Nothing Special   »   [go: up one dir, main page]

CN100357957C - 用于识别图像中的字符的字符识别装置和字符识别方法 - Google Patents

用于识别图像中的字符的字符识别装置和字符识别方法 Download PDF

Info

Publication number
CN100357957C
CN100357957C CNB2004100583340A CN200410058334A CN100357957C CN 100357957 C CN100357957 C CN 100357957C CN B2004100583340 A CNB2004100583340 A CN B2004100583340A CN 200410058334 A CN200410058334 A CN 200410058334A CN 100357957 C CN100357957 C CN 100357957C
Authority
CN
China
Prior art keywords
text
line
character
image
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100583340A
Other languages
English (en)
Other versions
CN1734466A (zh
Inventor
孙俊
胜山裕
直井聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Research Development Centre Co Ltd
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to CNB2004100583340A priority Critical patent/CN100357957C/zh
Priority to JP2005230917A priority patent/JP2006053920A/ja
Priority to US11/199,993 priority patent/US20060062460A1/en
Publication of CN1734466A publication Critical patent/CN1734466A/zh
Application granted granted Critical
Publication of CN100357957C publication Critical patent/CN100357957C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/62Text, e.g. of license plates, overlay texts or captions on TV images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Character Discrimination (AREA)
  • Character Input (AREA)

Abstract

用于识别图像中的字符的字符识别装置和字符识别方法,该字符识别装置包括:文本行提取单元,用于从输入图像中提取多个文本行;特征识别单元,用于识别各文本行的一个或更多个特征;合成模式生成单元,用于利用特征识别单元所识别出的特征以及原始字符图像,来为各文本行分别生成合成字符图像;合成词典生成单元,用于利用合成字符图像来为各文本行分别生成合成词典;文本行识别单元,用于利用合成词典来分别识别各文本行中的字符。

Description

用于识别图像中的字符的字符识别装置和字符识别方法
技术领域
本发明涉及字符识别技术,具体涉及用于识别图像中的字符的字符识别装置和字符识别方法。
背景技术
字符识别技术广泛地应用于日常生活中的各个领域,这其中包括对静态图像和动态图像(视频图像)中的字符的识别。作为一种视频图像的演讲视频在电子学习和其他教育、培训领域中应用十分广泛。在通常的演讲视频中,演讲者一边讲解,一边在视频背景上播放着幻灯图像。通常,演讲视频中会展示出大量的文本信息,使得内容的创建、索引和查找都非常便利。
由于需要识别的字符图像往往会模糊不清或者规模太小,所以演讲视频中字符的识别效果不是很好,因为此识别方法中使用的词典都源自原始清晰的字符图像。
在先前技术中,对演讲视频中的字符进行识别的技术和对扫描文档中的字符进行识别的技术相同,字符都先被分段,再使用从原始清晰词典建立的词典进行识别。
关于合成字符图像的生成,已经有了多篇论文和多项专利,例如:
P.Sarkar,G.Nagy,J.Zhou,and D.Lopresti.Spatial samplingof printed patterns.IEEE PAMI,20(3):344-351,1998
E.H.Barney Smith,X.H.Qiu,Relating statistical imagedifferences and degradation features.LNCS 2423:1-12,2002
T.Kanungo,R.M.Haralick,I.Phillips.“Global and LocalDocument Degradation  Models,”Proceedings of IAPR 2ndInternational Conference on Document Analysis and Recognition,Tsukuba,Japan,1993 pp.730-734
H.S.Baird,“Generation and use of defective images in imageanalysis”.U.S.Pat.No.5,796,410.
但是,到目前为止还没有关于使用合成模式进行视频字符识别的报道。
Arai Tsunekazu、Takasu Eiji和Yoshii Hiroto曾经发表过一项专利,名为《模式识别装置:将输入模式的特征和字号数据与已记录的特征和字号模式数据进行对比,用于记录特征和字号数据的装置,以及相应的方法和储存媒介》(“Pattern recognition apparatus whichcompares input pattern feature and size data to registered featureand size pattern data,an apparatus for registering feature andsize data,and corresponding methods and memory mediatherefore”)。(美国专利号:6,421,461)。在这项专利中,他同样提取出了测试字符的字号信息,不过他将这些信息用于与词典中的字号信息进行对比。
因此,需要对现有技术进行改进以提高字符识别效果。
发明内容
本发明的一个目的是解决现有技术中的问题,改善对图像中的字符进行识别时的字符识别效果。
根据本发明,提供一种用于识别图像中的字符的字符识别装置,其包括:
文本行提取单元,用于从输入图像中提取多个文本行;
特征识别单元,用于识别各文本行的一个或更多个特征;
合成模式生成单元,用于利用特征识别单元所识别出的特征以及原始字符图像,来为各文本行分别生成合成字符图像;
合成词典生成单元,用于利用合成字符图像来为各文本行分别生成合成词典;
文本行识别单元,用于利用合成词典来分别识别各文本行中的字符。
根据本发明还提供一种用于识别图像中的字符的字符识别方法,其包括以下步骤:
从输入图像中提取多个文本行;
识别各文本行的一个或更多个特征;
利用所识别出的特征以及原始字符图像来为各文本行分别生成合成字符图像;
利用合成字符图像来为各文本行分别生成合成词典;
利用合成词典来分别识别各文本行中的字符。
在本发明中,通过事先提取待识别的文本的一些特征,把这些特征与原始字符图像合成得到合成字符并进而得到合成词典,从而使用适于该待识别文本的合成词典来进行字符识别。因此,能够明显改善字符识别的效果。
附图说明
图1是本发明的整体流程图。
图2是画面文本识别单元的操作流程图。
图3是对比度估算单元的操作流程图。
图4是合成模式生成单元的操作流程图。
图5是合成词典生成单元的操作流程图。
图6是文本行识别单元的操作流程图。
具体实施方式
在本发明中,首先用文本画面提取单元提取出包含文本信息的视频画面。接下来在画面文本识别单元,识别画面图像中的字符内容。在画面文本识别单元的字体类型辨别单元中,辨别图像画面中字符的字体类型。文本行提取单元从每一个文本画面图像中提取出所有的文本行。对比度估算单元估算出每一个文本行图像中的对比度值。压缩水平估算单元用于估算每一个原始模式生成的模式数量。然后,通过合成模式生成单元,运用估算出的字体类型和对比度信息,生成一组合成字符模式。这些合成字符图像又用于对每一个文本行建立起合成词典。最终,由字符识别单元运用已生成的合成词典,识别各文本行的字符。
图1示意了本发明的字符识别装置的整体流程图。例如,本装置的输入是演讲视频101,在文本画面提取单元102,对包含文本信息的视频画面进行提取。在102单元可使用多种现有方法,例如可以使用在“JunSun,Yutaka Katsuyama,Satoshi Naoi:Text processing method fore-Learning videos,IEEE CVPR workshop on Document Image Analysisand Retrieval,2003.”中列出的方法。文本画面提取单元的结果是一系列包含文本信息的文本画面103,共有N帧。这些文本画面中的每一帧都要在画面文本识别单元104进行画面中所包含的文本识别。画面文本识别单元104的输出是已识别出来的各帧画面的文本内容105。将画面文本识别的所有结果合成起来既得出演讲视频识别的结果106。虽然图中显示了多个画面文本识别单元104,实际上可以仅由一个画面文本识别单元104依次对多个文本画面103进行处理。
图2示意了图1中画面文本识别单元104的操作流程图。对图1中每一个文本画面103,都由文本行提取单元201处理,从画面中提取所有的文本行202。然后,在对比度估算单元203,对每一个文本行估算出文本行范围内的对比度值。同时,演讲视频的幻灯片文件204被送往字符的字体辨别单元205,以判别视频中字符的字体类型。以微软的幻灯片软件(Powerpoint)为例,PPT文件要被转换成HTML格式。然后,从HTML文件中就可以比较容易地提取出字体信息。对于其它类型的图像文件,可以采用其它合适的字体信息提取方法。
对于经过了判别的每一个文本行,估算出字体类型和对比度值后,在合成模式生成单元207运用一组清晰的字符模式图像,生成一组合成字符图像。接下来,合成词典生成单元208将利用单元207的输出生成合成词典。之后是文本行识别单元209利用已生成的合成词典识别文本行中的字符。将所有文本行的经过识别的文本行内容结合成起来,就得到了图1中的文本内容105。
在文本行提取单元201中使用的具体方法可以参考Jun Sun,Yutaka Katsuyama,Satoshi Naoi,“Text processing method fore-Learning videos”,IEEE CVPR workshop on Document Image Analysisand Retrieval,2003.
图3示意了图2中对比度估算单元203的操作流程图。该单元的输入是图2中一帧文本行图像202。从文本行图像中可以得出灰度值直方图(S301)。直方图的算法则可以参见《Digital Image Processing》(K.R.Castleman,Prentice Hall press.1996.)。平滑直方图这个步骤(S302)通过如下运算来使直方图更加平滑: prjs ( i ) = 1 2 δ + 1 Σ j = i - δ i + δ prj ( j ) , 其中prjs(i)是对位置i的平滑值,δ是平滑运算的窗口大小,j是平滑操作时的当前位置。在平滑后的直方图中,记录下最大值和最小值的位置(S303,S304)。然后计算这两个位置的差,就得出对比度值(S305)。
图4示意了图2中合成模式生成单元(207)的操作流程图。该单元以文本行图像202作为输入,用文本行的高度来确定压缩率水平nlvl。压缩率是用在单一字符图像生成单元(S403)中的一个参量。压缩率的水平决定了针对每个原始字符生成的图像的数量。对小字号的字符,图像通常会发生大幅劣化,所以需要较高的压缩率水平。对大字号的字符,劣化幅度不大,所以较小的压缩率水平就足够了。假设原始字符模式的数量为nPattern,对这些图像的每一帧,都有特定的对比度值和字体类型(在图2中203和205单元已经估算出),也得到了从S401单元中获得的压缩率水平,那么通过单一字符图像生成单元(S403)就可以生成一个合成字符图像。。对于每一个原始的特定文本行,生成的字符图像的总数为nPattern*nlvl*nFont。其中,nFont是演讲视频中字体类型的数量。
图5示意了图2中合成词典生成单元208的操作流程图。针对特定的合成字符图像401,特征提取单元从第一帧字符图像(S501)开始提取字符的特征(S502)。在S502中有多种方法可用于特征提取,例如,可参考M.Shridhar,F.Kimura“Segmentation-Based CursiveHandwriting recognition”,Handbook of Character Recognition andDocument Image Analysis:pp.123-156,1997.此程序将不断重复直到字符的所有特征都被提取完毕(S503和S504)为止。词典生成单元的输出是合成词典(S505)。
图6示意了图2中文本行识别单元209的操作流程图。针对特定的文本行图像,最初执行的是分段单元的操作(S601),它将文本行图像分为nChar段独立的字符图像。然后在特征提取单元的操作(S603)中,从第一帧字符图像(S602)开始提取当前字符图像的特征。S603中使用的方法和S502中使用的方法相同。接下来,分类单元(S604)运用合成词典生成单元生成的合成词典S505,按照字符类型对每一帧字符图像进行分类。本程序的输出是第i帧字符图像的字符代码(种类)。本程序将不断重复直到nChar段字符图像全部经过合成词典的识别(S606和S607)为止。对文本行内所有字符进行识别的结果就是图2中文本行的内容210。
对于一帧特定的文本画面图像,对该图像中所有文本行进行识别的结果就是对该图像内容的识别结果。最后,105中所有的结果合成起来,就得到本发明的最终输出,即演讲视频的识别结果。
应该指出,虽然以上参照演讲视频图像对本发明的字符识别技术进行了说明,但是本发明的字符识别技术同样可以应用于其它类型的视频图像。而且,对于静态的图像,例如扫描文件、照片等等,也可以应用本发明的字符识别技术。另外,在本发明实施例中,在获得合成词典的过程中从待识别文本行提取的特征是对比度、字体、压缩率,但是所提取的特征并不局限于这些特征中的一个或几个,还可以包括或替换为文本行的其它特征。

Claims (20)

1.一种用于识别图像中的字符的字符识别装置,其包括:
文本行提取单元,用于从输入图像中提取多个文本行;
特征识别单元,用于识别各文本行的一个或更多个特征;
合成模式生成单元,用于利用特征识别单元所识别出的特征以及原始字符图像,来为各文本行分别生成合成字符图像;
合成词典生成单元,用于利用合成字符图像来为各文本行分别生成合成词典;
文本行识别单元,用于利用合成词典来分别识别各文本行中的字符。
2.根据权利要求1所述的字符识别装置,其中特征识别单元包括用于辨别文本行的字体类型的字体类型辨别单元。
3.根据权利要求1或2所述的字符识别装置,其中特征识别单元包括用于估算文本行的对比度值的对比度估算单元。
4.根据权利要求3所述的字符识别装置,其中对比度估算单元包括计算文本行的灰度值直方图、进行平滑、并根据灰度值平均值来计算对比度的单元。
5.根据权利要求4所述的字符识别装置,其中合成模式生成单元包括用于确定文本行的压缩率水平的压缩率水平估算单元,并针对每个级别的压缩率水平生成一组合成字符图像。
6.根据权利要求1所述的字符识别装置,其中文本行识别单元包括:
分段单元,用于将文本行分为多个独立的字符图像;
特征提取单元,用于提取各字符图像的特征;
分类单元,用于利用合成词典对各字符图像进行分类。
7.根据权利要求1所述的字符识别装置,其中合成词典生成单元包括用于提取每一合成字符图像的特征的特征提取单元。
8.根据权利要求1所述的字符识别装置,其中输入图像是静态图像或视频图像。
9.根据权利要求5所述的字符识别装置,其中合成字符图像的数量由字体类型数量、原始字符图像的模式数量和压缩率水平决定。
10.根据权利要求5所述的字符识别装置,其中压缩率水平估算单元包括用于确定文本行高度的单元并根据文本行高度来确定压缩率水平。
11.一种用于识别图像中的字符的字符识别方法,其包括以下步骤:
从输入图像中提取多个文本行;
识别各文本行的一个或更多个特征;
利用所识别出的特征以及原始字符图像来为各文本行分别生成合成字符图像;
利用合成字符图像来为各文本行分别生成合成词典;
利用合成词典来分别识别各文本行中的字符。
12.根据权利要求11所述的方法,其中识别文本行的一个或更多个特征的步骤包括辨别文本行的字体类型。
13.根据权利要求11或12所述的方法,其中识别文本行的一个或更多个特征的步骤包括估算文本行的对比度值。
14.根据权利要求13所述的方法,其中估算文本行的对比度值的步骤包括计算文本行的灰度值直方图、进行平滑、并根据灰度值平均值来计算对比度。
15.根据权利要求14所述的方法,其中生成合成字符图像的步骤包括确定文本行的压缩率水平,并针对每个级别的压缩率水平生成一组合成字符图像。
16.根据权利要求11所述的方法,其中识别文本行中的字符的步骤包括:
将文本行分为多个独立的字符图像;
提取各字符图像的特征;
利用合成词典对各字符图像进行分类。
17.根据权利要求11所述的方法,其中生成合成词典的步骤包括提取每一合成字符图像的特征。
18.根据权利要求11所述的方法,其中输入图像是静态图像或视频图像。
19.根据权利要求15所述的方法,其中合成字符图像的数量由字体类型数量、原始字符图像的模式数量和压缩率水平决定。
20.根据权利要求15所述的方法,其中确定压缩率水平的步骤包括确定文本行的高度并根据文本行高度来确定压缩率水平。
CNB2004100583340A 2004-08-10 2004-08-10 用于识别图像中的字符的字符识别装置和字符识别方法 Expired - Fee Related CN100357957C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB2004100583340A CN100357957C (zh) 2004-08-10 2004-08-10 用于识别图像中的字符的字符识别装置和字符识别方法
JP2005230917A JP2006053920A (ja) 2004-08-10 2005-08-09 文字認識プログラム、文字認識方法および文字認識装置
US11/199,993 US20060062460A1 (en) 2004-08-10 2005-08-10 Character recognition apparatus and method for recognizing characters in an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100583340A CN100357957C (zh) 2004-08-10 2004-08-10 用于识别图像中的字符的字符识别装置和字符识别方法

Publications (2)

Publication Number Publication Date
CN1734466A CN1734466A (zh) 2006-02-15
CN100357957C true CN100357957C (zh) 2007-12-26

Family

ID=36031320

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100583340A Expired - Fee Related CN100357957C (zh) 2004-08-10 2004-08-10 用于识别图像中的字符的字符识别装置和字符识别方法

Country Status (3)

Country Link
US (1) US20060062460A1 (zh)
JP (1) JP2006053920A (zh)
CN (1) CN100357957C (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090172714A1 (en) * 2007-12-28 2009-07-02 Harel Gruia Method and apparatus for collecting metadata during session recording
CN102456136B (zh) * 2010-10-29 2013-06-05 方正国际软件(北京)有限公司 一种图文切分方法及系统
CN103136523B (zh) * 2012-11-29 2016-06-29 浙江大学 一种自然图像中任意方向文本行检测方法
US9014481B1 (en) * 2014-04-22 2015-04-21 King Fahd University Of Petroleum And Minerals Method and apparatus for Arabic and Farsi font recognition
CN105224939B (zh) * 2014-05-29 2021-01-01 小米科技有限责任公司 数字区域的识别方法和识别装置、移动终端
CN104794469A (zh) * 2015-04-17 2015-07-22 同济大学 基于图像异构计算的实时视频流文字定位方法
US10074042B2 (en) 2015-10-06 2018-09-11 Adobe Systems Incorporated Font recognition using text localization
US9875429B2 (en) * 2015-10-06 2018-01-23 Adobe Systems Incorporated Font attributes for font recognition and similarity
CN105468732A (zh) * 2015-11-23 2016-04-06 中国科学院信息工程研究所 一种图像关键词检查方法及装置
US10007868B2 (en) 2016-09-19 2018-06-26 Adobe Systems Incorporated Font replacement based on visual similarity
JP2018185380A (ja) * 2017-04-25 2018-11-22 セイコーエプソン株式会社 電子機器、プログラム及び電子機器の制御方法
US10950017B2 (en) 2019-07-08 2021-03-16 Adobe Inc. Glyph weight modification
US11295181B2 (en) 2019-10-17 2022-04-05 Adobe Inc. Preserving document design using font synthesis
CN110767000A (zh) * 2019-10-28 2020-02-07 安徽信捷智能科技有限公司 一种基于图像识别的儿童课程同步装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138838A (ja) * 1995-11-16 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> 文字認識方法およびその装置
JPH11328309A (ja) * 1997-06-05 1999-11-30 Matsushita Electric Ind Co Ltd 光学的文字読み取り方法とその装置
JP2000076378A (ja) * 1998-08-27 2000-03-14 Victor Co Of Japan Ltd 文字認識方法
US6141443A (en) * 1995-04-21 2000-10-31 Matsushita Electric Industrial Co., Ltd. Character extraction apparatus, dictionary production apparatus, and character recognition apparatus using both apparatuses
JP2002056357A (ja) * 2000-08-10 2002-02-20 Ricoh Co Ltd 文字認識装置、その方法および記録媒体
JP2003203206A (ja) * 2001-12-28 2003-07-18 Nippon Digital Kenkyusho:Kk 単語辞書作成方法及び単語辞書作成プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2073822A5 (zh) * 1969-12-31 1971-10-01 Ibm
US4998285A (en) * 1988-03-11 1991-03-05 Kabushiki Kaisha Toshiba Character recognition apparatus
US5796410A (en) * 1990-06-12 1998-08-18 Lucent Technologies Inc. Generation and use of defective images in image analysis
DE4445386C1 (de) * 1994-12-20 1996-05-02 Ibm Verfahren und Vorrichtung zur Trennung einer Vordergrundinformation von einer Hintergrundinformation in einer Vorlage
US6587586B1 (en) * 1997-06-12 2003-07-01 Siemens Corporate Research, Inc. Extracting textual information from a video sequence
US6000612A (en) * 1997-10-10 1999-12-14 Metanetics Corporation Portable data collection device having optical character recognition
JP3919617B2 (ja) * 2002-07-09 2007-05-30 キヤノン株式会社 文字認識装置および文字認識方法、プログラムおよび記憶媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141443A (en) * 1995-04-21 2000-10-31 Matsushita Electric Industrial Co., Ltd. Character extraction apparatus, dictionary production apparatus, and character recognition apparatus using both apparatuses
JPH09138838A (ja) * 1995-11-16 1997-05-27 Nippon Telegr & Teleph Corp <Ntt> 文字認識方法およびその装置
JPH11328309A (ja) * 1997-06-05 1999-11-30 Matsushita Electric Ind Co Ltd 光学的文字読み取り方法とその装置
JP2000076378A (ja) * 1998-08-27 2000-03-14 Victor Co Of Japan Ltd 文字認識方法
JP2002056357A (ja) * 2000-08-10 2002-02-20 Ricoh Co Ltd 文字認識装置、その方法および記録媒体
JP2003203206A (ja) * 2001-12-28 2003-07-18 Nippon Digital Kenkyusho:Kk 単語辞書作成方法及び単語辞書作成プログラム

Also Published As

Publication number Publication date
US20060062460A1 (en) 2006-03-23
JP2006053920A (ja) 2006-02-23
CN1734466A (zh) 2006-02-15

Similar Documents

Publication Publication Date Title
CN100357957C (zh) 用于识别图像中的字符的字符识别装置和字符识别方法
CN102332096B (zh) 一种视频字幕文本提取和识别的方法
CN103761531B (zh) 基于形状轮廓特征的稀疏编码车牌字符识别方法
US20090324008A1 (en) Method, appartaus and computer program product for providing gesture analysis
Garain et al. Off-line multi-script writer identification using AR coefficients
CN113177435B (zh) 试卷分析方法、装置、存储介质及电子设备
CN101365072A (zh) 字幕区域提取装置和方法
CN111414905B (zh) 一种文本检测方法、文本检测装置、电子设备及存储介质
CN104008401A (zh) 一种图像文字识别的方法及装置
CN106980857B (zh) 一种基于碑帖的毛笔字分割识别方法
CN101581981A (zh) 一种在普通纸上手写中文直接形成中文文本的方法和系统
CN106778717A (zh) 一种基于图像识别和k近邻的测评表识别方法
CN113537801B (zh) 板书处理方法、装置、终端和存储介质
JP2008225695A (ja) 文字認識誤り修正装置およびプログラム
CN111062377A (zh) 一种题号检测方法、系统、存储介质及电子设备
CN118015636B (zh) 基于点阵智能笔的数字化应用方法及系统
Koushik et al. Automated marks entry processing in handwritten answer scripts using character recognition techniques
CN117391201A (zh) 问答方法、装置及电子设备
CN117351505A (zh) 信息码的识别方法、装置、设备及存储介质
CN115984968A (zh) 一种学生时空动作识别方法、装置、终端设备及介质
CN114445744A (zh) 一种教育视频自动定位方法、装置及存储介质
CN111242060A (zh) 一种文档图像关键信息提取方法及系统
Goudar et al. A effective communication solution for the hearing impaired persons: A novel approach using gesture and sentence formation
Nguyen et al. A lightweight and effective music score recognition on mobile phones
Montajabi et al. Using ML to Find the Semantic Region of Interest

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: FUJITSU RESEARCH DEVELOPMENT CENTER CO., LTD.

Free format text: FORMER OWNER: FUJITSU LIMITED

Effective date: 20090821

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090821

Address after: 201, room 2, Beijing building, Beijing, Beijing, China. Zip code: 100016

Co-patentee after: Fujitsu Ltd.

Patentee after: Fujitsu research and Development Center Co., Ltd.

Address before: Kanagawa

Patentee before: Fujitsu Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071226

Termination date: 20160810

CF01 Termination of patent right due to non-payment of annual fee