CN109935891B - Lithium cobaltate digital lithium ion battery with high and low temperature consideration - Google Patents
Lithium cobaltate digital lithium ion battery with high and low temperature consideration Download PDFInfo
- Publication number
- CN109935891B CN109935891B CN201910277718.8A CN201910277718A CN109935891B CN 109935891 B CN109935891 B CN 109935891B CN 201910277718 A CN201910277718 A CN 201910277718A CN 109935891 B CN109935891 B CN 109935891B
- Authority
- CN
- China
- Prior art keywords
- ion battery
- lithium ion
- low temperature
- lithium cobaltate
- digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 59
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 57
- 239000003792 electrolyte Substances 0.000 claims abstract description 47
- -1 sultone compound Chemical class 0.000 claims abstract description 33
- 229910021383 artificial graphite Inorganic materials 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 229920005554 polynitrile Polymers 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 8
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 150000005678 chain carbonates Chemical class 0.000 claims abstract description 4
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 26
- 239000011163 secondary particle Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 15
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 14
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 claims description 10
- 238000005087 graphitization Methods 0.000 claims description 8
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011331 needle coke Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910018701 LixCo1-y Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- BTNXBLUGMAMSSH-UHFFFAOYSA-N octanedinitrile Chemical compound N#CCCCCCCC#N BTNXBLUGMAMSSH-UHFFFAOYSA-N 0.000 claims description 3
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 claims description 2
- 239000010426 asphalt Substances 0.000 claims description 2
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000002006 petroleum coke Substances 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims 1
- 239000010405 anode material Substances 0.000 abstract description 5
- 239000010406 cathode material Substances 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 15
- 239000008151 electrolyte solution Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 10
- 239000007773 negative electrode material Substances 0.000 description 9
- 239000007774 positive electrode material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- LNLFLMCWDHZINJ-UHFFFAOYSA-N hexane-1,3,6-tricarbonitrile Chemical compound N#CCCCC(C#N)CCC#N LNLFLMCWDHZINJ-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000006256 anode slurry Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
A lithium cobaltate digital lithium ion battery with high and low temperature consideration belongs to the technical field of lithium ion batteries. The invention aims to solve the problem that the impedance and high-low temperature performance of the existing lithium ion battery are not ideal, and the lithium cobaltate digital lithium ion battery comprises a lithium cobaltate anode, a high-capacity artificial graphite cathode and a non-aqueous electrolyte, wherein the lithium cobaltate anode is subjected to doping coating treatment; the non-aqueous electrolyte is an organic compound dissolved in a solvent containing cyclic carbonate and chain carbonate, the organic compound is a sultone compound and a polynitrile compound, and the sultone compound accounts for 3.0-10% of the mass fraction of the electrolyte. The electrolyte containing high content of the sulfonate compound does not influence the performance exertion of the anode and cathode materials, so that the lithium ion battery has very excellent high-temperature performance and low-temperature performance.
Description
Technical Field
The invention belongs to the technical field of lithium ion batteries, and particularly relates to a lithium cobaltate digital lithium ion battery with high and low temperature consideration.
Background
Since commercialization, lithium ion batteries have been widely used in the digital fields such as notebooks and mobile phones because of their high specific energy and good cycle performance. With the wide application of lithium ion batteries, the usage environment of the lithium ion batteries also tends to be diversified, and consumers expect that the lithium ion batteries have excellent performance under high and low temperature conditions. For example: in areas with relatively low temperature, the notebook computer can also work normally, and the lithium ion battery is required to have good low-temperature discharge performance. In areas with higher temperatures, it is expected that high temperatures do not have an obvious effect on the life of lithium ion batteries, and lithium ion batteries are required to have good high-temperature cycle performance.
The performance of lithium ion batteries is closely related to the positive electrode material, negative electrode material and electrolyte material in the batteries. U.S. Pat. No. 6,6033809 discloses a nonaqueous electrolytic solution containing 1, 3-propane sultone (whose content by mass in the electrolytic solution is 4%) which is capable of improving the cycle performance of a battery. U.S. patent application No. US9742033 discloses a nonaqueous electrolytic solution combining 1, 3-propanesultone and adiponitrile (the mass percentage content of the two substances in the electrolytic solution is less than or equal to 3%), which can improve the cycle performance and high-temperature storage performance of a lithium ion battery. However, if the mass percentage of the sultone compound and the polynitrile compound in the electrolyte is more than or equal to 3%, a compact SEI film is formed on the surface of the negative electrode material, and the probability of oxidation on the surface of the positive electrode material is increased, so that the impedance of the lithium ion battery is increased rapidly, and the low-temperature discharge performance of the lithium ion battery is obviously reduced. Therefore, how to obtain the digital lithium ion battery with high and low temperature performance through the synergistic effect of the anode material, the cathode material and the electrolyte is very important.
Disclosure of Invention
The invention aims to solve the problem that the impedance and high-low temperature performance of the existing lithium ion battery are not ideal, and provides a lithium cobaltate digital lithium ion battery with high and low temperature compatibility.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
a lithium cobaltate digital lithium ion battery with high and low temperature consideration comprises a lithium cobaltate positive electrode, an artificial graphite negative electrode with gram capacity more than or equal to 355mAh/g and a non-aqueous electrolyte, wherein the lithium cobaltate positive electrode is subjected to doping coating treatment; the non-aqueous electrolyte is an organic compound dissolved in a solvent containing cyclic carbonate and chain carbonate, the organic compound is a sultone compound and a polynitrile compound, and the sultone compound accounts for 3.0-10% of the mass fraction of the electrolyte.
Furthermore, the chemical formula of the lithium cobaltate positive electrode is LixCo1-yMeyO2Wherein x is more than or equal to 0.95 and less than or equal to 1.05, y is more than 0 and less than or equal to 0.1, and Me is Mz1Nz2Wherein, z1+ z2 is more than 0 and less than or equal to 1, and M and N elements are one or more of Al, Mg, Ti, Zr, Co, Ni, Mn, Y, La or Sr.
Compared with the prior art, the invention has the beneficial effects that: the invention provides a lithium cobaltate positive electrode material with stable structure and excellent high and low temperature performance, a negative electrode material with good dynamic performance and small cyclic expansion and an electrolyte with excellent high temperature performance. Due to the synergistic effect of the anode material and the cathode material, the high-content sulfonate compound in the electrolyte forms a low-impedance SEI film at the cathode, and meanwhile, the high-content sulfonate compound cannot be oxidized on the surface of the anode material, so that the performance of the anode material and the cathode material cannot be influenced by the high-content sulfonate compound electrolyte, and the lithium ion battery has very excellent high-temperature performance and low-temperature performance.
Detailed Description
The technical solutions of the present invention are further described below with reference to the following examples, but the present invention is not limited thereto, and any modifications or equivalent substitutions may be made to the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention.
The first embodiment is as follows: the embodiment describes a lithium cobaltate digital lithium ion battery with high and low temperature compatibility, which comprises a lithium cobaltate positive electrode, an artificial graphite negative electrode with gram capacity of more than or equal to 355mAh/g and a non-aqueous electrolyte, wherein the lithium cobaltate positive electrode is subjected to doping coating treatment; the non-aqueous electrolyte is an organic compound dissolved in a solvent containing cyclic carbonate and chain carbonate, the organic compound is a sultone compound and a polynitrile compound, and the sultone compound accounts for 3.0-10% of the mass fraction of the electrolyte. The doping and coating treatment of the lithium cobaltate positive electrode specifically comprises the following steps: firstly, carrying out high-temperature doping sintering treatment at 1000-1100 ℃, and then carrying out secondary high-temperature coating modification treatment at 800-1000 ℃ to synthesize the material.
Research shows that when the content of the sultone compound in the electrolyte is higher than 3%, the sultone compound can obviously improve the high-temperature storage performance and the high-temperature cycle performance of the lithium ion battery. But the SEI formed on the negative electrode has larger impedance, and meanwhile, the sultone compound is oxidized on the surface of the lithium cobaltate positive electrode, so that the impedance performance of the lithium ion battery is further improved.
The second embodiment is as follows: in a specific embodiment, the lithium cobaltate digital lithium ion battery with both high and low temperature includes a polynitrile compound selected from succinonitrile, adiponitrile, 1, 3, 6-hexanetricarbonitrile, glutaronitrile or octanedinitrile. The polynitrile compound can form a protective film on the surface of the lithium cobaltate anode, and the high-temperature performance of the lithium ion battery is remarkably improved.
The third concrete implementation mode: in the lithium cobaltate digital lithium ion battery with both high temperature and low temperature, the mass fraction of the polynitrile compound in the electrolyte is 0.1-10%.
The fourth concrete implementation mode: in the lithium cobaltate digital lithium ion battery with both high temperature and low temperature, the polynitrile compound accounts for 1-5% of the electrolyte by mass.
The fifth concrete implementation mode: in a specific embodiment, the sultone compound is one or a mixture of 1, 3-propane sultone, 1, 4-butane sultone or 1, 3-propene sultone.
The sixth specific implementation mode: in the lithium cobaltate digital lithium ion battery with both high temperature and low temperature, the sultone compound accounts for 3.1-6% of the electrolyte by mass.
The seventh embodiment: in the lithium cobaltate digital lithium ion battery with both high temperature and low temperature, the artificial graphite cathode is a material mixed by secondary particles and single particles, and the graphitization degree is 92.5% -95%.
The specific implementation mode is eight: in the lithium cobaltate digital lithium ion battery compatible with high temperature and low temperature, the specific surface area (BET) of the material mixed by the secondary particles and the single particles is less than or equal to 2m2/g。
The specific implementation method nine: in the lithium cobaltate digital lithium ion battery compatible with high and low temperatures, the average particle size D50 of the mixed material of the secondary particles and the single particles is 10 to 16 μm.
The artificial graphite with the grain diameter between D50 and 10 to 16 can well balance the capacity and the dynamic performance of the material, ensure the high capacity of the negative electrode and simultaneously meet the requirement of sufficient charge-discharge multiplying power. BET is controlled at 2m2The surface modification of the material is mainly controlled within/g, and the side reaction of the cathode and the electrolyte is reduced.
The detailed implementation mode is ten: in the lithium cobaltate digital lithium ion battery according to the seventh embodiment, the secondary particles are mixed with the single particles, the secondary particles are formed by bonding the single graphite particles through heating treatment of asphalt at a temperature higher than 500 ℃, and the raw material is needle coke.
The concrete implementation mode eleven: in the lithium cobaltate digital lithium ion battery according to the seventh embodiment, the single particle of the material in which the secondary particle and the single particle are mixed is prepared by graphitizing needle coke or petroleum coke as a raw material.
The specific implementation mode twelve: in the lithium cobaltate digital lithium ion battery compatible with high temperature and low temperature, the mass mixing ratio of the secondary particles and the single particles is 20-80%, so that good dynamic performance and low cyclic expansion characteristic can be ensured.
The high-capacity graphite negative electrode material provided by the invention has good dynamic performance, lower cyclic expansion characteristic and excellent high and low temperature performance; meanwhile, the impedance of an SEI film formed on the surface of the high-content sulfonate compound in the electrolyte is very low, so that the low-temperature performance of the battery can be prevented from being deteriorated by the high-content sulfonate compound.
The specific implementation mode is thirteen: in the lithium cobaltate digital lithium ion battery with high and low temperature compatibility, the chemical formula of the lithium cobaltate positive electrode is LixCo1-yMeyO2Wherein x is more than or equal to 0.95 and less than or equal to 1.05, y is more than 0 and less than or equal to 0.1, and Me is Mz1Nz2Wherein, z1+ z2 is more than 0 and less than or equal to 1, and M and N elements are one or more of Al, Mg, Ti, Zr, Co, Ni, Mn, Y, La or Sr.
The specific implementation mode is fourteen: in the thirteenth embodiment, y is greater than 0 and less than or equal to 0.05, z is greater than 0 and less than or equal to 0.1 and less than or equal to 0.5, and z is greater than 0 and less than or equal to 0.2 and less than or equal to 0.5.
The concrete implementation mode is fifteen: in a thirteenth or fourteenth embodiment, the lithium cobaltate digital lithium ion battery with high and low temperature compatibility is characterized in that the lithium cobaltate material is LiCo0.985Al0.009Mg0.004Ti0.002O2、LiCo0.9915Al0.004Mg0.002Ti0.0015O2And LiCo0.995Al0.003Mg0.001Ti0.001O2One kind of (1).
The doped and coated lithium cobaltate material is assembled into a button cell, the charge-discharge capacity is 0.1C, the discharge capacity is 182-195 mAh/g (3.0-4.5V), and the full cell discharge 0.2C capacity exertion formed by the lithium cobaltate material, the electrolyte and the negative electrode is 169-195 mAh/g (the charge cut-off voltage is 4.4-4.5V). The lithium cobaltate positive electrode material provided by the invention has a stable structure and good high-low temperature performance, and can inhibit the oxidation of high-content sulfonate compounds in the electrolyte on the surface of the lithium cobaltate positive electrode material, so that the impedance of the battery is further reduced.
Example 1
(1) Preparing an electrolyte: in an argon atmosphere glove box with a water content of <10ppm, Ethylene Carbonate (EC), diethyl carbonate (DEC), Propylene Carbonate (PC) were mixed according to 30: 65: 5 to obtain a non-aqueous solvent, and then adding 4% of 1, 3-propane sultone, 2% of adiponitrile and 13% of lithium hexafluorophosphate into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
(2) Preparing a positive plate: lithium cobaltate (molecular formula LiCo) doped and coated with positive electrode active material0.985Al0.009Mg0.004Ti0.002O2) Acetylene black as a conductive agent and polyvinylidene fluoride (PVDF) as a binder in a weight ratio of 96: 2: 2 in N-methyl pyrrolidone (NMP) solvent, fully stirring and mixing to form uniform anode slurry, coating the slurry on an anode current collector Al foil, drying and cold pressing to obtain the anode sheet. The drying and cold pressing are the prior art. The solid content of the cathode slurry is in the range conventionally employed in the art.
(3) Preparing a negative plate: mixing a negative active material artificial graphite (the particle size D50: 13 +/-1 mu m, the graphitization degree 94 +/-0.5 percent, and secondary particles and single particles, wherein the mass percentage of the secondary particles is 50 percent), a conductive agent acetylene black, a binder Styrene Butadiene Rubber (SBR), and a thickener sodium carboxymethyl cellulose (CMC) according to the weight ratio of 95: 2: 2: and (2) fully stirring and mixing the mixture in a deionized water solvent according to the mass ratio of 1 to form uniform negative electrode slurry, coating the slurry on a negative electrode current collector Cu foil, drying and cold-pressing to obtain the negative electrode plate. The drying and cold pressing are the prior art. The solid content of the negative electrode slurry is in the conventional range adopted in the field.
(4) And (3) isolation film: a PE porous polymer film is used as a separation film.
(5) Preparing a lithium ion battery: and stacking the positive plate, the isolating film and the negative plate in sequence to enable the isolating film to be positioned between the positive plate and the negative plate to play an isolating role, then winding to obtain a bare cell, placing the bare cell in an outer packaging foil, injecting the prepared electrolyte into the dried battery, and carrying out vacuum packaging, standing, formation, shaping and other processes to obtain the lithium ion battery. The procedures of vacuum packaging, standing, formation, shaping and the like are the prior art.
Example 2
This example differs from example 1 in that: according to the preparation of the electrolyte, 5% of 1, 3-propane sultone, 1% of succinonitrile and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Example 3
This example differs from example 1 in that: preparation of electrolyte solution 3.1% of 1, 3-propane sultone, 0.5% of 1, 3, 6-hexanetricarbonitrile, 1% of octanedionitrile and 13% of lithium hexafluorophosphate were added to the mixed solution based on the total mass of the electrolyte solution to obtain an electrolyte solution.
Example 4
This example differs from example 1 in that: preparation of the electrolyte, 4% of 1, 3-propane sultone, 0.5% of 1, 4-butane sultone, 2% of adiponitrile and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Example 5
This example differs from example 1 in that: according to the preparation of the electrolyte, 5% of 1, 3-propane sultone, 0.5% of 1, 3-propylene sultone, 2% of adiponitrile, 0.5% of succinonitrile and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Example 6
This example differs from example 1 in that: according to the preparation of the electrolyte, 6% of 1, 3-propane sultone, 2% of adiponitrile, 0.5% of succinonitrile and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Example 7
This example differs from example 1 in that: according to the preparation of the electrolyte, 4% of 1, 3-propane sultone, 2% of adiponitrile, 2% of succinonitrile and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Example 8
This example differs from example 1 in that: preparation of electrolyte solution according to the total mass of the electrolyte solution, 3.5% of 1, 3-propane sultone, 2% of adiponitrile, 2% of succinonitrile, 1% of suberonitrile and 13% of lithium hexafluorophosphate are added into the mixed solution to obtain the electrolyte solution.
Example 9
This example differs from example 1 in that: preparing a positive plate: the molecular formula of the positive active material lithium cobaltate is LiCo0.9915Al0.004Mg0.002Ti0.0015O2。
Example 10
This example differs from example 1 in that: preparing a positive plate: the positive electrode active material lithium cobaltate is LiCo0.995Al0.003Mg0.001Ti0.001O2。
Example 11
This example differs from example 1 in that: preparing a negative plate: the negative electrode active material was artificial graphite (particle size D50: 14. + -. 1 μm, graphitization degree 94. + -. 0.5% secondary particles mixed with single particles, wherein the secondary particles accounted for 60% by mass).
Example 12
This example differs from example 1 in that: preparing a negative plate: the negative electrode active material was artificial graphite (particle size D50: 13. + -. 1 μm, graphitization degree 94. + -. 0.5% secondary particles mixed with single particles, wherein the secondary particles accounted for 40% by mass).
Comparative example 1
This comparative example differs from example 1 in that: the preparation of the electrolyte is that 2 percent of 1, 3-propane sultone, 2 percent of adiponitrile and 13 percent of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Comparative example 2
This comparative example differs from example 1 in that: according to the preparation of the electrolyte, 4% of 1, 3-propane sultone and 13% of lithium hexafluorophosphate are added into the mixed solution according to the total mass of the electrolyte to obtain the electrolyte.
Comparative example 3
This comparative example differs from example 1 in that: preparing a positive plate: the positive electrode active material is an active material lithium cobaltate which is not coated by doping.
Comparative example 4
This comparative example differs from example 1 in that: preparing a negative plate: the negative active material was artificial graphite (particle diameter D50: 13. + -. 1 μm, graphitization degree 94. + -. 0.5% pure secondary particle).
Comparative example 5
This comparative example differs from example 1 in that: preparing a negative plate: the negative electrode active material was artificial graphite (particle diameter D50: 18 ± 1 μm, graphitization degree 94 ± 0.5% pure secondary particle), BET: 2.8.
-10 ℃ low temperature discharge experiment:
the batteries obtained in examples 1 to 12 and comparative examples 1 to 5 were subjected to a charge-discharge cycle test 5 times at a charge-discharge rate of 1C and a charge-discharge cutoff voltage of 3.0V to 4.5V at room temperature, and then charged to a full charge state at a rate of 1C. Record 1C capacity Q separately1. The battery in a full-charge state is kept stand for 4 hours at the temperature of minus 10 ℃, then the battery is placed for 3.0V at the temperature of minus 10 ℃ at the multiplying power of 0.4C, the discharge capacity Q is recorded, the capacity retention rate is obtained through calculation, and the recording results are shown in table 1.
-20 ℃ low temperature discharge experiment:
the batteries obtained in examples 1 to 12 and comparative examples 1 to 5 were subjected to a charge-discharge cycle test 5 times at a charge-discharge rate of 1C and a charge-discharge cutoff voltage of 3.0V to 4.5V at room temperature, and then charged to a full charge state at a rate of 1C. Record 1C capacity Q separately1. The battery in a full-charge state is kept stand for 4 hours at the temperature of minus 20 ℃, then the battery is placed for 3.0V at the temperature of minus 20 ℃ at the multiplying power of 0.25C, the discharge capacity Q is recorded, the capacity retention rate is obtained through calculation, and the recording results are shown in table 1.
-30 ℃ low temperature discharge experiment:
the batteries obtained in examples 1 to 12 and comparative examples 1 to 5 were subjected to a charge-discharge cycle test at room temperature for 5 times at a charge-discharge rate of 1C and a charge-discharge cutoff voltage of 3.0V to 4.5V, and then charged to full charge at a rate of 1CStatus. Record 1C capacity Q separately1. The battery in a full-charge state is kept stand for 4h at the temperature of minus 30 ℃, then the battery is placed for 3.0V at the temperature of minus 30 ℃ at the multiplying power of 0.15C, the discharge capacity Q is recorded, the capacity retention rate is obtained through calculation, and the recording results are shown in table 1.
45 ℃ cycle test:
the batteries obtained in examples 1 to 12 and comparative examples 1 to 5 were subjected to charge-discharge cycles 500 times at 45 ℃ at a charge-discharge rate of 1C/1C and a charge-discharge cutoff voltage of 3.0V to 4.5V, the cycle discharge capacity was recorded and divided by the discharge capacity of the 1 st cycle to obtain a capacity retention ratio, the thickness of the battery after the recording cycle was divided by the thickness of the battery before the cycle to obtain a thickness change ratio, and the recording results are shown in Table 1.
TABLE 1 comparison of experimental results for examples and comparative examples
As can be seen from table 1: the storage and cycle performance of the lithium ion battery using the electrolyte is obviously improved. The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations and simplifications are intended to be included in the scope of the present invention.
Claims (13)
1. A lithium cobaltate digital lithium ion battery with high and low temperature consideration is characterized in that: the lithium ion battery comprises a lithium cobaltate anode, an artificial graphite cathode with gram capacity of more than or equal to 355mAh/g and a non-aqueous electrolyte, wherein the lithium cobaltate anode is subjected to doping coating treatment; the non-aqueous electrolyte is an organic compound dissolved in a solvent containing cyclic carbonate and chain carbonate, the organic compound is a sultone compound and a polynitrile compound, and the sultone compound accounts for 3.0-10% of the mass fraction of the electrolyte; the artificial graphite cathode is a material mixed by secondary particles and single particles, and the graphitization degree of the artificial graphite cathode is 92.5% -95%; the average particle size D50 of the mixed material of the secondary particles and the single particles is 10-16 mu m.
2. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the polynitrile compound is one or more of succinonitrile, adiponitrile, 1, 3, 6-hexanetrinitrile, glutaronitrile or suberonitrile.
3. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the mass fraction of the polynitrile compound in the electrolyte is 0.1-10%.
4. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 3, characterized in that: the mass fraction of the polynitrile compound in the electrolyte is 1-5%.
5. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the sultone compound is one or a mixture of more of 1, 3-propane sultone, 1, 4-butane sultone or 1, 3-propene sultone.
6. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the mass fraction of the sultone compound in the electrolyte is 3.1-6%.
7.The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the specific surface area of the material mixed by the secondary particles and the single particles is less than or equal to 2m2/g。
8. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the secondary particles are mixed with single particles, the secondary particles are formed by bonding single graphite particles through heating treatment of asphalt at the temperature higher than 500 ℃, and the raw material is needle coke.
9. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the single particle of the material mixed by the secondary particle and the single particle is prepared by taking needle coke or petroleum coke as a raw material and carrying out graphitization treatment.
10. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the mass mixing proportion of the secondary particles and the single particles is 20-80%.
11. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 1, characterized in that: the chemical formula of the lithium cobaltate anode is LixCo1-yMeyO2Wherein x is more than or equal to 0.95 and less than or equal to 1.05, y is more than 0 and less than or equal to 0.1, and Me is Mz1Nz2Wherein, z1+ z2 is more than 0 and less than or equal to 1, and M and N elements are one or more of Al, Mg, Ti, Zr, Co, Ni, Mn, Y, La or Sr.
12. The high-low temperature compatible lithium cobaltate digital lithium ion battery according to claim 11, characterized in that: y is more than 0 and less than or equal to 0.05, z1 is more than 0 and less than or equal to 0.5, and z2 is more than 0 and less than or equal to 0.5.
13. The high-low temperature compatible lithium cobaltate digital lithium according to claim 11 or 12An ion battery, characterized in that: the lithium cobaltate material is LiCo0.985Al0.009Mg0.004Ti0.002O2、LiCo0.9915Al0.004Mg0.002Ti0.0015O2And LiCo0.995Al0.003Mg0.001Ti0.001O2One kind of (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910277718.8A CN109935891B (en) | 2019-04-08 | 2019-04-08 | Lithium cobaltate digital lithium ion battery with high and low temperature consideration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910277718.8A CN109935891B (en) | 2019-04-08 | 2019-04-08 | Lithium cobaltate digital lithium ion battery with high and low temperature consideration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109935891A CN109935891A (en) | 2019-06-25 |
CN109935891B true CN109935891B (en) | 2021-10-29 |
Family
ID=66989458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910277718.8A Active CN109935891B (en) | 2019-04-08 | 2019-04-08 | Lithium cobaltate digital lithium ion battery with high and low temperature consideration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109935891B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112467209A (en) * | 2019-09-09 | 2021-03-09 | 珠海冠宇电池股份有限公司 | High-voltage lithium ion battery with high and low temperature performance |
CN113078362A (en) * | 2020-03-27 | 2021-07-06 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
CN115336040A (en) * | 2020-07-07 | 2022-11-11 | 株式会社Lg新能源 | Negative electrode and secondary battery comprising same |
CN114566710B (en) * | 2022-02-23 | 2024-06-11 | 珠海市赛纬电子材料股份有限公司 | Non-aqueous electrolyte for fast-charging lithium ion battery and lithium ion battery |
CN117751470A (en) * | 2022-03-28 | 2024-03-22 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101305484A (en) * | 2005-12-20 | 2008-11-12 | 松下电器产业株式会社 | Nonaqueous electrolyte secondary battery |
CN102779976A (en) * | 2011-10-10 | 2012-11-14 | 北大先行科技产业有限公司 | Preparation method of cathode material of LCO (lithium cobaltate)-based lithium ion battery |
CN104241627A (en) * | 2014-09-11 | 2014-12-24 | 北大先行科技产业有限公司 | Lithium cobaltate for positive electrode of lithium ion battery and preparation method of lithium cobaltate for positive electrode of lithium ion battery |
CN104659366A (en) * | 2014-12-30 | 2015-05-27 | 东莞市凯金新能源科技有限公司 | Preparation method of anode material for power lithium ion battery |
CN107871854A (en) * | 2016-09-27 | 2018-04-03 | 宁波杉杉新材料科技有限公司 | A kind of preparation method of graphite negative material of lithium ion battery second particle |
CN109346772A (en) * | 2018-09-26 | 2019-02-15 | 东莞市杉杉电池材料有限公司 | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101569976B1 (en) * | 2012-02-29 | 2015-11-17 | 신코베덴키 가부시키가이샤 | Lithium ion battery |
CN103325991B (en) * | 2013-05-31 | 2017-11-07 | 余玉英 | A kind of full temperature range lithium ion battery |
-
2019
- 2019-04-08 CN CN201910277718.8A patent/CN109935891B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101305484A (en) * | 2005-12-20 | 2008-11-12 | 松下电器产业株式会社 | Nonaqueous electrolyte secondary battery |
CN102779976A (en) * | 2011-10-10 | 2012-11-14 | 北大先行科技产业有限公司 | Preparation method of cathode material of LCO (lithium cobaltate)-based lithium ion battery |
CN104241627A (en) * | 2014-09-11 | 2014-12-24 | 北大先行科技产业有限公司 | Lithium cobaltate for positive electrode of lithium ion battery and preparation method of lithium cobaltate for positive electrode of lithium ion battery |
CN104659366A (en) * | 2014-12-30 | 2015-05-27 | 东莞市凯金新能源科技有限公司 | Preparation method of anode material for power lithium ion battery |
CN107871854A (en) * | 2016-09-27 | 2018-04-03 | 宁波杉杉新材料科技有限公司 | A kind of preparation method of graphite negative material of lithium ion battery second particle |
CN109346772A (en) * | 2018-09-26 | 2019-02-15 | 东莞市杉杉电池材料有限公司 | A kind of non-aqueous electrolyte for lithium ion cell and lithium ion battery |
Non-Patent Citations (2)
Title |
---|
The Roles of Sulfur-Containing Additives and TheirWorking;Zeli Wu等;《Journal of The Electrochemical Society》;20180828;第165卷(第11期);第A2792-A2800 * |
⽯石墨墨形貌对锂离⼦子电池倍率性能的影响;容亮斌等;《电池》;20180430;第48卷(第2期);第113-116页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109935891A (en) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109935891B (en) | Lithium cobaltate digital lithium ion battery with high and low temperature consideration | |
EP4220754A1 (en) | Lithium metal negative electrode plate, electrochemical apparatus, and electronic device | |
CN111883839B (en) | High-voltage electrolyte and lithium ion battery based on same | |
KR101546251B1 (en) | Electrolyte for electrochemical device and the electrochemical device thereof | |
CN111525191B (en) | Electrolyte and electrochemical device | |
CN112151764A (en) | Electrode plate and preparation method and application thereof | |
EP4220759A1 (en) | Lithium metal negative electrode plate, electrochemical apparatus, and electronic device | |
US20210249650A1 (en) | Negative electrode sheet and secondary battery | |
CN113906606B (en) | Electrolyte, electrochemical device, and electronic device | |
WO2017185703A1 (en) | High-temperature lithium-ion battery electrolyte solution and preparation method therefor and high-temperature lithium-ion battery | |
CN110797574A (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery thereof | |
CN114039097A (en) | Lithium ion battery | |
WO2024007142A1 (en) | Negative electrode plate, secondary battery, battery module, battery pack and electric device | |
CN109390629B (en) | Electrolyte and battery | |
JP2011249293A (en) | Lithium transition metal compound and its manufacturing method, and lithium ion battery | |
CN115939317A (en) | Lithium-rich positive electrode, preparation method thereof and secondary battery | |
CN115411346A (en) | Lithium ion battery and electrochemical device comprising same | |
CN109494348B (en) | Negative pole piece and secondary battery | |
WO2022140952A1 (en) | Silicon-carbon composite particle, negative electrode active material and negative electrode containing same, electrochemical device, and electronic device | |
CN111740162A (en) | Electrolyte solution, electrochemical device including the same, and electronic device | |
CN115275166A (en) | Long-life graphite composite material and preparation method thereof | |
US20230095171A1 (en) | Organic acid additives for silicon-based li ion batteries | |
CN115000511A (en) | Electrochemical device and electronic device | |
CN108987803B (en) | Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof | |
CN114097108A (en) | Cathode material, preparation method thereof, electrochemical device and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 519180 No. 209 Pearl Peak Avenue, Jingan Town, Doumen District, Zhuhai City, Guangdong Province Applicant after: Zhuhai CosMX Battery Co.,Ltd. Address before: 519180 No. 209 Pearl Peak Avenue, Jingan Town, Doumen District, Zhuhai City, Guangdong Province Applicant before: ZHUHAI COSLIGHT BATTERY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |