著)16 Outer contour boundary extraction method: extract the outer boundary points of the outermost contour point by point in a clockwise direction. (For specific methods, please refer to "Machine Vision" edited by Jia Yunde)
17.补偿:一个象素按照补偿定义的位移,与当前帧图像移动到下一帧图像的象素的灰度值不变,则这个位移称为运动补偿。象素按照这个位移的移动称为补偿。(具体方法参看《数字视频处理》崔之枯译)17. Compensation: The displacement of a pixel according to the compensation definition, and the gray value of the pixel moving from the current frame image to the next frame image remain unchanged, then this displacement is called motion compensation. The movement of pixels according to this displacement is called compensation. (For specific methods, please refer to "Digital Video Processing" Cui Zhiku translation)
18.匹配:通过计算的两个象素点的灰度值绝对差来表示两个象素的相似度。18. Matching: The similarity between two pixels is represented by the calculated absolute difference of gray values of two pixels.
19.空域梯度:图像象素点的上下左右位置上的灰度值的平方差。19. Spatial gradient: the square difference of the gray value at the top, bottom, left, and right positions of the image pixel.
本发明提供的一种视频对象外边界提取方法,它包含下列步骤(整体流程参看附图1所示):A kind of video object outer boundary extraction method provided by the present invention, it comprises the following steps (whole process is referring to shown in accompanying drawing 1):
步骤1、对视频流中已经进行过全局运动补偿的相继两帧灰度图像,使用以高斯噪声模型为条件的种子区域增长法来进行帧差处理,得到抗噪的二值化时域帧差图像,其中值为1的区域为时域变化区域;Step 1. For two consecutive grayscale images in the video stream that have undergone global motion compensation, use the seed region growth method conditioned on the Gaussian noise model to perform frame difference processing to obtain a noise-resistant binarized time-domain frame difference Image, where the area with a value of 1 is a time-domain change area;
具体方法为:首先计算已经进行过全局运动补偿的相继两帧灰度图像上的绝对差,然后把大于40的绝对差点设置为0,统计剩余绝对差的均值(以M表示)和方差(以A表示),然后根据上边得到的绝对差图像的均值M和方差A设置一个M+4*A的阈值为种子条件,设置[M+A,M+4*A]区间范围为种子增长条件。在已经进行过全局运动补偿的相继两帧灰度图像的绝对差图像上逐点搜索,把绝对差值大于种子阈值的所有象素点设置为种子象素点。然后在种子象素点的邻域进行搜索,满足种子增长条件的象素点设置为种子象素点。搜索完所有绝对差图像之后,得到种子生长的区域,将该区域上所有象素点设置为1,该区域以外的所有象素点设置为0,则得到二值化时域帧差图像。The specific method is as follows: first calculate the absolute difference on two successive frames of grayscale images that have undergone global motion compensation, then set the absolute difference greater than 40 to 0, and count the mean (expressed by M) and variance (expressed by M) of the remaining absolute differences ( A indicates), and then set a threshold of M+4*A as the seed condition according to the mean M and variance A of the absolute difference image obtained above, and set the interval range of [M+A, M+4*A] as the seed growth condition. Search point by point on the absolute difference images of two consecutive grayscale images that have undergone global motion compensation, and set all the pixels whose absolute difference values are greater than the seed threshold as seed pixels. Then search in the neighborhood of the seed pixel point, and set the pixel point satisfying the seed growth condition as the seed pixel point. After all the absolute difference images are searched, the area where the seed grows is obtained, and all pixels in this area are set to 1, and all pixels outside this area are set to 0, then a binarized time-domain frame difference image is obtained.
步骤2、对步骤1中利用种子区域增长法生成的二值化时域帧差图像,进行形态学滤波处理,得到去噪后的时域变化区域图像;Step 2. Perform morphological filtering on the binarized time-domain frame difference image generated by the seed region growth method in step 1 to obtain a time-domain change region image after denoising;
步骤3、对步骤2得到去噪后的时域变化区域图像,使用区域连通标定方法,得到具有标志的时域变化区域图像;Step 3. For the denoised time-domain change region image obtained in step 2, use the region connectivity calibration method to obtain a time-domain change region image with a sign;
步骤4、逐个取出步骤3得到的具有标志的变化区域图像上的每一个标志,然后逐象素点扫描具有标志的时域变化区域图像,如果该象素点的标志与取出的标志一样的话,则该象素点设置为1,如果不一样则为0,没有标志的象素点设置为0。扫描之后形成标志的时域单一变化区域二值化图像,每个标志都要逐一的生成该标志的时域单一变化区域二值化图像;Step 4, take out each sign on the change area image with sign obtained in step 3 one by one, then scan the time domain change area image with sign pixel by pixel, if the sign of this pixel point is the same as the sign taken out, Then the pixel is set to 1, if not the same as 0, the pixel without a mark is set to 0. After scanning, the binarized image of the time-domain single-change area of the mark is formed, and each mark must generate the binarized image of the time-domain single-change area of the mark one by one;
步骤5、以步骤4得到每个标志的时域单一变化区域二值化图像为掩膜图像,对步骤1中视频流中的已经进行过全局运动补偿的相继两帧灰度图像扫描,保留掩膜图像上为1的象素点在相继两帧灰度图像上对应位置的灰度值,设置掩膜图像上为0的象素点在相继两帧灰度图像上对应位置的灰度值为0,扫描完毕之后得到每一个标志所对应的两个只保留相对应的时域变化区域灰度值的时域单一变化区域灰度图像;Step 5, take the binarized image of the time-domain single change area of each mark obtained in step 4 as a mask image, scan the two consecutive grayscale images in the video stream in step 1 that have undergone global motion compensation, and keep the mask The gray value of the corresponding position of the pixel point of 1 on the mask image on the corresponding position of two consecutive gray scale images, and the gray value of the corresponding position of the pixel point of 0 on the mask image on the corresponding position of two consecutive gray scale images 0, after the scanning is completed, two time-domain single-change area gray-scale images corresponding to each mark are obtained, which only retain the corresponding time-domain change area gray value;
步骤6、计算步骤4得到时域单一变化区域二值化图像中值为1的区域的最大外接长方形的四个顶点的坐标值;Step 6, calculation step 4 obtain the coordinate values of the four vertices of the largest circumscribed rectangle of the region whose value is 1 in the binarized image of the single change region in the time domain;
步骤7、按照使用步骤6得到的每一个标志的时域单一变化区域二值化图像最大外接长方形的四个顶点的坐标值,从步骤5得到的每一个标志的两个时域单一变化区域灰度图像中,提取出最大外接长方形的内部图像,形成每一个标志所对应的两个局部的时域变化区域灰度图像;Step 7. According to the coordinate values of the four vertices of the largest circumscribed rectangle of the binarized image of the time-domain single-change area of each sign obtained in step 6, the two time-domain single-change areas of each sign obtained in step 5 are gray In the degree image, the internal image of the largest circumscribed rectangle is extracted to form two local time-domain grayscale images corresponding to each sign;
步骤8、对步骤7得到每个标志对应的两个局部的时域变化区域灰度图像,使用相位相关法,计算出产生步骤7中局部的时域变化区域的实际运动物体在两个对应同一标志的局部的时域变化区域灰度图像上的相对运动位移;Step 8. Obtain two local time-domain change area grayscale images corresponding to each sign in step 7, and use the phase correlation method to calculate the actual moving object that produces the local time-domain change area in step 7. The relative motion displacement on the grayscale image of the local time domain change area of the mark;
步骤9、对步骤7得到的每个标志的两个局部的时域变化区域灰度图像,以步骤8得到的产生该变化区域的运动物体在两个局部的时域变化区域灰度图像上的相对运动位移作为象素匹配条件,使用种子区域增长法,去除背景遮挡区域和背景显露区域,生成时域单一运动对象区域。Step 9, for the two local time-domain change area grayscale images of each sign obtained in step 7, the moving object that produces the change area obtained in step 8 on the two local time-domain change area gray-scale images The relative motion displacement is used as the pixel matching condition, and the seed area growth method is used to remove the background occlusion area and the background exposure area, and generate a single moving object area in time domain.
具体方法:根据步骤8得到的产生每个标志对应的时域变化区域的运动物体在两个局部的时域变化区域灰度图像上的相对运动位移,设置种子条件为:如果标志的两个局部的时域变化区域灰度图像上的对应象素点按照相对运动位移进行补偿之后的灰度幅度相差绝对值小于2,并且小于未运动补偿的灰度幅度相差绝对值,则该象素点为种子象素点。设置种子增长条件为:如果标志的两个局部的时域变化区域灰度图像上的对应象素点按照相对运动位移进行补偿之后的灰度幅度相差绝对值大于2小于5,并且小于未运动补偿的灰度幅度相差绝对值,则该象素点为种子增长象素点。逐个扫描步骤7得到相对应标志的两个局部的时域变化区域灰度图像上的象素点,满足种子条件的象素点设置为种子象素点。然后在种子象素点的邻域进行搜索,满足种子增长条件的点设置为种子象素点。搜索完所有局部的时域变化区域灰度图像的象素之后,得到种子生长的时域单一运动对象区域,设置该区域上所有象素设置为1,该区域以外的所有象素点设置为0,则得到二值化时域单一运动对象区域。Specific method: According to the relative motion displacement of the moving object in the time-domain change area corresponding to each sign obtained in step 8 on the grayscale images of two local time-domain change areas, the seed condition is set as follows: if the two parts of the sign The absolute value of the gray-scale amplitude difference of the corresponding pixel point on the gray-scale image of the time-domain change area after compensation according to the relative motion displacement is less than 2, and is smaller than the absolute value of the gray-scale amplitude difference without motion compensation, then the pixel point is The seed pixel. Set the growth condition of the seed as follows: if the absolute value of the gray scale amplitude difference between the corresponding pixels on the gray scale image of the two local time domain change areas of the sign is compensated according to the relative motion displacement, it is greater than 2 and less than 5, and less than that without motion compensation The absolute value of the gray scale difference, then the pixel is the seed growth pixel. Scan step 7 one by one to obtain the pixels on the grayscale image of the two local time-domain change regions corresponding to the sign, and set the pixels satisfying the seed condition as the seed pixels. Then search in the neighborhood of the seed pixel point, and set the point satisfying the seed growth condition as the seed pixel point. After searching all the pixels of the grayscale image in the local time-domain change area, the time-domain single moving object area where the seed grows is obtained, and all pixels in this area are set to 1, and all pixels outside this area are set to 0 , then a binarized time-domain single moving object area is obtained.
步骤10、对步骤9中得到二值化时域单一运动对象区域,使用修补方法,得到完整的时域单一运动对象区域;(以上为时域边界提取处理流程,参看附图2所示)Step 10, obtain binarization time domain single moving object area in step 9, use patching method, obtain complete time domain single moving object area; (the above is the processing flow of time domain boundary extraction, referring to shown in Figure 2)
具体修补方法:对二值化时域单一运动对象区域进行行和列扫描,将不是运动对象的象素点且又位于同行(或者同列)的两个运动对象象素之间的对象象素点设置为运动对象象素点,其它象素点不变,得到完整的时域单一运动对象区域Specific repair method: perform row and column scanning on the single moving object area in the binarization time domain, and remove the pixel points of the object that are not pixels of the moving object and are located between two moving object pixels in the same line (or in the same column) Set it as the pixel of the moving object, and keep the other pixels unchanged to obtain a complete single moving object area in the time domain
步骤11、对步骤10中生成的完整的时域单一运动对象区域,使用外轮廓边界提取方法,得到运动对象外边界轮廓点;Step 11. For the complete time-domain single moving object area generated in step 10, use the outer contour boundary extraction method to obtain the outer boundary contour points of the moving object;
步骤12、对步骤11得到的运动对象外边界轮廓点,逐点以空域边界极大值点来替代,得到时域对象空域边界极大值点图像;Step 12, for the outer boundary contour points of the moving object obtained in step 11, replace point by point with the maximum value point of the space boundary, and obtain the image of the maximum point of the space boundary of the time domain object;
具体方法:计算时域边界轮廓点的8邻域进行空域梯度,然后与含有权值W(权值W选择为一个大于1的数字来强化时域结果)的当前时域边界点的空域梯度进行对比,选择具有最大空域梯度的点作为时域对象空域边界极大值点,得到时域对象空域边界极大值点图像;Specific method: calculate the 8 neighbors of the time-domain boundary contour points for spatial gradient, and then carry out the spatial gradient with the current time-domain boundary point containing the weight W (the weight W is selected as a number greater than 1 to strengthen the time-domain results). In contrast, the point with the largest spatial gradient is selected as the maximum value point of the spatial boundary of the time domain object, and the image of the maximum value point of the spatial boundary of the time domain object is obtained;
步骤13、对步骤7得到的标志对应的两个局部的时域变化区域灰度图像使用canny边界提取方法提取边界,得到局部的时域变化区域的空域canny边界图像;Step 13, using the canny boundary extraction method to extract the boundary of the two local time-domain change region grayscale images corresponding to the signs obtained in step 7, to obtain the spatial domain canny boundary image of the local time-domain change region;
步骤14、在步骤13中局部时域变化区域的空域canny边界图像上,按照步骤12得到的时域对象空域边界极大值点图像,进行连接操作,得到空域时域融合运动对象外边界。(以上为空域边界精化和连接,参看附图2所示)Step 14. On the spatial canny boundary image of the local time domain change area in step 13, perform a connection operation according to the maximum value point image of the spatial boundary of the time domain object obtained in step 12, to obtain the outer boundary of the spatial and temporal fusion moving object. (The above is the refinement and connection of the airspace boundary, as shown in Figure 2)
具体连接操作为:保留含有空域边界极大值点的局部时域变化区域的空域canny边界,去除未含有空域边界极大值点的局部时域变化区域的空域canny边界,形成空域时域融合运动对象外边界,即视频对象外边界。The specific connection operation is: retain the airspace canny boundary of the local time domain change area containing the airspace boundary maximum point, remove the airspace canny boundary of the local time domain change area that does not contain the airspace boundary maximum point, and form the airspace time domain fusion motion The outer boundary of the object, that is, the outer boundary of the video object.
通过以上步骤,我们就可以得到视频对象的外边界。Through the above steps, we can get the outer boundary of the video object.
需要说明的是:It should be noted:
(1)本发明利用的是视频流中相继两个视频图像中运动对象有一定重叠的情况,同时也使用了相位相关法计算运动对象的光流矢量,所以此发明适用于运动对象速度正常和运动对象为非形变物体的情况。(1) What the present invention utilizes is the situation that the moving object in two consecutive video images overlaps to a certain extent in the video stream, and also uses the phase correlation method to calculate the optical flow vector of the moving object simultaneously, so this invention is applicable to moving object speed normal and The case where the moving object is a non-deformable object.
(2)在本发明中的步骤1中使用的高斯噪声模型是根据对帧差图像具有高斯噪声的理论依据而成,此依据已经是数字图像中常用的噪声标准。所以使用该方法的种子区域增长法可以很好的去除噪声,得到有效的运动变化区域。(2) The Gaussian noise model used in step 1 of the present invention is formed based on the theoretical basis of Gaussian noise for frame difference images, which is already a common noise standard in digital images. Therefore, the seed region growth method using this method can remove noise very well and obtain an effective motion change region.
(3)步骤4中得到标志之后的变化区域中存在着三种区域:运动物体,被覆盖的背景,显露出的背景。对于这三种区域在步骤五中使用了相继两帧中对应的变化区域来计算出相应的位移,进而三种区域得以区分。其原理为:因为变化区域中大部分为运动物体,其具有同一运动矢量,所以存在公式1的关系,其中(d1,d2)为运动物体的位移矢量,f1(x,y),f2(x+d1,y+d2)表示两帧图像中的相对应的图像块,为f1(x,y),f2(x+d1,y+d2)的傅立叶变化,为频域因子。这样的傅立叶变化就存在公式2的关系,它们相位之间存在公式3的关系,因此可以得到一个关于(d1,d2)的脉冲,从而计算出(d1,d2),其中和分别为 的相位,j为复数单位。(3) There are three kinds of regions in the changed region after the logo is obtained in step 4: moving object, covered background, and exposed background. For these three kinds of regions, in step five, the corresponding change regions in two consecutive frames are used to calculate the corresponding displacements, and then the three kinds of regions can be distinguished. The principle is: because most of the changing areas are moving objects, which have the same motion vector, there is a relationship of formula 1, where (d 1 , d 2 ) is the displacement vector of the moving object, f 1 (x, y), f 2 (x+d 1 , y+d 2 ) represents the corresponding image blocks in the two frames of images, is the Fourier transform of f 1 (x, y), f 2 (x+d 1 , y+d 2 ), is the frequency domain factor. so The Fourier change of , there is a relationship of formula 2, and there is a relationship of formula 3 between their phases, so a pulse about (d 1 , d 2 ) can be obtained, and (d 1 , d 2 ) can be calculated, where and respectively The phase of j is a complex unit.
f1(x,y)=f2(x+d1,y+d2) (公式1)f 1 (x, y) = f 2 (x+d 1 , y+d 2 ) (Formula 1)
(公式2) (Formula 2)
(公式3) (Formula 3)
(4)步骤11中提取出来的时域对象外边界因为位移计算和帧差处理引入的不确定性,会存在不能得到物体边界的精确定位的结果,所以本发明在此通过空域处理得到精确的物体外边界。(4) Due to the uncertainty introduced by the displacement calculation and frame difference processing of the time domain object outer boundary extracted in step 11, there will be a result that the precise positioning of the object boundary cannot be obtained, so the present invention obtains accurate positioning by spatial domain processing. The outer boundary of the object.
本发明的实质:它通过对全局运动补偿之后的相继两帧图像进行高斯噪声模型的种子区域增长法生成帧差图像。然后使用相位相关法对相应变化区域中的实际两帧图像进行运算,得到运动矢量。使用该运动矢量来区分运动模型区域和失效区域,然后在运动区域中根据运动矢量使用种子区域增长法来提取运动对象。对运动对象区域进行修补处理之后,然后检测空域外边界。此刻时域分析完成,然后使用空域信息进行精化。先对时域对象的外边界点用空域梯度极大值点来替代,最后连接空域极大值点所在的canny边界。从而得到运动对象外边界。The essence of the present invention: it generates the frame difference image by performing the seed area growth method of the Gaussian noise model on two successive frames of images after global motion compensation. Then use the phase correlation method to operate on the actual two frames of images in the corresponding change area to obtain the motion vector. The motion vector is used to distinguish the motion model area from the failure area, and then the motion object is extracted by using the seed area growing method in the motion area according to the motion vector. After patching the moving object area, the outer boundary of the airspace is detected. At this point the time domain analysis is complete and then refined using the air domain information. First, replace the outer boundary points of the time domain object with the maximum value points of the spatial gradient, and finally connect the canny boundary where the maximum value points of the space domain are located. Thus the outer boundary of the moving object is obtained.
本发明的方法具有以下三个特征:一以高斯噪声模型为基础的种子区域增长法来生成很强抗噪的帧差图像,因此适应于各种复杂背景情况;二使用快速的相位相关法得到时域运动对象,可以形成具有单一语义的目标对象区域;三仅使用时域对象边缘的空域边界信息来修正运动对象。所以整体方法具有抗噪方法优秀,空域时域信息融合合理简化,这样使该发明具有运算速度快,鲁棒性强的特性。The method of the present invention has the following three characteristics: one is based on the Gaussian noise model to generate a frame difference image with strong anti-noise, so it is suitable for various complex background situations; two uses the fast phase correlation method to obtain Temporal moving objects can form target object regions with single semantics; three only use the spatial boundary information of temporal object edges to correct moving objects. Therefore, the overall method has an excellent anti-noise method, and the fusion of space and time domain information is reasonably simplified, so that the invention has the characteristics of fast computing speed and strong robustness.
本发明的创新之处在于:The innovation of the present invention is:
1.以高斯噪声模型为基础的种子区域增长法来生成很强抗噪的帧差图像。因为其去噪理论合理,因此适应于各种复杂背景情况,从而提高了该方法的鲁棒性和极大减少了该方法的运算量。1. The seed region growth method based on the Gaussian noise model to generate a frame difference image with strong anti-noise. Because its denoising theory is reasonable, it is suitable for various complex background situations, thereby improving the robustness of the method and greatly reducing the amount of calculation of the method.
2.使用快速的相位相关法得到时域运动对象,可以形成具有单一语义的目标对象区域,所以在快速实施的同时达到准确性的目的。2. Using the fast phase correlation method to obtain the time-domain moving object can form a target object area with a single semantic, so it can achieve the purpose of accuracy while implementing it quickly.
3.对得到的时域对象边界实行空域边界极大值替换,最后连接canny边界,从而在充分利用时域信息的基础上,精确定位边界信息。3. Replace the maximum value of the air domain boundary with the obtained time domain object boundary, and finally connect the canny boundary, so as to accurately locate the boundary information on the basis of making full use of the time domain information.
采用本发明的视频对象外边界提取方法,充分利用图像序列的空、时信息。不仅可以得到精确的外边界定位信息,而且整体方法具有很高的鲁棒性,同时其运算速度可以适用于实时系统,具有很强的实际应用前景。The method for extracting the outer boundary of the video object of the present invention fully utilizes the space and time information of the image sequence. Not only can the accurate positioning information of the outer boundary be obtained, but also the overall method has high robustness, and its calculation speed can be applied to real-time systems, so it has a strong practical application prospect.
附图说明 Description of drawings
图1本发明流程示意图Fig. 1 schematic flow chart of the present invention
图2本发明中时域边界提取处理流程示意图Fig. 2 Schematic diagram of time domain boundary extraction processing flow in the present invention
图3本发明中空域边界精化和连接处理流程示意图Fig. 3 schematic diagram of airspace boundary refinement and connection processing flow in the present invention
具体实施方式: Detailed ways:
下面以给出一个具体的本发明的实现例,本实现例采用的是车辆在复杂背景下的提取,A specific implementation example of the present invention is given below. What this implementation example uses is the extraction of vehicles under complex backgrounds.
步骤1对已经进行过全局运动补偿后的视频流中的相继两帧图像,其中当前帧为f(x,y,k)和前一帧为f(x,y,k-1)(公式中x代表图像矩阵中的行坐标,y代表图像矩阵中的列坐标,k代表本帧在整个视频流中的时间相对位置,k-1代表前一帧在整个视频流中的时间相对位置),去除直接相减绝对差值中的大于阈值40的值,然后对剩下的绝对值进行统计,计算得到该直接差的均值M和方差A;Step 1 is for two consecutive frames of images in the video stream after global motion compensation, where the current frame is f(x, y, k) and the previous frame is f(x, y, k-1) (in the formula x represents the row coordinates in the image matrix, y represents the column coordinates in the image matrix, k represents the time relative position of this frame in the entire video stream, k-1 represents the time relative position of the previous frame in the entire video stream), Remove the value greater than the threshold 40 in the absolute difference of direct subtraction, and then perform statistics on the remaining absolute value, and calculate the mean M and variance A of the direct difference;
步骤2以大于M+4×A的象素为种子点,以[M+A,M+4×A]为增长条件,使用种子区域增长法对来|f(x,y,k)-f(x,y,k-1)|的结果进行处理,来得到抗噪的时域变化区域的二值化图像,使用h(x,y,k)表示该图像;Step 2 takes the pixel greater than M+4×A as the seed point, takes [M+A, M+4×A] as the growth condition, and uses the seed region growth method to get |f(x, y, k)-f (x, y, k-1)|The result is processed to obtain the binarized image of the anti-noise time-domain change area, and the image is represented by h(x, y, k);
步骤3对h(x,y,k)使用形态学开操作和闭操作进行滤波,得到去噪后的时域变化区域图像,使用以o(x,y,k)表示;Step 3: Filter h(x, y, k) using morphological opening and closing operations to obtain the image of the time-domain change area after denoising, which is represented by o(x, y, k);
步骤4对o(x,y,k)进行连通标定,得到具有标志的时域变化区域图像,使用l(x,y,k)表示,具体方法为:扫描图像,找到没有标记的1点,给它分配一个新的标记L;递归分配标记L给1点的邻点;不存在没标记的点后则停止;返回最初,再次扫描图像,直到所以1点都存在标记为止。这样就可以得到具有标志的时域变化区域图像;Step 4 Carry out connected calibration on o(x, y, k) to obtain a time-domain change area image with a mark, which is represented by l(x, y, k). The specific method is: scan the image, find a point without a mark, Assign it a new label L; recursively assign the label L to the adjacent points of 1 point; stop when there are no unmarked points; return to the beginning, and scan the image again until all 1 points have labels. In this way, images of temporally changing regions with signs can be obtained;
步骤5对l(x,y,k)中每一个标志的时域变化区域图像,在f(x,y,k)和f(x,y,k-1)中提取出相对应的时域单一变化区域二值化图像,使用ch(x,y,k)和ch(x,y,k-1)表示,此时每一个提取出来的时域单一变化区域二值化图像是对应的为一个单一运动物体在相继两帧图像上的位移所引起的变化。Step 5: Extract the corresponding time-domain images from f(x, y, k) and f(x, y, k-1) for the time-domain change region image of each marker in l(x, y, k) The binarized image of a single change area is represented by ch(x, y, k) and ch(x, y, k-1). At this time, each extracted binarized image of a single change area in the time domain is corresponding to The change caused by the displacement of a single moving object on two consecutive frames of images.
步骤6以ch(x,y,k)和ch(x,y,k-1)为掩膜图像,保留掩膜图像为1对应在f(x,y,k)和f(x,y,k-1)位置上的灰度值,为0的对应位置在f(x,y,k)和f(x,y,k-1)也设置为0,得到每一个标志所对应的两个只保留相对应的时域变化区域灰度值的时域单一变化区域灰度图像,以gch(x,y,k)和gch(x,y,k-1)来表示;Step 6 uses ch(x, y, k) and ch(x, y, k-1) as mask images, and retaining the mask image as 1 corresponds to f(x, y, k) and f(x, y, The gray value at the position of k-1), the corresponding position of 0 is also set to 0 at f(x, y, k) and f(x, y, k-1), and two corresponding to each sign are obtained A time-domain single-change area gray-scale image that only retains the gray-scale value of the corresponding time-domain change area is represented by gch(x, y, k) and gch(x, y, k-1);
步骤7对相应于ch(x,y,k)的l(x,y,k)中每一个标志的时域单一变化区域二值化图像,计算其最大外接长方形的四个顶点的坐标值。使用(x0,y0)(x1,y1)(x2,y2)(x3,y3)表示。Step 7 Calculate the coordinate values of the four vertices of the largest circumscribed rectangle for the binarized image of the time-domain single change region of each mark in l(x, y, k) corresponding to ch(x, y, k). It is represented by (x 0 , y 0 )(x 1 , y 1 )(x 2 , y 2 )(x 3 , y 3 ).
步骤8按照(x0,y0)(x1,y1)(x2,y2)(x3,y3),从ch(x,y,k)和ch(x,y,k-1)中,提取出每一个标志所对应的两个局部的时域变化区域灰度图像;使用och(x,y,k)和och(x,y,k-1)来表示。 Step 8 From ch (x , y , k ) and ch (x,y , k- In 1), two local time-domain grayscale images corresponding to each mark are extracted; represented by och(x, y, k) and och(x, y, k-1).
步骤9对och(x,y,k)和och(x,y,k-1)作为(公式1)中的f1(x,y),f2(x+d1,y+d2),按照(公式2)和(公式3)得到运动矢量(d1,d2);Step 9 for och(x, y, k) and och(x, y, k-1) as f 1 (x, y), f 2 (x+d 1 , y+d 2 ) in (Formula 1) , get the motion vector (d 1 , d 2 ) according to (Formula 2) and (Formula 3);
步骤10对och(x,y,k)和och(x,y,k-1),以Step 10 for och(x, y, k) and och(x, y, k-1), with
och(x,y,k)-och(x+d1,y+d2,k-1)<och(x,y,k)-och(x,y,k-1)和och(x, y, k)-och(x+d 1 , y+d 2 , k-1)<och(x, y, k)-och(x, y, k-1) and
och(x,y,k)-och(x+d1,y+d2,k-1)<Th1(Th1设置为2)为种子条件,以och(x, y, k)-och(x+d 1 , y+d 2 , k-1)<Th1 (Th1 is set to 2) is the seed condition, with
och(x,y,k)-och(x+d1,y+d2,k-1)<och(x,y,k)-och(x,y,k-1)和och(x, y, k)-och(x+d 1 , y+d 2 , k-1)<och(x, y, k)-och(x, y, k-1) and
Th1<och(x,y,k)-och(x+d1,y+d2,k-1)<Th2(Th2设置为5)为增长条件进行种子区域增长,得到时域的运动对象区域。具体增长方法为:逐个扫描och(x,y,k)和och(x,y,k-1)上的象素点,满足种子条件的象素点设置为种子象素点;然后在种子象素点的邻域进行搜索,满足种子增长条件的点设置为种子象素点;搜索完所有局部的时域变化区域灰度图像的象素之后,得到种子生长的时域单一运动对象区域,设置该区域上所有象素设置为1,该区域以外的所有象素点设置为0,则得到二值化时域单一运动对象区域,使用to(x,y,k)和to(x,y,k-1)来表示;Th1<och(x, y, k)-och(x+d 1 , y+d 2 , k-1)<Th2 (Th2 is set to 5) is the growth condition for seed region growth to obtain the moving object region in the time domain . The specific growth method is: scan the pixel points on och(x, y, k) and och(x, y, k-1) one by one, set the pixel point satisfying the seed condition as the seed pixel point; The neighborhood of the pixel point is searched, and the point that satisfies the seed growth condition is set as the seed pixel point; after searching all the pixels of the gray image in the local time domain change area, the time domain single moving object area of the seed growth is obtained, set All pixels in this area are set to 1, and all pixels outside this area are set to 0, then a binarized time-domain single moving object area is obtained, using to(x, y, k) and to(x, y, k-1) to represent;
步骤11对to(x,y,k)和to(x,y,k-1)进行行和列修补,得到完整的时域单一运动对象区域,使用fto(x,y,k)和fto(x,y,k-1)来表示;Step 11 performs row and column patching on to(x, y, k) and to(x, y, k-1) to obtain a complete time-domain single moving object area, using fto(x, y, k) and fto( x, y, k-1) to represent;
步骤12在fto(x,y,k)和fto(x,y,k-1)上提取运动对象外边界轮廓点;具体方法是:(a)从左到右,从上到下扫描fto(x,y,k)和fto(x,y,k-1),求区域的起始点s(k)=(x(k),y(k)),k=0;(其中k为得到的轮廓点的序列值,x(k),y(k)为k点的坐标值,s(k)代表轮廓k点)(2)用c表示当前边界上被跟踪的象素点,置c=s(k),记c左4邻点为b(b在连通区域内);(3)按逆时针方向记从b开始的c的8个8邻点分别为n1,n2…,n8;(4)从b开始按逆时针找到第一个ni属于连通区域的点;(5)置c=s(k)=ni,b=ni-1;(6)重复步骤(3)(4)(5),直到s(k)=s(0);Step 12 extracts the outer boundary contour points of the moving object on fto (x, y, k) and fto (x, y, k-1); the specific method is: (a) scan fto from left to right, from top to bottom ( x, y, k) and fto(x, y, k-1), find the starting point s(k)=(x(k), y(k)) of the region, k=0; (where k is the obtained The sequence value of contour point, x (k), y (k) is the coordinate value of k point, s (k) represents contour k point) (2) represent the pixel point tracked on the current boundary with c, put c= s(k), record the left 4 neighbors of c as b (b is in the connected area); (3) record the 8 neighbors of c starting from b in the counterclockwise direction as n 1 , n 2 ..., n 8 ; (4) find the point that the first n i belongs to the connected region counterclockwise from b; (5) set c=s(k)=n i , b=n i-1 ; (6) repeat steps ( 3)(4)(5), until s(k)=s(0);
步骤13对上边得到的fto(x,y,k)和fto(x,y,k-1)的运动对象外边界轮廓点,逐点以空域边界极大值点来替代,得到时域对象空域边界极大值点图像,使用mp(x,y,k)和mp(x,y,k-1)来表示;Step 13 For the fto(x, y, k) and fto(x, y, k-1) obtained above, the outer boundary contour points of the moving object are replaced point by point with the maximum value points of the space boundary to obtain the space space of the time domain object Boundary maximum point image, represented by mp(x, y, k) and mp(x, y, k-1);
步骤14对och(x,y,k)和och(x,y,k-1),以canny边界提取方法提取边界,得到局部的时域变化区域的空域canny边界图像,使用cy(x,y,k)和cy(x,y,k-1)来表示;Step 14 For och(x, y, k) and och(x, y, k-1), extract the boundary with the canny boundary extraction method to obtain the spatial canny boundary image of the local time domain change area, use cy(x, y , k) and cy(x, y, k-1) to represent;
步骤15在cy(x,y,k)和cy(x,y,k-1)图上,按照mp(x,y,k)和mp(x,y,k-1)来连接cy(x,y,k)和cy(x,y,k-1)上的边界,得到最终的空域时域融合运动对象外边界,即视频对象外边界,使用tsb(x,y,k)和tsb(x,y,k-1)来表示。Step 15 On the graph of cy(x, y, k) and cy(x, y, k-1), connect cy(x , y, k) and the boundaries on cy(x, y, k-1) to get the final spatial-temporal fusion moving object outer boundary, that is, the video object outer boundary, using tsb(x, y, k) and tsb( x, y, k-1) to represent.
按照以上步骤,采用MATLAB语言编程,通过计算机仿真可以得到最后的结果。与现有的三帧差方法和其它的常规视频对象提取方法对比可知:采用本发明方法可完整提取视频对象,且运算速度快,鲁棒性强,处理信息少,具有高效、应用面广、适应性强的效果。According to the above steps, using MATLAB language programming, the final result can be obtained through computer simulation. Compared with the existing three-frame difference method and other conventional video object extraction methods, it can be seen that the method of the present invention can completely extract the video object, and the calculation speed is fast, the robustness is strong, the processing information is less, and it has high efficiency, wide application range, Adaptable effect.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100215413A CN100446544C (en) | 2005-08-26 | 2005-08-26 | A Method for Extracting Outer Boundary of Video Object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100215413A CN100446544C (en) | 2005-08-26 | 2005-08-26 | A Method for Extracting Outer Boundary of Video Object |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1921560A CN1921560A (en) | 2007-02-28 |
CN100446544C true CN100446544C (en) | 2008-12-24 |
Family
ID=37779104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100215413A Expired - Fee Related CN100446544C (en) | 2005-08-26 | 2005-08-26 | A Method for Extracting Outer Boundary of Video Object |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100446544C (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101184235B (en) * | 2007-06-21 | 2010-07-28 | 腾讯科技(深圳)有限公司 | Method and apparatus for implementing background image extraction from moving image |
CN100495274C (en) * | 2007-07-19 | 2009-06-03 | 上海港机重工有限公司 | Control method for automatic drive of large engineering vehicle and system thereof |
JP4683079B2 (en) * | 2008-07-07 | 2011-05-11 | ソニー株式会社 | Image processing apparatus and method |
CN101930593B (en) * | 2009-06-26 | 2012-11-21 | 鸿富锦精密工业(深圳)有限公司 | Single object image extracting system and method |
GB0919235D0 (en) * | 2009-11-03 | 2009-12-16 | De Beers Centenary AG | Inclusion detection in polished gemstones |
CN102111530B (en) * | 2009-12-24 | 2013-01-02 | 财团法人工业技术研究院 | Mobile object detection device and method |
JP5683888B2 (en) * | 2010-09-29 | 2015-03-11 | オリンパス株式会社 | Image processing apparatus, image processing method, and image processing program |
FI20106090A0 (en) * | 2010-10-21 | 2010-10-21 | Zenrobotics Oy | Procedure for filtering target image images in a robotic system |
CN102855642B (en) * | 2011-06-28 | 2018-06-15 | 富泰华工业(深圳)有限公司 | The extracting method of image processing apparatus and its contour of object |
CN102263955B (en) * | 2011-07-21 | 2013-04-03 | 福建星网视易信息系统有限公司 | Method for detecting video occlusion based on motion vectors |
DE102013205882A1 (en) | 2013-04-03 | 2014-10-09 | Robert Bosch Gmbh | Method and device for guiding a vehicle around an object |
US8917940B2 (en) * | 2013-04-26 | 2014-12-23 | Mitutoyo Corporation | Edge measurement video tool with robust edge discrimination margin |
US10674180B2 (en) * | 2015-02-13 | 2020-06-02 | Netflix, Inc. | Techniques for identifying errors introduced during encoding |
CN105731260A (en) * | 2016-01-20 | 2016-07-06 | 上海振华重工电气有限公司 | Automatic driving system and method of rubber tyred gantry container crane |
CN106091984B (en) * | 2016-06-06 | 2019-01-25 | 中国人民解放军信息工程大学 | A method for acquiring 3D point cloud data based on line laser |
CN107067012B (en) * | 2017-04-25 | 2018-03-16 | 中国科学院深海科学与工程研究所 | Submarine geomorphy cell edges intelligent identification Method based on image procossing |
CN110647821B (en) * | 2019-08-28 | 2023-06-06 | 盛视科技股份有限公司 | Method and device for object identification through image identification |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07225847A (en) * | 1994-02-10 | 1995-08-22 | Fujitsu General Ltd | Image extracting method |
CN1411282A (en) * | 2001-10-08 | 2003-04-16 | Lg电子株式会社 | Method for extracting target area |
CN1497494A (en) * | 2002-10-17 | 2004-05-19 | 精工爱普生株式会社 | Method and device for image segmentation with low depth of field |
JP2005039485A (en) * | 2003-07-18 | 2005-02-10 | Ricoh Co Ltd | Image extracting method, program, recording medium, and image processing apparatus |
-
2005
- 2005-08-26 CN CNB2005100215413A patent/CN100446544C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07225847A (en) * | 1994-02-10 | 1995-08-22 | Fujitsu General Ltd | Image extracting method |
CN1411282A (en) * | 2001-10-08 | 2003-04-16 | Lg电子株式会社 | Method for extracting target area |
CN1497494A (en) * | 2002-10-17 | 2004-05-19 | 精工爱普生株式会社 | Method and device for image segmentation with low depth of field |
JP2005039485A (en) * | 2003-07-18 | 2005-02-10 | Ricoh Co Ltd | Image extracting method, program, recording medium, and image processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN1921560A (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100446544C (en) | A Method for Extracting Outer Boundary of Video Object | |
CN100545867C (en) | Aerial shooting traffic video frequency vehicle rapid checking method | |
CN103871076B (en) | Extracting of Moving Object based on optical flow method and super-pixel segmentation | |
CN106952286B (en) | Object Segmentation Method Based on Motion Saliency Map and Optical Flow Vector Analysis in Dynamic Background | |
CN102289948B (en) | Multi-characteristic fusion multi-vehicle video tracking method under highway scene | |
CN103514608B (en) | Moving object detection based on movement attention fusion model and extracting method | |
CN109934224B (en) | Small target detection method based on Markov random field and visual contrast mechanism | |
CN107169985A (en) | A kind of moving target detecting method based on symmetrical inter-frame difference and context update | |
Chen et al. | Tracking of moving object based on optical flow detection | |
CN102184550A (en) | Mobile platform ground movement object detection method | |
CN110287826A (en) | A Video Object Detection Method Based on Attention Mechanism | |
Liu et al. | A multiscale deep feature for the instance segmentation of water leakages in tunnel using MLS point cloud intensity images | |
CN101770583B (en) | Template matching method based on global features of scene | |
CN111340881A (en) | Direct method visual positioning method based on semantic segmentation in dynamic scene | |
CN108537212A (en) | Students ' behavior detection method based on estimation | |
CN111899278B (en) | Unmanned aerial vehicle image rapid target tracking method based on mobile terminal | |
Al-Ariny et al. | An efficient vehicle counting method using mask r-cnn | |
Tian et al. | Road marking detection based on mask R-CNN instance segmentation model | |
CN114565675A (en) | A method for removing dynamic feature points in the front end of visual SLAM | |
CN107038423A (en) | A kind of vehicle is detected and tracking in real time | |
CN110490903B (en) | Multi-target rapid capturing and tracking method in binocular vision measurement | |
Zhou et al. | A traffic light recognition algorithm based on compressive tracking | |
Zhu | Moving Objects Detection and Segmentation Based on Background Subtraction and Image Over-Segmentation. | |
Kaur et al. | An Efficient Method of Number Plate Extraction from Indian Vehicles Image | |
CN115294177A (en) | Moving target detection method based on data distribution difference and multi-scale feature fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081224 Termination date: 20110826 |