Disclosure of Invention
In view of this, the embodiment of the invention provides a network transmission performance testing method and device, which can test the transmission performance of a communication network of a distributed control system and ensure the effective operation of the distributed control system.
A network transmission performance testing method, comprising:
generating a test signal for testing the network transmission performance of the distributed control system to be detected;
transmitting the test signal to the distributed control system to be detected;
receiving a response signal to the test signal from the distributed control system to be detected;
and generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
Preferably, the process of generating the test signal for testing the network transmission performance of the distributed control system to be detected includes:
setting a starting signal transmission frequency value;
setting a change rule of the signal transmission frequency;
generating at least one test signal according to the initial signal transmission frequency value and the signal transmission frequency change rule.
Preferably, the generating at least one test signal according to the initial signal transmission frequency value and the signal transmission frequency variation rule includes:
Generating a test signal sequence according to the initial signal transmission frequency value and the signal transmission frequency increasing rule, wherein the test signal sequence comprises at least one test signal with the signal transmission frequency value increasing along with the test signal generating sequence.
Preferably, the process of transmitting the test signal to the distributed control system to be detected includes:
and transmitting at least one test signal in the test signal sequence to the to-be-detected distributed control system according to the generation sequence of the test signals in the test signal sequence.
Preferably, the process of generating the network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal includes:
sequentially acquiring signal receiving frequency values of the response signals according to the receiving sequence of the response signals;
sequentially obtaining signal transmission frequency values of test signals corresponding to the response signals;
sequentially comparing the signal receiving frequency value of the response signal with the signal transmitting frequency value of the corresponding test signal to obtain a frequency value comparison result, wherein the frequency value comparison result reflects whether the signal receiving frequency value of the response signal is consistent with the signal transmitting frequency value of the corresponding test signal;
Determining the test signal when the frequency value comparison result is inconsistent as a critical test signal;
determining a signal transmission frequency value of a test signal preceding the critical test signal in the test signal sequence;
and determining the signal transmission frequency value of the determined test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
Preferably, the process of generating the network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal includes:
sequentially acquiring the signal content of each response signal according to the receiving sequence of the response signals;
sequentially acquiring the signal content of the test signals corresponding to the response signals;
comparing the signal content of the response signal with the signal content of the corresponding test signal in sequence to obtain a signal content comparison result, wherein the signal content comparison result reflects whether the signal content of the response signal is consistent with the signal content of the corresponding test signal;
determining the test signal when the signal content comparison result is inconsistent as a critical test signal;
Determining a signal transmission frequency value of a test signal preceding the critical test signal in the test signal sequence;
and determining the signal transmission frequency value of the determined test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
A network transmission performance testing apparatus, comprising:
the test signal generation module is used for generating a test signal for testing the network transmission performance of the distributed control system to be detected;
the test signal transmission module is used for transmitting the test signal to the to-be-detected distributed control system;
the response signal receiving module is used for receiving a response signal to the test signal from the distributed control system to be detected;
and the network transmission performance test result generation module is used for generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
Preferably, the test signal generating module includes:
the initial signal transmission frequency value setting module is used for setting an initial signal transmission frequency value;
the signal transmission frequency change rule setting module is used for setting a signal transmission frequency change rule;
And the test signal generation sub-module is used for generating at least one test signal according to the initial signal transmission frequency value and the signal transmission frequency change rule.
Preferably, the test signal generating submodule includes:
the test signal sequence generation module is used for generating a test signal sequence according to the initial signal transmission frequency value and the signal transmission frequency increasing rule, wherein the test signal sequence comprises at least one test signal with the signal transmission frequency value increasing with the test signal generation sequence.
Preferably, the test signal transmission module includes:
and the test signal sequence transmission module is used for transmitting at least one test signal in the test signal sequence to the to-be-detected distributed control system according to the generation sequence of the test signals in the test signal sequence.
Preferably, the network transmission performance test result generating module includes:
the signal receiving frequency value acquisition module is used for sequentially acquiring the signal receiving frequency values of the response signals according to the receiving sequence of the response signals;
the signal transmission frequency value acquisition module is used for sequentially acquiring signal transmission frequency values of the test signals corresponding to the response signals;
The frequency value comparison module is used for sequentially comparing the signal receiving frequency value of the response signal with the signal sending frequency value of the test signal corresponding to the signal receiving frequency value to obtain a frequency value comparison result, and the frequency value comparison result reflects whether the signal receiving frequency value of the response signal is consistent with the signal sending frequency value of the test signal corresponding to the signal receiving frequency value;
the first critical test signal determining module is used for determining the test signal when the frequency value comparison result is inconsistent as a critical test signal;
a first signal transmission frequency value determining module, configured to determine, in the test signal sequence, a signal transmission frequency value of a test signal that is located before the critical test signal;
the first network transmission signal frequency value determining module is used for determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
Preferably, the network transmission performance test result generating module includes:
the first signal content acquisition module is used for sequentially acquiring the signal content of each response signal according to the receiving sequence of the response signals;
The second signal content acquisition module is used for sequentially acquiring the signal content of the test signals corresponding to the response signals;
the signal content comparison module is used for sequentially comparing the signal content of the response signal with the signal content of the test signal corresponding to the response signal to obtain a signal content comparison result, and the signal content comparison result reflects whether the signal content of the response signal is consistent with the signal content of the test signal corresponding to the response signal;
the second critical test signal determining module is used for determining the test signal when the signal content comparison result is inconsistent as a critical test signal;
a second signal transmission frequency value determining module, configured to determine, in the test signal sequence, a signal transmission frequency value of a test signal that is located before the critical test signal;
and the second network transmission signal frequency value determining module is used for determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
Based on the above technical scheme, the embodiment of the invention discloses a network transmission performance testing method and device, which are implemented by generating a testing signal for testing the network transmission performance of a distributed control system to be detected; transmitting the test signal to the distributed control system to be detected; receiving a response signal to the test signal from the distributed control system to be detected; and generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal. According to the embodiment of the invention, the network transmission performance test result of the distributed control system to be detected is obtained by using the generated test signal and the response signal obtained by the distributed control system to be detected responding to the test signal, so that the test of the communication network transmission performance of the distributed control system to be detected is realized, and the effective operation of the distributed control system is ensured by using the test result of the communication network transmission performance.
Detailed Description
The following description of the embodiments of the present invention will be made clearly and completely with reference to the accompanying drawings, in which it is apparent that the embodiments described are only some embodiments of the present invention, but not all embodiments. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
Fig. 1 shows a flowchart of a network transmission performance testing method, which may be implemented by a server, and referring to fig. 1, the method may include:
step S100, generating a test signal for testing the network transmission performance of a distributed control system to be detected;
the network transmission performance of the to-be-detected distributed control system refers to the transmission performance of the to-be-detected distributed control system for transmitting signals through a network, wherein the network transmission performance can be represented by adopting the frequency or the period of the network transmission signals.
The kind of the test signal may be a continuous signal, a discrete signal, or the like, which is not particularly limited in the embodiment of the present invention. In the embodiment of the invention, the signal generator can be used for generating the test signals, wherein the number of the test signals is not particularly limited in the embodiment of the invention, and the number of the transmitted test signals can only meet the condition of obtaining the test result.
The method for generating the test signal for testing the network transmission performance of the distributed control system to be detected in the embodiment of the invention can be as follows: setting a starting signal transmission frequency value; setting a change rule of the signal transmission frequency; generating at least one test signal according to the initial signal transmission frequency value and the signal transmission frequency change rule.
In the embodiment of the present invention, a first test signal, that is, a signal transmission frequency value of the start signal, may be set, and a change rule of the signal transmission frequency of each test signal after the start signal may be set, for example: the signal sending frequency value is changed in an equal increment mode according to a preset step length, and at least one test signal is finally generated.
In the embodiment of the present invention, a person skilled in the art may set the initial signal sending frequency value and the signal sending frequency change rule through the touch display terminal, and a specific setting manner may be direct input of parameters or selection of parameters, which is not specifically limited.
Step S110, transmitting the test signal to the distributed control system to be detected;
in the embodiment of the invention, the test signal can be transmitted to the distributed control system to be detected in a wired or wireless mode.
Step S120, receiving a response signal to the test signal from the distributed control system to be detected;
after receiving the test signal, one of the controllers in the distributed control system to be detected broadcasts the test signal on the network, namely generates a broadcast signal, and the other controllers in the distributed control system to be detected receive the broadcast signal through the network.
And step 130, generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
It should be noted that, if the signal transmission frequency value of the test signal is within the range of the network transmission signal frequency value of the to-be-detected distributed control system, the network of the to-be-detected distributed control system can normally receive the test signal, and the signal reception frequency value of the obtained response signal and the signal transmission frequency value of the corresponding test signal should be the same; if the signal transmission frequency value of the test signal exceeds the range of the network transmission frequency value of the to-be-detected distributed control system, the network of the to-be-detected distributed control system cannot normally transmit the test signal, and the signal receiving frequency value of the obtained response signal is inconsistent with the signal transmission frequency value of the corresponding test signal. The method and the device realize the test of the transmission performance of the communication network of the distributed control system to be detected, thereby ensuring the effective operation of the distributed control system by utilizing the test result of the transmission performance of the communication network.
Preferably, in the embodiment of the present invention, the network transmission performance is implemented by using the network transmission signal frequency, based on which fig. 2 shows a flowchart of another network transmission performance testing method, which may be implemented by a server, and referring to fig. 2, the method may include:
step 200, setting a starting signal transmission frequency value;
step S210, setting a signal transmission frequency increase rule;
it should be noted that, the initial signal transmission frequency value and the signal transmission frequency increasing rule may be set by those skilled in the art according to the actual situation, and the signal transmission frequency increasing rule may be linearly increasing or non-linearly increasing, which is not specifically limited in the embodiment of the present invention.
Step S220, generating a test signal sequence according to the initial signal transmission frequency value and the signal transmission frequency increase rule;
the test signal sequence comprises at least one test signal with a signal transmission frequency value increasing with the generation sequence of the test signals. The signal transmission frequency values of the test signals sequentially generated are in an increasing trend according to the test signal generation sequence.
In the embodiment of the invention, the number of the test signals in the test signal sequence is not particularly limited, and the number of the generated test signals can only meet the condition of obtaining the test result.
Step S230, transmitting at least one test signal in the test signal sequence to the to-be-detected distributed control system according to the generation sequence of the test signals in the test signal sequence;
in the embodiment of the invention, each time a test signal is generated, the generated test signal is transmitted to the distributed control system to be detected.
Step S240, receiving a response signal to the test signal from the distributed control system to be detected;
and in the process of receiving the response signals to the test signals from the distributed control system to be detected, the response signals are also sequentially received according to the generation sequence of the response signals.
And step S250, generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
According to the embodiment of the invention, the test signal sequence containing at least one test signal with the signal sending frequency value increasing along with the generation sequence of the test signal is generated, then at least one test signal in the test signal sequence is transmitted to the to-be-detected distributed control system according to the generation sequence of the test signal in the test signal sequence, and a response signal to the test signal is received from the to-be-detected distributed control system, so that a network transmission performance test result of the to-be-detected distributed control system is generated according to the test signal and the response signal, the test of the communication network transmission performance of the to-be-detected distributed control system is realized, and the test result of the communication network transmission performance is utilized to ensure the effective operation of the distributed control system.
The following describes in detail, with reference to a schematic block diagram of a network transmission performance testing method disclosed in fig. 3, the above specific implementation procedure disclosed in the embodiment of the present invention by using a specific example:
1. receiving an initial signal transmission frequency value and a signal transmission frequency increase rule set by a person skilled in the art through a touch display terminal;
2. the touch display terminal transmits the initial signal transmission frequency value and the signal transmission frequency increasing rule to the calculation control unit, and the calculation control unit sends a test signal generating command to the function generator according to the initial signal transmission frequency value and the signal transmission frequency increasing rule;
3. the function generator generates at least one test signal according to the test signal generation command;
4. the DPU (Distributed Processing Unit, the decentralized processing unit) 1 in the decentralized control system sequentially receives the test signals generated by the function generator through the upper network, the DPU1 broadcasts the received test signals on the network XNET of the decentralized control system, namely generates broadcast signals, the other DPU2 in the decentralized control system sequentially receives the broadcast signals through the network XNET, and transmits the received broadcast signals as response signals to the test signals to the high-speed data collector through the lower network;
It should be noted that, in the embodiment of the present invention, two DPUs are provided in the distributed control system, the operation periods of the two DPUs are identical, and signals are propagated between the two DPUs through the network XNET of the distributed control system.
5. The high-speed data acquisition unit transmits response signals acquired in sequence to the calculation control unit;
it should be noted that, in the embodiment of the present invention, the test signal generated by the function generator may also be directly transmitted to the high-speed data collector, and then the high-speed data collector transmits the test signal to the calculation control unit, where the calculation control unit checks the test signal generated by the function generator, so as to implement the check of the function generator, and transmit the check result to the touch display terminal, so that a technician checks whether the function generator can normally generate the test signal with the preset frequency.
6. The computing control unit generates a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal, and sends the generated network transmission performance test result to the touch display terminal for a technician to check, wherein the generated network transmission performance test result can be a network signal waveform of the distributed control system, and can also be a network transmission signal frequency value or a network transmission signal period of the distributed control system.
In this embodiment, as shown in fig. 4, for a process of generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal, the process includes:
step S300, sequentially obtaining signal receiving frequency values of the response signals according to the receiving sequence of the response signals;
step S310, sequentially obtaining signal transmission frequency values of the test signals corresponding to the response signals;
step S320, comparing the signal receiving frequency value of the response signal with the signal transmitting frequency value of the corresponding test signal in sequence to obtain a frequency value comparison result;
the frequency value comparison result reflects whether the signal receiving frequency value of the response signal is consistent with the signal sending frequency value of the corresponding test signal.
Step S330, determining the test signal when the frequency value comparison result is inconsistent as a critical test signal;
when the frequency value comparison result is inconsistent, the signal receiving frequency value of the received response signal is inconsistent with the signal sending frequency value of the corresponding test signal, and the inconsistent signal receiving frequency value of the received response signal and the signal sending frequency value of the corresponding test signal indicate that the signal sending frequency value of the test signal exceeds the range of the network transmission signal frequency value of the to-be-detected distributed control system, and the test signal cannot be normally transmitted through the network of the to-be-detected distributed control system.
Step S340, determining a signal transmission frequency value of a test signal located before the critical test signal in the test signal sequence;
because the signal transmission frequency value of the critical test signal exceeds the range of the network transmission signal frequency value of the to-be-detected distributed control system, in the application, the signal transmission frequency value of one test signal positioned before the critical test signal in the test signal sequence is determined to be the one with the highest signal transmission frequency value which does not exceed the range of the network transmission signal frequency value of the to-be-detected distributed control system.
And step 350, determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
In the embodiment of the application, the signal transmission frequency value of one test signal positioned before the critical test signal in the test signal sequence is determined as the network transmission signal frequency value of the distributed control system to be detected.
Preferably, in the embodiment of the present application, after determining a signal transmission frequency value of a test signal located before the critical test signal, the signal transmission frequency value of the test signal located before the critical test signal may be taken as a center, a plurality of signal transmission frequency values on the left and right sides of the signal transmission frequency value may be taken as a step according to a preset trimming frequency value, and a plurality of trimming test signals may be generated according to the sizes of the plurality of signal transmission frequency values, where the network transmission performance test result of the to-be-detected distributed control system is generated according to the method disclosed in the embodiment of the present application, and the obtained network transmission performance test result is more accurate by the method of the trimming frequency value.
In this embodiment, a network transmission performance test result of the to-be-detected distributed control system may be obtained according to signal content, and based on this, a process of generating the network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal is shown in fig. 5, where the process includes:
step S400, sequentially acquiring the signal content of each response signal according to the receiving sequence of the response signals;
step S410, sequentially acquiring signal contents of test signals corresponding to the response signals;
the signal content of the test signal may be a continuous string, and since the response signal is a test signal broadcast in the distributed control system network, the signal content of the resulting response signal should also be the same string as the test signal.
Step S420, comparing the signal content of the response signal with the signal content of the corresponding test signal in sequence to obtain a signal content comparison result;
the signal content comparison result reflects whether the signal content of the response signal is consistent with the signal content of the corresponding test signal.
Step S430, determining the test signal as a critical test signal when the signal content comparison result is inconsistent;
When the comparison result of the signal content is inconsistent, the signal content of the received response signal is inconsistent with the signal content of the test signal corresponding to the signal content, and the inconsistent signal content of the received response signal and the signal content of the test signal corresponding to the signal content indicate that the signal transmission frequency value of the test signal exceeds the range of the network transmission signal frequency value of the to-be-detected distributed control system, and the test signal cannot be normally transmitted through the network of the to-be-detected distributed control system.
Step S440, determining a signal transmission frequency value of a test signal located before the critical test signal in the test signal sequence;
because the signal transmission frequency value of the critical test signal exceeds the range of the network transmission signal frequency value of the to-be-detected distributed control system, in the application, the signal transmission frequency value of one test signal positioned before the critical test signal in the test signal sequence is determined to be the one with the highest signal transmission frequency value which does not exceed the range of the network transmission signal frequency value of the to-be-detected distributed control system.
And step S450, determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
In the embodiment of the invention, the signal transmission frequency value of one test signal positioned before the critical test signal in the test signal sequence is determined as the network transmission signal frequency value of the distributed control system to be detected.
Preferably, in the embodiment of the present invention, after determining a signal transmission frequency value of a test signal located before the critical test signal, the signal transmission frequency value of the test signal located before the critical test signal may be taken as a center, a plurality of signal transmission frequency values on the left and right sides of the signal transmission frequency value may be taken as a step according to a preset trimming frequency value, and a plurality of trimming test signals may be generated according to the sizes of the plurality of signal transmission frequency values, where the network transmission performance test result of the to-be-detected distributed control system is generated according to the method disclosed in the embodiment of the present invention, and the obtained network transmission performance test result is more accurate by the method of the trimming frequency value.
The network transmission performance testing device provided by the embodiment of the invention is introduced below, and the network transmission performance testing device described below can be correspondingly referred to the network transmission performance testing method.
Fig. 6 is a block diagram of a network transmission performance testing apparatus according to an embodiment of the present invention, and referring to fig. 6, the network transmission performance testing apparatus may include:
the test signal generating module 100 is configured to generate a test signal for testing network transmission performance of the distributed control system to be detected;
a test signal transmission module 110, configured to transmit the test signal to the distributed control system to be detected;
a response signal receiving module 120, configured to receive a response signal to the test signal from the distributed control system to be detected;
and the network transmission performance test result generating module 130 is configured to generate a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
The test signal generation module includes:
the initial signal transmission frequency value setting module is used for setting an initial signal transmission frequency value;
the signal transmission frequency change rule setting module is used for setting a signal transmission frequency change rule;
and the test signal generation sub-module is used for generating at least one test signal according to the initial signal transmission frequency value and the signal transmission frequency change rule.
The test signal generation submodule includes:
the test signal sequence generation module is used for generating a test signal sequence according to the initial signal transmission frequency value and the signal transmission frequency increasing rule, wherein the test signal sequence comprises at least one test signal with the signal transmission frequency value increasing with the test signal generation sequence.
The test signal transmission module includes:
and the test signal sequence transmission module is used for transmitting at least one test signal in the test signal sequence to the to-be-detected distributed control system according to the generation sequence of the test signals in the test signal sequence.
The network transmission performance test result generating module comprises:
the signal receiving frequency value acquisition module is used for sequentially acquiring the signal receiving frequency values of the response signals according to the receiving sequence of the response signals;
the signal transmission frequency value acquisition module is used for sequentially acquiring signal transmission frequency values of the test signals corresponding to the response signals;
the frequency value comparison module is used for sequentially comparing the signal receiving frequency value of the response signal with the signal sending frequency value of the test signal corresponding to the signal receiving frequency value to obtain a frequency value comparison result, and the frequency value comparison result reflects whether the signal receiving frequency value of the response signal is consistent with the signal sending frequency value of the test signal corresponding to the signal receiving frequency value;
The first critical test signal determining module is used for determining the test signal when the frequency value comparison result is inconsistent as a critical test signal;
a first signal transmission frequency value determining module, configured to determine, in the test signal sequence, a signal transmission frequency value of a test signal that is located before the critical test signal;
the first network transmission signal frequency value determining module is used for determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
The network transmission performance test result generating module comprises:
the first signal content acquisition module is used for sequentially acquiring the signal content of each response signal according to the receiving sequence of the response signals;
the second signal content acquisition module is used for sequentially acquiring the signal content of the test signals corresponding to the response signals;
the signal content comparison module is used for sequentially comparing the signal content of the response signal with the signal content of the test signal corresponding to the response signal to obtain a signal content comparison result, and the signal content comparison result reflects whether the signal content of the response signal is consistent with the signal content of the test signal corresponding to the response signal;
The second critical test signal determining module is used for determining the test signal when the signal content comparison result is inconsistent as a critical test signal;
a second signal transmission frequency value determining module, configured to determine, in the test signal sequence, a signal transmission frequency value of a test signal that is located before the critical test signal;
and the second network transmission signal frequency value determining module is used for determining the determined signal transmission frequency value of one test signal positioned before the critical test signal as the network transmission signal frequency value of the distributed control system to be detected.
Alternatively, the network transmission performance testing apparatus may be a hardware device, and the modules described above may be provided as functional modules in the network transmission performance testing apparatus. Fig. 7 is a block diagram showing a hardware configuration of a network transmission performance test apparatus, and referring to fig. 7, the network transmission performance test apparatus may include: a processor 1, a communication interface 2, a memory 3 and a communication bus 4; wherein the processor 1, the communication interface 2 and the memory 3 complete the communication with each other through the communication bus 4; alternatively, the communication interface 2 may be an interface of a communication module, such as an interface of a GSM module;
A processor 1 for executing a program; a memory 3 for storing a program; the program may include program code including computer-operating instructions;
processor 1 may be a central processing unit CPU, or a specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement embodiments of the present invention; the memory 3 may comprise a high-speed RAM memory or may further comprise a non-volatile memory, such as at least one disk memory.
Wherein, the procedure can be specifically used for:
generating a test signal for testing the network transmission performance of the distributed control system to be detected;
transmitting the test signal to the distributed control system to be detected;
receiving a response signal to the test signal from the distributed control system to be detected;
and generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal.
To sum up:
the embodiment of the invention discloses a network transmission performance testing method and device, which are characterized by generating a testing signal for testing the network transmission performance of a distributed control system to be detected; transmitting the test signal to the distributed control system to be detected; receiving a response signal to the test signal from the distributed control system to be detected; and generating a network transmission performance test result of the to-be-detected distributed control system according to the test signal and the response signal. According to the embodiment of the invention, the network transmission performance test result of the distributed control system to be detected is obtained by using the generated test signal and the response signal obtained by the distributed control system to be detected responding to the test signal, so that the test of the communication network transmission performance of the distributed control system to be detected is realized, and the effective operation of the distributed control system is ensured by using the test result of the communication network transmission performance.
In the present specification, each embodiment is described in a progressive manner, and each embodiment is mainly described in a different point from other embodiments, and identical and similar parts between the embodiments are all enough to refer to each other. For the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant points refer to the description of the method section.
Those of skill would further appreciate that the various illustrative elements and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both, and that the various illustrative elements and steps are described above generally in terms of functionality in order to clearly illustrate the interchangeability of hardware and software. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the solution. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The software modules may be disposed in Random Access Memory (RAM), memory, read Only Memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.