CN109693773B - A movable base device and its realization method - Google Patents
A movable base device and its realization method Download PDFInfo
- Publication number
- CN109693773B CN109693773B CN201910062803.2A CN201910062803A CN109693773B CN 109693773 B CN109693773 B CN 109693773B CN 201910062803 A CN201910062803 A CN 201910062803A CN 109693773 B CN109693773 B CN 109693773B
- Authority
- CN
- China
- Prior art keywords
- outrigger
- way valve
- proportional multi
- base plate
- steering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000006073 displacement reaction Methods 0.000 claims description 79
- 238000013461 design Methods 0.000 claims description 54
- 238000013519 translation Methods 0.000 claims description 24
- 239000012530 fluid Substances 0.000 claims description 7
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 238000005553 drilling Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
本发明公开了一种可移动式座底装置及其实现方法,装置包括上底板、支撑板和下底板,所述上底板和下底板的顶面分别安装三个行走支撑腿;上底板通过回转支承安装在支撑板上,上底板与支撑板之间设有回转驱动机构;支撑板底部车轮安装座,车轮安装座底部设有车轮,通过车轮支撑在下底板上的导向架上,车轮安装座与下底板之间设有行走驱动机构;回转驱动机构、行走驱动机构分别与控制单元连接;控制单元分别与上底板和下底板的行走支撑腿连接;上底座上安装有水平倾角传感器,下底板上安装有位置跟踪传感器,水平倾角传感器和位置跟踪传感器分别与控制单元连接。本发明采用三点并联斜撑系统,能够快速实现系统的平衡控制和调平。本发明的上下支撑腿可以收放,空间紧凑,满足母船对座底装置空间限制的要求,适应性强。
The invention discloses a movable seat bottom device and its realization method. The device comprises an upper base plate, a support plate and a lower base plate. Three walking support legs are respectively installed on the top surfaces of the upper base plate and the lower base plate; The support is installed on the support plate, and a rotary drive mechanism is provided between the upper base plate and the support plate; the wheel mounting seat at the bottom of the support plate, and the wheel is provided at the bottom of the mounting seat, and the wheels are supported on the guide frame on the lower base plate. There is a walking drive mechanism between the lower base plates; the slewing drive mechanism and the walking drive mechanism are respectively connected to the control unit; the control unit is respectively connected to the walking support legs of the upper base plate and the lower base plate; a horizontal inclination sensor is installed on the upper base, and the lower base plate A position tracking sensor is installed, and the horizontal inclination sensor and the position tracking sensor are respectively connected with the control unit. The invention adopts a three-point parallel diagonal bracing system, which can quickly realize the balance control and leveling of the system. The upper and lower supporting legs of the present invention can be retracted, and the space is compact, which meets the requirement of the mother ship for the space limitation of the seat bottom device, and has strong adaptability.
Description
技术领域technical field
本发明涉及具有步履式移动座底装置及利用该步履式移动座底装置的海底钻探系统,更详细地,涉及与现有的以螺旋桨方式获得推力的海底机器人不同,利用由多个关节形成的腿接近海底面,并以步履式移动座底装置搭载的海底钻探系统。The present invention relates to a subsea drilling system with a walking-type mobile base device and using the walking-type mobile base device. The legs are close to the seabed surface, and the subsea drilling system carried by the walking-type mobile base device.
背景技术Background technique
步履式移动座底装置是用来进行海底观测,海洋资源探测,海底工程地质调查的技术装备,步履式移动座底装置是搭载海底钻探采样装置实现其水下作业的重要配套设备。可靠的步履式移动座底装置能够突破有限船舱空间限制,同时又能搭载重型装置在不规则的海底平稳作业,特别是对于海底钻探作业的装备而言,设计可靠的移动座底装置装置不可忽略。The walking-type mobile base device is a technical equipment used for seabed observation, marine resource detection, and submarine engineering geological survey. The walking-type mobile base device is an important supporting equipment for underwater drilling and sampling devices. Reliable walking-type mobile base device can break through the limitation of limited cabin space, and at the same time, it can carry heavy equipment to work smoothly on the irregular seabed. Especially for equipment for subsea drilling operations, reliable design of mobile base device cannot be ignored .
海底作业装置大致通过两种形态获得移动性。The subsea operation device obtains mobility roughly through two forms.
第一,虽然螺旋桨方式对自律无人潜水艇之类的巡航型潜水艇有效果,但对于要求精密作业的海底钻探装置而言,不容易获得控制稳定性。这是因为在水中作用于海底钻探装置的流体力为非线性,推力也内在有非灵敏区、应答延迟、饱和等的强的非线性。尤其,在暴露于如海底强海流的情况下,难以确保姿势稳定性与移动性,由此难以获得位置精密度、操作精密度以及鲜明的超声波影像,因而存在诸多不能进行海底作业的情况。在强海流环境下,利用螺旋桨的现有的可移动式座底装置必然具有不稳定的操纵性与高的耗能等问题。First, although the propeller method is effective for cruise-type submarines such as autonomous unmanned submarines, it is not easy to obtain control stability for submarine drilling equipment that requires precise operations. This is because the fluid force acting on the seabed drilling apparatus in water is nonlinear, and the thrust also has inherently strong nonlinearities such as dead zones, response delays, and saturation. In particular, when exposed to strong ocean currents such as the bottom of the sea, it is difficult to ensure posture stability and mobility, and thus it is difficult to obtain positional precision, operational precision, and clear ultrasonic images, so there are many cases where subsea operations cannot be performed. In a strong ocean current environment, the existing movable base device using the propeller must have problems such as unstable maneuverability and high energy consumption.
第二,无限轨道形态的推进方式具有难以在不规则的海底地形或障碍物区域行驶,在行驶方式特性上搅乱海底的缺点。由于海底始终存在沉船、渔场、绳索及废弃渔网等各种障碍物与暗礁、软弱地基等海底地形的制约条件,因此在无限轨道方式的行驶方面存在困难。并且,在海底勘察的情况下,存在诸多在没有被搅乱的环境下以将搅乱最小化的方式组成的现场勘察,但存在很难使用于这种用途的问题。Second, the propulsion method in the form of an infinite track has the disadvantage of being difficult to travel on irregular seabed terrain or obstacle areas, and disturbing the seabed in terms of the characteristics of the driving method. Since there are always various obstacles such as sunken ships, fishing grounds, ropes and abandoned fishing nets on the seabed, and the constraints of submarine topography such as submerged reefs and weak foundations, it is difficult to drive in the infinite track mode. Also, in the case of seabed surveys, there are many site surveys that are composed in such a way that disturbances are minimized in an undisturbed environment, but there is a problem that it is difficult to use them for such purposes.
发明内容Contents of the invention
为了解决上述问题,本发明提供一种结构简单、占用空间小、安全性高、对于不规则海底地形适应性强、可靠性高和承载能力强的步履式移动的座底装置及其实现方法。In order to solve the above problems, the present invention provides a walking-type mobile base device with simple structure, small space occupation, high safety, strong adaptability to irregular seabed terrain, high reliability and strong bearing capacity and its realization method.
本发明采用的技术方案是:一种可移动式座底装置,上底板、支撑板和下底板,所述上底板和下底板的顶面分别安装三个行走支撑腿;上底板通过回转支承安装在支撑板上,上底板与支撑板之间设有回转驱动机构;支撑板底部车轮安装座,车轮安装座底部设有车轮,通过车轮支撑在下底板上的导向架上,车轮安装座与下底板之间设有行走驱动机构;回转驱动机构、行走驱动机构分别与控制单元连接;The technical solution adopted in the present invention is: a movable base device, an upper base plate, a support plate and a lower base plate, three walking support legs are respectively installed on the top surfaces of the upper base plate and the lower base plate; the upper base plate is installed through a slewing bearing On the support plate, a rotary drive mechanism is provided between the upper base plate and the support plate; the wheel mounting seat at the bottom of the support plate, and the wheel is provided at the bottom of the wheel mounting seat, and the wheels are supported on the guide frame on the lower base plate, and the wheel mounting base and the lower base plate There is a walking drive mechanism between them; the slewing drive mechanism and the walking drive mechanism are respectively connected to the control unit;
控制单元分别与上底板和下底板的行走支撑腿连接,能够驱动上底板和下底板的行走支撑腿悬空或着地;上底座上安装有水平倾角传感器,用于检测本体的姿势;下底板上安装有位置跟踪传感器,用于实时地追踪并检测执行可移动式座底装置的水中位置;水平倾角传感器和位置跟踪传感器分别与控制单元连接。The control unit is respectively connected with the walking support legs of the upper base and the lower base, and can drive the walking support legs of the upper base and the lower base to hang in the air or land on the ground; a horizontal inclination sensor is installed on the upper base to detect the posture of the body; A position tracking sensor is used for real-time tracking and detection of the underwater position of the movable base device; the horizontal inclination sensor and the position tracking sensor are respectively connected with the control unit.
上述的可移动式座底装置中,所述的行走支撑腿包括支腿油缸、支板、支架耳、支腿脚板万向节及支杆;支杆一端与支架耳铰接,另一端与上底板或下底板上的支腿座耳板铰接;支架耳通过销轴与支腿油缸和支腿脚板万向节连接,支腿脚板万向节通过销轴与支板11连接,支腿油缸的另一端与上底板或下底板上的支腿座的上端铰接;支腿油缸上设有压力传感器和位移传感器,压力传感器、位移传感器和支腿油缸分别与控制单元连接。In the above movable base device, the walking support leg includes a leg oil cylinder, a support plate, a bracket ear, a universal joint of the leg foot plate and a support rod; one end of the support rod is hinged to the support ear, and the other end is connected to the upper base plate Or the lug plate of the outrigger seat on the lower bottom plate is hinged; the bracket ear is connected with the outrigger oil cylinder and the outrigger foot plate universal joint through the pin shaft, and the outrigger foot plate universal joint is connected with the
上述的可移动式座底装置中,所述的行走驱动机构包括行走油缸,行走油缸的两端分别于车轮安装座和下底板铰接;所述的行走油缸上设有位移传感器和行程开关,行走油缸、位移传感器和行程开关分别与控制单元连接。In the above-mentioned movable base device, the traveling drive mechanism includes a traveling oil cylinder, and the two ends of the traveling oil cylinder are respectively hinged on the wheel mounting seat and the lower base plate; The oil cylinder, displacement sensor and travel switch are respectively connected with the control unit.
上述的可移动式座底装置中,所述的回转驱动机构包括转向油缸、滑动导轨、滑块和推杆;所述的转向油缸、滑动导轨安装在上底板底部,转向油缸与滑块铰接,滑块安装在滑动导轨上,能够沿着滑动导轨移动,滑块与推杆的一端连接,推杆的另一端与支撑板连接;转向油缸与控制单元连接。In the above movable base device, the rotary drive mechanism includes a steering cylinder, a sliding guide rail, a slider and a push rod; the steering cylinder and the sliding guide rail are installed at the bottom of the upper base, and the steering cylinder is hinged to the slider. The slider is installed on the sliding guide rail and can move along the sliding guide rail. The slider is connected with one end of the push rod, and the other end of the push rod is connected with the support plate; the steering cylinder is connected with the control unit.
上述的可移动式座底装置中,所述的控制单元包括液压控制装置及PLC控制装置;所述的液压控制装置包括液压泵、主进油管及主回油管,液压泵的进口通过管道与油箱连通,液压泵的出口与主进油管连通,主回油管连接油箱;转向比例多路阀的P口、平移比例多路阀的P口、下支腿比例多路阀Ⅰ的P口、下支腿比例多路阀Ⅱ的P口、上支腿比例多路阀Ⅰ的P口、上支腿比例多路阀Ⅱ的P口,定差减压阀的P口分别与主进油管连接;转向比例多路阀的T口、平移比例多路阀的T口、下支腿比例多路阀Ⅰ的T口、下支腿比例多路阀Ⅱ的T口、上支腿比例多路阀Ⅰ的T口、上支腿比例多路阀Ⅱ的T口分别与主回油管连接;所述转向比例多路阀、平移比例多路阀、下支腿比例多路阀Ⅰ、下支腿比例多路阀Ⅱ、上支腿比例多路阀Ⅰ、上支腿比例多路阀Ⅱ与PLC控制装置的输出端连接;PLC控制装置输入端与位移传感器信号输出端、位移传感器信号输出端、压力传感器信号输出端、位移传感器信号输出端、压力传感器信号输出端、位移传感器信号输出端、水平倾角传感器信号输出端、位置跟踪传感器信号输出端和行程开关连接;In the above movable base device, the control unit includes a hydraulic control device and a PLC control device; the hydraulic control device includes a hydraulic pump, a main oil inlet pipe and a main oil return pipe, and the inlet of the hydraulic pump passes through the pipeline and the oil tank. The outlet of the hydraulic pump is connected to the main oil inlet pipe, and the main oil return pipe is connected to the oil tank; the P port of the steering proportional multi-way valve, the P port of the translation proportional multi-way valve, the P port of the lower leg proportional multi-way valve I, the lower branch The P port of the leg proportional multi-way valve II, the P port of the upper leg proportional multi-way valve I, the P port of the upper leg proportional multi-way valve II, and the P port of the differential pressure reducing valve are respectively connected with the main oil inlet pipe; T port of proportional multi-way valve, T port of translational proportional multi-way valve, T port of lower outrigger proportional multi-way valve I, T port of lower outrigger proportional multi-way valve II, upper outrigger proportional multi-way valve I The T port and the T port of the upper outrigger proportional multi-way valve II are respectively connected to the main oil return pipe; the steering proportional multi-way valve, translation proportional multi-way valve, lower outrigger proportional multi-way valve I, and lower outrigger proportional multi-way Valve II, upper outrigger proportional multi-way valve I, and upper outrigger proportional multi-way valve II are connected to the output end of the PLC control device; the input end of the PLC control device is connected to the output end of the displacement sensor signal, the output end of the displacement sensor signal, and the signal of the pressure sensor The output terminal, the displacement sensor signal output terminal, the pressure sensor signal output terminal, the displacement sensor signal output terminal, the horizontal inclination sensor signal output terminal, the position tracking sensor signal output terminal and the travel switch are connected;
转向油缸的无杆腔与液控单向阀Ⅰ的B口连接,液控单向阀Ⅰ的A口与转向电磁换向阀的A口连接,转向比例多路阀的B口与转向油缸有杆腔连接;The rodless chamber of the steering oil cylinder is connected to the B port of the hydraulic control check valve I, the A port of the hydraulic control check valve I is connected to the A port of the steering electromagnetic reversing valve, and the B port of the steering proportional multi-way valve is connected to the steering oil cylinder. Rod cavity connection;
平移油缸的无杆腔与液控单向阀Ⅱ的B口连接,液控单向阀Ⅱ的A口与平移比例多路阀的A口连接,平移比例多路阀的B口与转向油缸有杆腔连接;The rodless chamber of the translation cylinder is connected to the B port of the hydraulic control check valve II, the A port of the hydraulic control check valve II is connected to the A port of the translation proportional multi-way valve, and the B port of the translation proportional multi-way valve is connected to the steering cylinder. Rod cavity connection;
所述的上底板上三个行走支腿的支腿油缸的无杆腔与上支腿比例多路阀Ⅰ的B口及上支腿比例多路阀Ⅱ的A口连接;上底板上三个行走支腿的支腿油缸的有杆腔与上支腿比例多路阀Ⅰ的A口及上支腿比例多路阀Ⅱ的B口连接;The rodless chamber of the outrigger oil cylinder of the three walking legs on the upper base plate is connected with the B port of the upper outrigger proportional multi-way valve I and the A port of the upper outrigger proportional multi-way valve II; The rod cavity of the outrigger cylinder of the walking outrigger is connected to the A port of the upper outrigger proportional multi-way valve I and the B port of the upper outrigger proportional multi-way valve II;
所述的下底板上三个行走支腿的支腿油缸的无杆腔与下支腿比例多路阀Ⅰ的B口及下支腿比例多路阀Ⅱ的A口连接;下底板上三个行走支腿的支腿油缸的有杆腔与下支腿比例多路阀Ⅰ的A口及下支腿比例多路阀Ⅱ的B口连接。The rodless cavity of the outrigger cylinder of the three walking legs on the lower base plate is connected with the B port of the lower outrigger proportional multi-way valve I and the A port of the lower outrigger proportional multi-way valve II; The rod chamber of the outrigger oil cylinder of the walking outrigger is connected with port A of the proportional multi-way valve I of the lower outrigger and port B of the proportional multi-way valve II of the lower outrigger.
上述的可移动式座底装置中,所述的液压控制装置还包括压力补偿器,压力补偿器的进口与液压泵的出口连接,压力补偿器的出口通过管道连接油箱。In the above movable base device, the hydraulic control device further includes a pressure compensator, the inlet of the pressure compensator is connected to the outlet of the hydraulic pump, and the outlet of the pressure compensator is connected to the oil tank through a pipeline.
上述的可移动式座底装置中,所述的液压控制装置还包括平衡阀和减压阀,平衡阀和减压阀的P口分别与主进油管连接,平衡阀和减压阀的T口分别与主回油管连接。In the above movable seat bottom device, the hydraulic control device also includes a balance valve and a pressure reducing valve, the P ports of the balance valve and the pressure reducing valve are respectively connected to the main oil inlet pipe, and the T ports of the balance valve and the pressure reducing valve Connect with the main oil return pipe respectively.
上述的可移动式座底装置的实现方法,包括转向操作、移动操作和自动调平操作The implementation method of the above-mentioned movable base device, including steering operation, moving operation and automatic leveling operation
转向操作具体步骤如下:The specific steps of steering operation are as follows:
1)PLC控制装置控制液压泵开启,上支腿比例多路阀Ⅰ换向至下位工作,上底板上的三个行走支撑腿的支腿油缸伸缩,压力传感器检测压力达到设计值停止;位置跟踪传感器开始检测目标点与导向架的相对角度;1) The PLC control device controls the opening of the hydraulic pump, the proportional multi-way valve Ⅰ of the upper outrigger switches to the lower position, the outrigger cylinders of the three walking support legs on the upper base plate expand and contract, and the pressure sensor detects that the pressure reaches the design value and stops; position tracking The sensor starts to detect the relative angle between the target point and the guide frame;
2) 当位置跟踪传感器检测目标点与导向架的相对角度处于[0°90°]和[180°270°]时,转向比例多路阀换向至上位工作,转向油缸驱动下底板转动,当位置跟踪传感器检测目标点与导向架共线时,下支腿比例多路阀换向至下位工作,下底板上的行走支撑腿着地,压力传感器检测压力达到设计值停止,上支腿比例多路阀Ⅰ换向至上位工作,使得上底板上的三个行走支撑腿悬空;位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;转向比例多路阀换向至下位工作,转向油缸驱动上底板转动复位;2) When the position tracking sensor detects that the relative angle between the target point and the guide frame is between [0°90°] and [180°270°], the steering proportional multi-way valve switches to the upper position, and the steering cylinder drives the lower base plate to rotate. When the position tracking sensor detects that the target point is in line with the guide frame, the proportional multi-way valve of the lower outrigger switches to the lower position to work, the walking support leg on the lower bottom plate touches the ground, the pressure sensor detects that the pressure reaches the design value and stops, and the proportional multi-way valve of the upper outrigger The valve Ⅰ switches to the upper position to work, so that the three walking support legs on the upper base plate are suspended in the air; the displacement sensor detects that the displacement of the outrigger cylinder of the walking support leg on the lower base plate reaches the design value and stops; the steering proportional multi-way valve switches to the lower position Work, the steering cylinder drives the upper base plate to rotate and reset;
当位置跟踪传感器检测目标点与导向架不共线,下底板转动到极限位置时,下支腿比例多路阀换向至下位工作,使得下底板上的行走支撑腿着地,压力传感器检测压力达到设计值停止,上支腿比例多路阀Ⅰ换向至上位工作,使得上底板上的三个行走支撑腿悬空,位移传感器检测下支腿油缸位移达到设计值时停止;转向比例多路阀换向至下位工作,转向油缸驱动上底板转动至极限位置,上支腿比例多路阀Ⅰ换向至下位工作,使得上底板上的三个行走支撑腿着地,压力传感器检测压力达到设计值停止,下支腿比例多路阀Ⅰ换向至上位工作,使得下底板上的三个行走支撑腿悬空,位移传感器检测下支腿油缸位移达到设计值时停止;转向油缸驱动下底板转动,当位置跟踪传感器检测目标点与导向架共线时,下支腿比例多路阀Ⅰ换向至下位工作,使得下底板上的三个行走支撑腿着地,压力传感器检测压力达到设计值停止,上支腿比例多路阀Ⅰ换向至上位工作,使得上底板上的三个行走支撑腿悬空,位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;转向比例多路阀换向至下位工作,转向油缸驱动上底板转动复位;When the position tracking sensor detects that the target point is not collinear with the guide frame, and the lower base plate rotates to the limit position, the proportional multi-way valve of the lower outrigger switches to the lower position, so that the walking support legs on the lower base plate touch the ground, and the pressure sensor detects that the pressure reaches When the design value stops, the upper outrigger proportional multi-way valve I switches to the upper position to work, so that the three walking support legs on the upper base plate are suspended in the air, and the displacement sensor detects that the displacement of the lower outrigger oil cylinder reaches the design value and stops; the steering proportional multi-way valve changes Work to the lower position, the steering cylinder drives the upper base plate to rotate to the limit position, the upper leg proportional multi-way valve I switches to the lower position, so that the three walking support legs on the upper base plate touch the ground, and the pressure sensor detects that the pressure reaches the design value and stops. The proportional multi-way valve Ⅰ of the lower outrigger switches to the upper position to work, so that the three walking support legs on the lower base plate are suspended in the air. The displacement sensor detects that the displacement of the lower outrigger cylinder reaches the design value and stops; the steering cylinder drives the lower base plate to rotate. When the position is tracked When the sensor detects that the target point is in line with the guide frame, the proportional multi-way valve Ⅰ of the lower outrigger switches to the lower position to work, so that the three walking support legs on the lower base plate touch the ground, the pressure sensor detects that the pressure reaches the design value and stops, and the proportional multi-way valve of the upper outrigger The multi-way valve I switches to the upper position to work, so that the three walking support legs on the upper base plate are suspended in the air, and the displacement sensor detects that the displacement of the outrigger cylinder of the walking support legs on the lower base plate reaches the design value and stops; the steering proportional multi-way valve changes direction To work at the lower position, the steering cylinder drives the upper base plate to rotate and reset;
当位置跟踪传感器检测目标点与导向架的相对角度不处于[0°90°]和[180°270°]时,下支腿比例多路阀Ⅰ换向至下位工作,使得下底板上的三个行走支撑腿着地,压力传感器检测压力达到设计值停止,上支腿比例多路阀Ⅰ换向至上位工作,使得上底板上的三个行走支撑腿悬空,位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;转向比例多路阀换向至下位工作,转向油缸驱动上底板转动至极限位置,上支腿比例多路阀Ⅰ换向至下位工作,使得上底板上的三个行走支撑腿着地,压力传感器检测压力达到设计值停止,下支腿比例多路阀Ⅰ换向至上位工作,使得下底板上的三个行走支撑腿悬空,位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;转向比例多路阀换向至上位工作,转向油缸驱动下底板转动;When the position tracking sensor detects that the relative angle between the target point and the guide frame is not between [0°90°] and [180°270°], the proportional multi-way valve Ⅰ of the lower outrigger switches to the lower position, so that the three One walking support leg touches the ground, the pressure sensor detects that the pressure reaches the design value and stops, the proportional multi-way valve Ⅰ of the upper leg switches to the upper position to work, so that the three walking support legs on the upper base plate are suspended in the air, and the displacement sensor detects the walking support on the lower base plate When the displacement of the outrigger oil cylinder of the leg reaches the design value, it stops; the steering proportional multi-way valve switches to the lower position, the steering oil cylinder drives the upper base plate to rotate to the limit position, and the upper outrigger proportional multi-way valve I switches to the lower position to work, so that the upper base plate The upper three walking support legs touch the ground, the pressure sensor detects that the pressure reaches the design value and stops, and the proportional multi-way valve Ⅰ of the lower outrigger switches to the upper position to work, so that the three walking support legs on the lower bottom plate are suspended in the air, and the displacement sensor detects the pressure on the lower bottom plate. When the displacement of the outrigger cylinder of the walking support leg reaches the design value, it stops; the steering ratio multi-way valve switches to the upper position, and the steering cylinder drives the bottom plate to rotate;
移动操作具体步骤如下:The specific steps of the mobile operation are as follows:
平移比例多路阀换向至上位工作,驱动上底板向目标点移动,位置跟踪传感器检测与目标点的相对位移量,PLC控制装置根据相对位移量减平移油缸的最大位移量计算移动步长的次数;当相对位移量为0时,下支腿比例多路阀Ⅰ换向至下位工作,使得下底板上的三个行走支撑腿着地,压力传感器检测压力达到设计值停止,上支腿比例多路阀Ⅰ换向至上位工作,使得上底板上的三个行走支撑腿悬空,位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;转向比例多路阀换向至下位工作,转向油缸驱动上底板转动复位,上支腿比例多路阀Ⅰ换向至下位工作,使得上底板上的行走支撑腿着地,压力传感器检测压力达到设计值停止,下支腿比例多路阀Ⅰ换向至上位工作,使得下底板上的行走支撑腿悬空,位移传感器检测下底板上的行走支撑腿的支腿油缸位移达到设计值时停止;The translation proportional multi-way valve switches to the upper position, drives the upper base plate to move to the target point, the position tracking sensor detects the relative displacement with the target point, and the PLC control device calculates the moving step according to the relative displacement minus the maximum displacement of the translation cylinder Times; when the relative displacement is 0, the proportional multi-way valve Ⅰ of the lower outrigger switches to the lower position to work, so that the three walking support legs on the lower bottom plate touch the ground, the pressure sensor detects that the pressure reaches the design value and stops, and the proportion of the upper outrigger reaches the design value. The road valve I switches to the upper position to work, so that the three walking support legs on the upper floor are suspended in the air, and the displacement sensor detects that the displacement of the outrigger cylinder of the walking support legs on the lower floor reaches the design value and stops; the steering proportional multi-way valve switches to The lower position works, the steering cylinder drives the upper base plate to rotate and reset, and the upper outrigger proportional multi-way valve I switches to the lower position, so that the walking support legs on the upper base plate touch the ground, the pressure sensor detects that the pressure reaches the design value and stops, and the lower outrigger proportional multi-way The valve Ⅰ is switched to the upper position, so that the walking support leg on the lower floor is suspended in the air, and the displacement sensor detects that the displacement of the outrigger cylinder of the walking support leg on the lower floor reaches the design value and stops;
调平操作的具体步骤如下:The specific steps of leveling operation are as follows:
当下底板上的行走支撑腿着地,上底板上的行走支撑腿悬空时,下支腿比例多路阀Ⅰ关闭,下支腿比例多路阀Ⅱ换向至上位工作,对机身水平度进行精确调平;When the walking support legs on the lower base plate are on the ground and the walking support legs on the upper base plate are suspended in the air, the proportional multi-way valve Ⅰ of the lower outrigger is closed, and the proportional multi-way valve Ⅱ of the lower outrigger is switched to the upper position to accurately control the level of the fuselage. Leveling;
当上底板上的行走支撑腿着地,下底板上的行走支撑腿悬空时,上支腿比例多路阀Ⅰ50关闭,上支腿比例多路阀Ⅱ换向至上位工作,对机身水平度进行精确调平。When the walking support legs on the upper base plate are on the ground and the walking support legs on the lower base plate are suspended in the air, the proportional multi-way valve Ⅰ50 of the upper outrigger is closed, and the proportional multi-way valve II of the upper outrigger switches to the upper position to work, and the level of the fuselage is checked. Precise leveling.
上述的可移动式座底装置的实现方法中,转向操作的步骤2)中,转向油缸的伸长量与底板转向角度的计算公式如下:In the implementation method of the above-mentioned movable base device, in step 2) of the steering operation, the calculation formula of the elongation of the steering cylinder and the steering angle of the bottom plate is as follows:
(1) (1)
式中:X为转向油缸的伸长量,单位为mm;α为底板转向角度。In the formula: X is the elongation of the steering cylinder, in mm; α is the steering angle of the bottom plate.
上述的可移动式座底装置的实现方法中,可移动式座底装置必须不被海流吹走,可移动式座底装置不被海流吹走的条件是:可移动式座底装置的自重与扬力而产生的抓地足尖的摩擦力大于流体阻力:即:In the implementation method of the above-mentioned movable base device, the movable base device must not be blown away by the ocean current, and the condition for the movable base device not to be blown away by the ocean current is: the dead weight of the movable base device and The friction force of the grip toe produced by the lifting force is greater than the fluid resistance: that is:
(2) (2)
(3) (3)
式中:m为移动式座底装置的质量,g为重力加速度,B为移动式座底装置的浮力,fF为移动式座底装置的海底面抓地摩擦力,fD为流体阻力,fE为除此之外的其他外力成分,并且,μ为抓地摩擦系数,fL为作用于座底装置的扬力。在数学式2中,由于fD与fE为对流速与移动式座底装置姿势的函数,因此能够以满足数学式2的不等式的方式补偿姿势,从而克服海流。In the formula: m is the mass of the mobile base device, g is the acceleration of gravity, B is the buoyancy of the mobile base device, fF is the frictional force of the seabed surface of the mobile base device, fD is the fluid resistance, and fE is In addition to other external force components, and, μ is the grip friction coefficient, and fL is the lifting force acting on the seat bottom device. In
与现有的技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
1、本发明采用步履式行走机构,提出与螺旋桨推进和履带式行走完全不同的新概念的由六条腿构成的海底座底装置及其实现方法,能更好的适应于海底不规则地形,座底装置以紧贴于海底的方式移动,利用姿势及运动检测传感器维持姿势并克服海流,在海底步行,搭载海底钻探系统,借助有线/无线通信单元向指挥船传输海底数据,因而具有能够在浅海及深海进行海底探测的效果。1. The present invention adopts a walking mechanism, and proposes a new concept of a sea base device composed of six legs and its realization method, which is completely different from propeller propulsion and crawler type walking, and can better adapt to the irregular terrain of the seabed. The bottom device moves close to the bottom of the sea, uses posture and motion detection sensors to maintain posture and overcome currents, walks on the bottom of the sea, is equipped with a subsea drilling system, and transmits bottom data to the command ship with the help of wired/wireless communication units, so it has the ability to operate in shallow seas. And the effect of seabed detection in deep sea.
2、本发明采用三点并联斜撑系统,能够搭载大吨位的海底钻探装置以及探测系统,并能够快速实现系统的平衡控制和调平。2. The present invention adopts a three-point parallel bracing system, which can be equipped with a large-tonnage subsea drilling device and a detection system, and can quickly realize the balance control and leveling of the system.
3、本发明的液压泵安装在油箱内,液压控制元件通过油路集成板布置在油箱上,上下支撑腿可以收放,空间紧凑,满足母船对座底装置空间限制的要求,适应性强。3. The hydraulic pump of the present invention is installed in the fuel tank, and the hydraulic control components are arranged on the fuel tank through the oil circuit integrated board. The upper and lower support legs can be retracted, and the space is compact, which meets the requirements of the mother ship for the space limitation of the bottom device, and has strong adaptability.
附图说明Description of drawings
图1为本发明整体结构立体示意图。Fig. 1 is a three-dimensional schematic diagram of the overall structure of the present invention.
图2为本发明整体结构侧视示意图。Fig. 2 is a schematic side view of the overall structure of the present invention.
图3为本发明整体结构俯视示意图。Fig. 3 is a schematic top view of the overall structure of the present invention.
图4为本发明收放状态示意图。Fig. 4 is a schematic diagram of the retractable state of the present invention.
图5为本发明转向机构示意图。Fig. 5 is a schematic diagram of the steering mechanism of the present invention.
图6为本发明的控制流程示意图。Fig. 6 is a schematic diagram of the control flow of the present invention.
图7为本发明的液压、电控结构示意图。Fig. 7 is a schematic diagram of the hydraulic and electric control structure of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
如图1、图2、图3所示,本发明可移动式座底装置,包括上底板16、支撑板9和下底板1;所述的上底板16和下底板1为八边形型框架结构,上底板16和下底板1上边缘处分别设有三个支腿座5和三个支腿座耳板4。支腿座5和支腿座耳板4用于安装行走支撑腿10。所述的行走支撑腿10包括支腿油缸14、支板11、支架耳13、支腿脚板万向节12及支杆;支杆一端与支架耳13铰接,另一端与上底板或下底板上的支腿座耳板4铰接。支架耳13通过销轴与支腿油缸14和支腿脚板万向节12连接,支腿脚板万向节12通过销轴与支板11连接,支腿油缸14的另一端与上底板或下底板上的支腿座5的上端铰接。支腿油缸上设有压力传感器43和位移传感器44,支腿油缸14驱动实现行走支撑腿10的转动。As shown in Fig. 1, Fig. 2 and Fig. 3, the movable base device of the present invention includes an
如图5所示,所述的上底板16底部设有上底板支撑座18,上底板支撑座18通过回转支承8安装在支撑板9上,上底板支撑座18底部安装有转向油缸25和滑动导轨26,转向油缸25通过销轴与滑块27连接,滑块27置于滑动导轨26上,能沿着滑动导轨26滑动。滑块27与推杆28通过销轴连接,推杆28通过销轴与支撑板9连接,形成一个曲柄摇杆机构,由转向油缸25驱动实现上底板16的转动。As shown in Figure 5, the bottom of the
所述的支撑板9底部对称设有四个车轮安装座7,每个车轮安装座7底部设有一对车轮6,通过车轮支撑在下底板1上的导向架3上,支撑板9上安装有推杆连接座24,行走油缸2的两端分别通过销轴与推杆连接座24及车轮安装座7连接,支撑板9通过行走油缸2驱动车轮6实现其在导向架3内平移。所述的行走油缸2上设有位移传感器42和行程开关41。The bottom of the
所述上底座16上安装有水平倾角传感器51,用于检测本体的姿势。下底板1上安装有位置跟踪传感器46,用于实时地追踪并检测执行可移动式座底装置的水平位置。A
如图7所示,所述的控制单元包括液压控制装置及PLC控制装置;所述的液压控制装置包括液压泵32、压力补偿器30、主进油管及主回油管,液压泵32的进口通过管道与油箱连通,该管道上设有滤清器31,滤清器31上安装有污染发讯器54。所述的压力补偿器30的进口与液压泵32的出口连接,压力补偿器30的出口通过管道连接油箱。As shown in Figure 7, the control unit includes a hydraulic control device and a PLC control device; the hydraulic control device includes a
液压泵的出口与主进油管连通,主回油管连接油箱;转向比例多路阀35的P口、平衡阀34的P口、减压阀36的P口、平移比例多路阀40的P口、下支腿比例多路阀Ⅰ45的P口、下支腿比例多路阀Ⅱ47的P口、上支腿比例多路阀Ⅰ50的P口、上支腿比例多路阀Ⅱ52的P口,定差减压阀37的P口分别与主进油管连接;转向比例多路阀35的T口、平衡阀34的T口、减压阀36的T口、平移比例多路阀40的T口、下支腿比例多路阀Ⅰ45的T口、下支腿比例多路阀Ⅱ47的T口、上支腿比例多路阀Ⅰ50的T口、上支腿比例多路阀Ⅱ52的T口分别与主回油管连接;所述转向比例多路阀35、平移比例多路阀40、下支腿比例多路阀Ⅰ45、下支腿比例多路阀Ⅱ47、上支腿比例多路阀Ⅰ50、上支腿比例多路阀Ⅱ52及压力补偿器30与PLC控制装置53的输出端连接;PLC控制装置53输入端与位移传感器39信号输出端、位移传感器42信号输出端、压力传感器43信号输出端、位移传感器44信号输出端、压力传感器49信号输出端、位移传感器48信号输出端、水平倾角传感器51信号输出端、位置跟踪传感器46信号输出端、污染发讯器54信号输出端及行程开关41连接。The outlet of the hydraulic pump is connected to the main oil inlet pipe, and the main oil return pipe is connected to the fuel tank; the P port of the steering proportional multi-way valve 35, the P port of the balance valve 34, the P port of the pressure reducing valve 36, and the P port of the translation proportional multi-way valve 40 , the P port of the lower outrigger proportional multi-way valve I45, the P port of the lower outrigger proportional multi-way valve II47, the P port of the upper outrigger proportional multi-way valve I50, the P port of the upper outrigger proportional multi-way valve II52, set The P port of the differential decompression valve 37 is connected with the main oil inlet pipe respectively; the T port of the steering proportional multi-way valve 35, the T port of the balance valve 34, the T port of the pressure reducing valve 36, the T port of the translation proportional multi-way valve 40, The T port of the lower outrigger proportional multi-way valve Ⅰ45, the T port of the lower outrigger proportional multi-way valve Ⅱ47, the T port of the upper outrigger proportional multi-way valve Ⅰ50, and the T port of the upper outrigger proportional multi-way valve Ⅱ52 are respectively connected with the main Oil return pipe connection; the steering proportional multi-way valve 35, the translation proportional multi-way valve 40, the lower outrigger proportional multi-way valve I45, the lower outrigger proportional multi-way valve II47, the upper outrigger proportional multi-way valve I50, the upper outrigger The proportional multi-way valve II 52 and the pressure compensator 30 are connected to the output end of the PLC control device 53; the input end of the PLC control device 53 is connected to the signal output end of the displacement sensor 39, the signal output end of the displacement sensor 42, the signal output end of the pressure sensor 43, and the displacement sensor 44 signal output terminals, pressure sensor 49 signal output terminals, displacement sensor 48 signal output terminals, horizontal inclination sensor 51 signal output terminals, position tracking sensor 46 signal output terminals, pollution transmitter 54 signal output terminals and travel switch 41 are connected.
转向油缸25的无杆腔与液控单向阀Ⅰ38的B口连接,液控单向阀Ⅰ38的A口与转向电磁换向阀35的A口连接,转向比例多路阀35的B口与转向油缸25有杆腔连接。The rodless chamber of the
平移油缸2的无杆腔与液控单向阀Ⅱ的B口连接,液控单向阀Ⅱ的A口与平移比例多路阀40的A口连接,平移比例多路阀40的B口与转向油缸25有杆腔连接。The rodless chamber of the
所述的上底板16上三个行走支腿的支腿油缸的无杆腔与上支腿比例多路阀Ⅰ50的B口及上支腿比例多路阀Ⅱ52的A口连接;上底板16上三个行走支腿的支腿油缸的有杆腔与上支腿比例多路阀Ⅰ50的A口及上支腿比例多路阀Ⅱ52的B口连接。The rodless chambers of the outrigger cylinders of the three walking legs on the
所述的下底板1上三个行走支腿的支腿油缸的无杆腔与下支腿比例多路阀Ⅰ45的B口及下支腿比例多路阀Ⅱ47的A口连接;下底板1上三个行走支腿的支腿油缸的有杆腔与下支腿比例多路阀Ⅰ45的A口及下支腿比例多路阀Ⅱ47的B口连接。The rodless cavity of the outrigger cylinders of the three walking legs on the
如图6所示,可移动式座底装置的实现方法包括转向操作、移动操作和调平操作。As shown in Figure 6, the implementation method of the movable base device includes steering operation, moving operation and leveling operation.
转向操作的具体步骤如下:The specific steps of steering operation are as follows:
1、PLC控制装置53控制液压泵32开启,上支腿比例多路阀Ⅰ50换向至下位工作,上底板16上的行走支撑腿10的支腿油缸14伸缩,压力传感器49检测压力达到设计值停止;位置跟踪传感器46开始检测目标点与导向架3的相对角度。1. The PLC control device 53 controls the opening of the
2、当位置跟踪传感器46检测目标点与导向架3的相对角度处于[0°90°]和[180°270°]时,转向比例多路阀35换向至上位工作,转向油缸25驱动下底板1转动,当位置跟踪传感器46检测目标点与导向架3共线时,下支腿比例多路阀45换向至下位工作,下底板1上的行走支撑腿10(图中简写为:下支撑腿)着地,压力传感器43检测压力达到设计值停止,上支腿比例多路阀Ⅰ50换向至上位工作,使得上底板16上的行走支撑腿10(图中简写为:上支撑腿)悬空;位移传感器48检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止;转向比例多路阀35换向至下位工作,转向油缸25驱动上底板16转动复位。2. When the
当位置跟踪传感器46检测目标点与导向架3不共线,下底板1转动到极限位置时,下支腿比例多路阀45换向至下位工作,使得下底板1上的三个行走支撑腿10着地,压力传感器43检测压力达到设计值停止,上支腿比例多路阀Ⅰ50换向至上位工作,使得上底板16上的三个行走支撑腿10悬空,位移传感器48检测下支腿油缸位移达到设计值时停止。转向比例多路阀35换向至下位工作,转向油缸25驱动上底板16转动至极限位置,上支腿比例多路阀Ⅰ50换向至下位工作,使得上底板16上的三个行走支撑腿10着地,压力传感器49检测压力达到设计值停止,下支腿比例多路阀Ⅰ45换向至上位工作,使得下底板1上的三个行走支撑腿10悬空,位移传感器44检测下支腿油缸位移达到设计值时停止。转向油缸25驱动下底板1转动,当位置跟踪传感器46检测目标点与导向架3共线时,下支腿比例多路阀Ⅰ45换向至下位工作,使得下底板1上的三个行走支撑腿10着地,压力传感器43检测压力达到设计值停止,上支腿比例多路阀Ⅰ50换向至上位工作,使得上底板16上的三个行走支撑腿10悬空,位移传感器48检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止。转向比例多路阀35换向至下位工作,转向油缸25驱动上底板16转动复位。When the
当位置跟踪传感器46检测目标点与导向架3的相对角度不处于[0°90°]和[180°270°]时,下支腿比例多路阀Ⅰ45换向至下位工作,使得下底板1上的三个行走支撑腿10着地,压力传感器43检测压力达到设计值停止,上支腿比例多路阀Ⅰ50换向至上位工作,使得上底板16上的三个行走支撑腿10悬空,位移传感器48检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止。转向比例多路阀35换向至下位工作,转向油缸25驱动上底板16转动至极限位置,上支腿比例多路阀Ⅰ50换向至下位工作,使得上底板16上的三个行走支撑腿10着地,压力传感器49检测压力达到设计值停止,下支腿比例多路阀Ⅰ45换向至上位工作,使得下底板1上的三个行走支撑腿10悬空,位移传感器44检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止。转向比例多路阀35换向至上位工作,转向油缸25驱动下底板1转动。When the
转向油缸的伸长量与底板转向角度的计算公式如下:The formula for calculating the elongation of the steering cylinder and the steering angle of the floor is as follows:
(1) (1)
式中,X为转向油缸的伸长量,单位为mm;α为底板转向角度。In the formula, X is the elongation of the steering cylinder in mm; α is the steering angle of the bottom plate.
移动操作的具体步骤如下:The specific steps of the mobile operation are as follows:
平移比例多路阀40换向至上位工作,驱动上底板16向目标点移动,位置跟踪传感器46检测与目标点的相对位移量,PLC控制装置53根据相对位移量减平移油缸2的最大位移量计算移动步长的次数。当相对位移量为0时,下支腿比例多路阀Ⅰ45换向至下位工作,使得下底板1上的三个行走支撑腿10着地,压力传感器43检测压力达到设计值停止,上支腿比例多路阀Ⅰ50换向至上位工作,使得上底板16上的三个行走支撑腿10悬空,位移传感器48检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止。转向比例多路阀35换向至下位工作,转向油缸25驱动上底板16转动复位,上支腿比例多路阀Ⅰ50换向至下位工作,上底板16上的行走支撑腿10的支腿油缸14驱动上支腿10着地,压力传感器49检测压力达到设计值停止,下支腿比例多路阀Ⅰ45换向至上位工作,使得下底板1上的行走支撑腿10悬空,位移传感器44检测下底板1上的行走支撑腿10的支腿油缸位移达到设计值时停止。The translation proportional multi-way valve 40 switches to the upper position to work, drives the
调平操作的具体步骤如下:The specific steps of leveling operation are as follows:
当下底板1上的行走支撑腿10着地,上底板16上的行走支撑腿10悬空时,下支腿比例多路阀Ⅰ45关闭,下支腿比例多路阀Ⅱ47换向至上位工作,对机身水平度进行精确调平;When the walking
当上底板16上的行走支撑腿10着地,下底板1上的行走支撑腿10悬空时,上支腿比例多路阀Ⅰ50关闭,上支腿比例多路阀Ⅱ52换向至上位工作,对机身水平度进行精确调平。When the walking
本发明的可移动式座底装置的实现方法,作为在存在海流的大海中用于维持因海流而颠覆或不被吹走并维持稳定的姿势的接近方法,可移动式座底装置必须不被海流吹走,可移动式座底装置不被海流吹走的条件是:可移动式座底装置的自重与扬力而产生的抓地足尖的摩擦力大于流体阻力:即:The realization method of the movable base device of the present invention is as an approach method for maintaining a stable posture without being overturned or blown away by the current in the sea where currents exist, and the movable base device must not be Blown away by the ocean current, the condition for the movable base device not to be blown away by the ocean current is that the frictional force of the toe-grip produced by the self-weight and lifting force of the movable base device is greater than the fluid resistance: namely:
(2) (2)
(3) (3)
式中,m为移动式座底装置的质量,g为重力加速度,B为移动式座底装置的浮力,fF为移动式座底装置的海底面抓地摩擦力,fD为流体阻力,fE为除此之外的其他外力成分,并且,μ为抓地摩擦系数,fL为作用于座底装置的扬力。在数学式2中,由于fD与fE为对流速与移动式座底装置姿势的函数,因此能够以满足数学式2的不等式的方式补偿姿势,从而克服海流。In the formula, m is the mass of the mobile base device, g is the gravitational acceleration, B is the buoyancy of the mobile base device, fF is the seabed friction force of the mobile base device, fD is the fluid resistance, and fE is In addition to other external force components, and, μ is the grip friction coefficient, and fL is the lifting force acting on the seat bottom device. In
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910062803.2A CN109693773B (en) | 2019-01-23 | 2019-01-23 | A movable base device and its realization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910062803.2A CN109693773B (en) | 2019-01-23 | 2019-01-23 | A movable base device and its realization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109693773A CN109693773A (en) | 2019-04-30 |
CN109693773B true CN109693773B (en) | 2023-06-16 |
Family
ID=66234198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910062803.2A Active CN109693773B (en) | 2019-01-23 | 2019-01-23 | A movable base device and its realization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109693773B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111287671A (en) * | 2020-03-11 | 2020-06-16 | 湖南科技大学 | Addressing bottoming device of submarine drilling rig and using method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2704680Y (en) * | 2004-06-25 | 2005-06-15 | 长沙矿山研究院 | Automatic posture adjusting and stabilizing device for telescopic supporting legs of deep sea drilling machine |
CN202248029U (en) * | 2011-05-19 | 2012-05-30 | 徐工集团工程机械股份有限公司科技分公司 | Walking type engineering machinery and leveling device thereof |
CN102383723B (en) * | 2011-07-12 | 2013-06-19 | 中国地质大学(武汉) | Seabed type conical investigating and drilling integrated machine |
US9498883B2 (en) * | 2011-12-15 | 2016-11-22 | Korea Institute Of Ocean Science & Technology | Multi-joint underwater robot having complex movement functions of walking and swimming and underwater exploration system using same |
KR101327975B1 (en) * | 2012-05-17 | 2013-11-13 | 한국해양과학기술원 | Test bed for testing function of underwater robot |
CN204002851U (en) * | 2014-08-15 | 2014-12-10 | 山东科技大学 | With the shotcrete robot of six sufficient running gears |
WO2016033706A1 (en) * | 2014-09-03 | 2016-03-10 | 杨一男 | Walker-type traveling base apparatus |
CN105781410B (en) * | 2016-03-30 | 2019-04-05 | 湖南新天和工程设备有限公司 | A kind of long-spiral drilling machine |
CN108457326B (en) * | 2016-06-20 | 2021-02-19 | 靖江市闻达机械有限公司 | Working method for hydraulic control loop of excavator supporting leg structure |
CN206600313U (en) * | 2017-01-21 | 2017-10-31 | 三一汽车制造有限公司 | Support leg hydraulic system, anchoring car and engineering machinery |
EP3592936B1 (en) * | 2017-03-10 | 2023-06-21 | Ocean Infinity Operations Pte.Ltd. | Drilling devices and methods of operating the same |
KR101850247B1 (en) * | 2017-05-26 | 2018-04-20 | 한국해양과학기술원 | Drilling apparatus of submarine core |
CN108468513A (en) * | 2018-04-24 | 2018-08-31 | 湖南普力海洋科技有限公司 | Complicated landform self-propelled deep-sea core sampler drill |
CN109025824A (en) * | 2018-08-16 | 2018-12-18 | 招远市铱璐光电科技有限公司 | Drilling machine people is surveyed in a kind of armor crab seabed |
CN209581820U (en) * | 2019-01-23 | 2019-11-05 | 湖南科技大学 | A movable base device |
-
2019
- 2019-01-23 CN CN201910062803.2A patent/CN109693773B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109693773A (en) | 2019-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105644742B (en) | A long-term fixed-point vertical profile observation underwater robot | |
JP6985782B1 (en) | Mechanical property measurement system for seafloor sediments suitable for full depth | |
JP3382791B2 (en) | Underwater vehicle lifting and lowering operation method and device | |
US3900077A (en) | Vehicle for surf zone work | |
CN106891073B (en) | Mobile platform in six degree of freedom water | |
CN103600821A (en) | Omni-directional floating and wall-climbing underwater robot | |
CN111251797B (en) | Amphibious robot | |
CN106428484A (en) | Self-adaption multi-legged ROV (Remote Operated Vehicle) for marine petroleum exploitation | |
GB2532295A (en) | Surface effect unmanned vehicle | |
CN109693773B (en) | A movable base device and its realization method | |
CN106938692B (en) | Non-contact negative-pressure adsorption climbs wall detection device under water | |
CN209276989U (en) | A kind of bridge submerged structure detection platform | |
CN209581820U (en) | A movable base device | |
CN113733829B (en) | Amphibious robot system and method for surface and internal disease detection of linear canal embankments | |
WO2022021066A1 (en) | Submarine mobile cptu sounding equipment | |
CN107010183A (en) | A kind of underwater structure surface clean detecting system based on buoyancy compartment | |
CN112722217A (en) | Seabed charging type crawling dual-mode underwater vehicle | |
CN212980507U (en) | Adjustable submerged operation robot | |
CN114537623B (en) | Deep sea lander integrated with hydraulic wing plate and working method thereof | |
CN201027319Y (en) | Movable working table for sucking sand on water | |
CN112519914B (en) | A wheel-legged robot for field exploration | |
CN108945359B (en) | A multi-legged robot underwater gliding method | |
CN112344131A (en) | A flood discharge robot | |
CN108915010B (en) | Creeping type mud suction equipment | |
CN115959272B (en) | Segmented modular underwater robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |