CN109620223A - A kind of rehabilitation of stroke patients system brain-computer interface key technology method - Google Patents
A kind of rehabilitation of stroke patients system brain-computer interface key technology method Download PDFInfo
- Publication number
- CN109620223A CN109620223A CN201811492294.9A CN201811492294A CN109620223A CN 109620223 A CN109620223 A CN 109620223A CN 201811492294 A CN201811492294 A CN 201811492294A CN 109620223 A CN109620223 A CN 109620223A
- Authority
- CN
- China
- Prior art keywords
- network
- sample
- classification
- class
- motor imagery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005516 engineering process Methods 0.000 title claims abstract description 6
- 208000006011 Stroke Diseases 0.000 title abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 34
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 8
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 34
- 230000006870 function Effects 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 210000004556 brain Anatomy 0.000 claims description 5
- 238000013135 deep learning Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000012880 independent component analysis Methods 0.000 claims description 3
- 238000002560 therapeutic procedure Methods 0.000 claims description 3
- 230000002087 whitening effect Effects 0.000 claims description 3
- 238000011158 quantitative evaluation Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 abstract description 7
- 230000003340 mental effect Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000002490 cerebral effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007659 motor function Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 206010008190 Cerebrovascular accident Diseases 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 206010061296 Motor dysfunction Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000007433 nerve pathway Effects 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000001738 Nervous System Trauma Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 208000028412 nervous system injury Diseases 0.000 description 1
- 230000036403 neuro physiology Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 208000027765 speech disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/389—Electromyography [EMG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811492294.9A CN109620223A (en) | 2018-12-07 | 2018-12-07 | A kind of rehabilitation of stroke patients system brain-computer interface key technology method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811492294.9A CN109620223A (en) | 2018-12-07 | 2018-12-07 | A kind of rehabilitation of stroke patients system brain-computer interface key technology method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109620223A true CN109620223A (en) | 2019-04-16 |
Family
ID=66071938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811492294.9A Pending CN109620223A (en) | 2018-12-07 | 2018-12-07 | A kind of rehabilitation of stroke patients system brain-computer interface key technology method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109620223A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110251137A (en) * | 2019-06-05 | 2019-09-20 | 长沙湖湘医疗器械有限公司 | A kind of sleep detection method for noninvasive ventilator and the ventilator using this method |
CN110338906A (en) * | 2019-07-10 | 2019-10-18 | 清华大学深圳研究生院 | Smart therapeutics system and method for building up for photo-crosslinking operation |
CN110379506A (en) * | 2019-06-14 | 2019-10-25 | 杭州电子科技大学 | The cardiac arrhythmia detection method of binaryzation neural network is used for ECG data |
CN110531861A (en) * | 2019-09-06 | 2019-12-03 | 腾讯科技(深圳)有限公司 | The treating method and apparatus and storage medium of Mental imagery EEG signals |
CN110569727A (en) * | 2019-08-06 | 2019-12-13 | 华南理工大学 | Transfer learning method combining intra-class distance and inter-class distance based on motor imagery classification |
CN110888526A (en) * | 2019-10-30 | 2020-03-17 | 西安理工大学 | Brain-computer interface technology based on integrated support vector learning |
CN110895964A (en) * | 2019-12-12 | 2020-03-20 | 浙江迈联医疗科技有限公司 | Electroencephalogram-based rehabilitation training assessment method and system |
CN111000555A (en) * | 2019-11-29 | 2020-04-14 | 中山大学 | Training data generation method, automatic recognition model modeling method and automatic recognition method for epilepsia electroencephalogram signals |
CN111523520A (en) * | 2020-06-11 | 2020-08-11 | 齐鲁工业大学 | Method for analyzing electroencephalogram signals of brain patients with motor imagery stroke by using cycleGAN |
CN111544856A (en) * | 2020-04-30 | 2020-08-18 | 天津大学 | Brain-myoelectricity intelligent full limb rehabilitation method based on novel transfer learning model |
CN111990992A (en) * | 2020-09-03 | 2020-11-27 | 山东中科先进技术研究院有限公司 | Electroencephalogram-based autonomous movement intention identification method and system |
CN112370066A (en) * | 2020-09-30 | 2021-02-19 | 北京工业大学 | Brain-computer interface method of stroke rehabilitation system based on generation of countermeasure network |
CN112545532A (en) * | 2020-11-26 | 2021-03-26 | 中国人民解放军战略支援部队信息工程大学 | Data enhancement method and system for classification and identification of electroencephalogram signals |
CN112560964A (en) * | 2020-12-18 | 2021-03-26 | 深圳赛安特技术服务有限公司 | Method and system for training Chinese herbal medicine pest and disease identification model based on semi-supervised learning |
CN112884062A (en) * | 2021-03-11 | 2021-06-01 | 四川省博瑞恩科技有限公司 | Motor imagery classification method and system based on CNN classification model and generation countermeasure network |
CN112932505A (en) * | 2021-01-16 | 2021-06-11 | 北京工业大学 | Symbol transfer entropy and brain network characteristic calculation method based on time-frequency energy |
CN112971786A (en) * | 2021-02-05 | 2021-06-18 | 郑州大学 | Apoplexy rehabilitation evaluation method based on brain electromyographic signal wavelet coherence coefficient |
CN113128384A (en) * | 2021-04-01 | 2021-07-16 | 北京工业大学 | Brain-computer interface software key technical method of stroke rehabilitation system based on deep learning |
CN113499524A (en) * | 2021-07-23 | 2021-10-15 | 华南理工大学 | Auxiliary rehabilitation training system using motor imagery electroencephalogram detection |
CN114082169A (en) * | 2021-11-22 | 2022-02-25 | 江苏科技大学 | Disabled hand soft body rehabilitation robot motor imagery identification method based on electroencephalogram signals |
CN114343673A (en) * | 2021-11-29 | 2022-04-15 | 北京机械设备研究所 | Cross-tested motor imagery electroencephalogram signal processing method, medium and equipment |
CN115034272A (en) * | 2022-06-29 | 2022-09-09 | 上海术理智能科技有限公司 | Motor imagery electroencephalogram signal classification method based on iterative learning |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160128592A1 (en) * | 2014-11-11 | 2016-05-12 | Hyperfine Research, Inc. | Low field magnetic resonance methods and apparatus |
CN107392973A (en) * | 2017-06-06 | 2017-11-24 | 中国科学院自动化研究所 | Pixel-level handwritten Chinese character automatic generation method, storage device, processing unit |
CN107958213A (en) * | 2017-11-20 | 2018-04-24 | 北京工业大学 | A kind of cospace pattern based on the medical treatment of brain-computer interface recovering aid and deep learning method |
WO2018141061A1 (en) * | 2017-02-01 | 2018-08-09 | Cerebian Inc. | System and method for measuring perceptual experiences |
CN108564039A (en) * | 2018-04-16 | 2018-09-21 | 北京工业大学 | A kind of epileptic seizure prediction method generating confrontation network based on semi-supervised deep layer |
CN108665058A (en) * | 2018-04-11 | 2018-10-16 | 徐州工程学院 | A kind of generation confrontation network method based on segmentation loss |
-
2018
- 2018-12-07 CN CN201811492294.9A patent/CN109620223A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160128592A1 (en) * | 2014-11-11 | 2016-05-12 | Hyperfine Research, Inc. | Low field magnetic resonance methods and apparatus |
WO2018141061A1 (en) * | 2017-02-01 | 2018-08-09 | Cerebian Inc. | System and method for measuring perceptual experiences |
CN107392973A (en) * | 2017-06-06 | 2017-11-24 | 中国科学院自动化研究所 | Pixel-level handwritten Chinese character automatic generation method, storage device, processing unit |
CN107958213A (en) * | 2017-11-20 | 2018-04-24 | 北京工业大学 | A kind of cospace pattern based on the medical treatment of brain-computer interface recovering aid and deep learning method |
CN108665058A (en) * | 2018-04-11 | 2018-10-16 | 徐州工程学院 | A kind of generation confrontation network method based on segmentation loss |
CN108564039A (en) * | 2018-04-16 | 2018-09-21 | 北京工业大学 | A kind of epileptic seizure prediction method generating confrontation network based on semi-supervised deep layer |
Non-Patent Citations (4)
Title |
---|
KAY GREGOR HARTMANN, ROBIN TIBOR SCHIRRMEISTER, TONIO BALL: "EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals", 《ELECTRICAL ENGINEERING AND SYSTEMS SCIENCE》 * |
S. PALAZZO, C. SPAMPINATO, I. KAVASIDIS, D. GIORDANO AND M. SHAH: "Generative Adversarial Networks Conditioned by Brain Signals", 《2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)》 * |
田晓霞: "运动想象EEG的识别方法及在上肢康复中的应用", 《中国优秀硕士学位论文全文数据库》 * |
罗平、任家敏、彭章琳: "深度剖析 | 可微分学习的自适配归一化", 《知乎》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110251137A (en) * | 2019-06-05 | 2019-09-20 | 长沙湖湘医疗器械有限公司 | A kind of sleep detection method for noninvasive ventilator and the ventilator using this method |
CN110379506A (en) * | 2019-06-14 | 2019-10-25 | 杭州电子科技大学 | The cardiac arrhythmia detection method of binaryzation neural network is used for ECG data |
CN110379506B (en) * | 2019-06-14 | 2022-06-14 | 杭州电子科技大学 | Arrhythmia detection method using binarization neural network for electrocardiogram data |
CN110338906A (en) * | 2019-07-10 | 2019-10-18 | 清华大学深圳研究生院 | Smart therapeutics system and method for building up for photo-crosslinking operation |
CN110569727A (en) * | 2019-08-06 | 2019-12-13 | 华南理工大学 | Transfer learning method combining intra-class distance and inter-class distance based on motor imagery classification |
CN110569727B (en) * | 2019-08-06 | 2022-03-29 | 华南理工大学 | Transfer learning method combining intra-class distance and inter-class distance for motor imagery classification |
CN110531861A (en) * | 2019-09-06 | 2019-12-03 | 腾讯科技(深圳)有限公司 | The treating method and apparatus and storage medium of Mental imagery EEG signals |
CN110888526A (en) * | 2019-10-30 | 2020-03-17 | 西安理工大学 | Brain-computer interface technology based on integrated support vector learning |
CN110888526B (en) * | 2019-10-30 | 2023-04-07 | 西安理工大学 | Brain-computer interface technology based on integrated support vector learning |
CN111000555B (en) * | 2019-11-29 | 2022-09-30 | 中山大学 | Training data generation method, automatic recognition model modeling method and automatic recognition method for epileptic electroencephalogram signals |
CN111000555A (en) * | 2019-11-29 | 2020-04-14 | 中山大学 | Training data generation method, automatic recognition model modeling method and automatic recognition method for epilepsia electroencephalogram signals |
CN110895964A (en) * | 2019-12-12 | 2020-03-20 | 浙江迈联医疗科技有限公司 | Electroencephalogram-based rehabilitation training assessment method and system |
CN110895964B (en) * | 2019-12-12 | 2022-11-22 | 浙江迈联医疗科技有限公司 | Electroencephalogram-based rehabilitation training assessment method and system |
CN111544856A (en) * | 2020-04-30 | 2020-08-18 | 天津大学 | Brain-myoelectricity intelligent full limb rehabilitation method based on novel transfer learning model |
CN111523520A (en) * | 2020-06-11 | 2020-08-11 | 齐鲁工业大学 | Method for analyzing electroencephalogram signals of brain patients with motor imagery stroke by using cycleGAN |
CN111990992A (en) * | 2020-09-03 | 2020-11-27 | 山东中科先进技术研究院有限公司 | Electroencephalogram-based autonomous movement intention identification method and system |
CN112370066A (en) * | 2020-09-30 | 2021-02-19 | 北京工业大学 | Brain-computer interface method of stroke rehabilitation system based on generation of countermeasure network |
CN112545532B (en) * | 2020-11-26 | 2023-05-16 | 中国人民解放军战略支援部队信息工程大学 | Data enhancement method and system for electroencephalogram signal classification and identification |
CN112545532A (en) * | 2020-11-26 | 2021-03-26 | 中国人民解放军战略支援部队信息工程大学 | Data enhancement method and system for classification and identification of electroencephalogram signals |
CN112560964A (en) * | 2020-12-18 | 2021-03-26 | 深圳赛安特技术服务有限公司 | Method and system for training Chinese herbal medicine pest and disease identification model based on semi-supervised learning |
CN112932505A (en) * | 2021-01-16 | 2021-06-11 | 北京工业大学 | Symbol transfer entropy and brain network characteristic calculation method based on time-frequency energy |
CN112971786A (en) * | 2021-02-05 | 2021-06-18 | 郑州大学 | Apoplexy rehabilitation evaluation method based on brain electromyographic signal wavelet coherence coefficient |
CN112884062A (en) * | 2021-03-11 | 2021-06-01 | 四川省博瑞恩科技有限公司 | Motor imagery classification method and system based on CNN classification model and generation countermeasure network |
CN112884062B (en) * | 2021-03-11 | 2024-02-13 | 四川省博瑞恩科技有限公司 | Motor imagery classification method and system based on CNN classification model and generated countermeasure network |
CN113128384A (en) * | 2021-04-01 | 2021-07-16 | 北京工业大学 | Brain-computer interface software key technical method of stroke rehabilitation system based on deep learning |
CN113128384B (en) * | 2021-04-01 | 2024-04-05 | 北京工业大学 | Brain-computer interface software key technical method of cerebral apoplexy rehabilitation system based on deep learning |
CN113499524A (en) * | 2021-07-23 | 2021-10-15 | 华南理工大学 | Auxiliary rehabilitation training system using motor imagery electroencephalogram detection |
CN114082169A (en) * | 2021-11-22 | 2022-02-25 | 江苏科技大学 | Disabled hand soft body rehabilitation robot motor imagery identification method based on electroencephalogram signals |
CN114343673B (en) * | 2021-11-29 | 2024-03-29 | 北京机械设备研究所 | Method, medium and equipment for processing brain wave signals crossing tested motor imagery |
CN114343673A (en) * | 2021-11-29 | 2022-04-15 | 北京机械设备研究所 | Cross-tested motor imagery electroencephalogram signal processing method, medium and equipment |
CN115034272A (en) * | 2022-06-29 | 2022-09-09 | 上海术理智能科技有限公司 | Motor imagery electroencephalogram signal classification method based on iterative learning |
CN115034272B (en) * | 2022-06-29 | 2024-06-28 | 上海术理智能科技有限公司 | Motor imagery electroencephalogram signal classification method based on iterative learning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109620223A (en) | A kind of rehabilitation of stroke patients system brain-computer interface key technology method | |
CN107958213A (en) | A kind of cospace pattern based on the medical treatment of brain-computer interface recovering aid and deep learning method | |
Xu et al. | Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification | |
Jiao et al. | Sparse group representation model for motor imagery EEG classification | |
Alkan et al. | Identification of EMG signals using discriminant analysis and SVM classifier | |
Chatterjee et al. | Ensemble learning approach to motor imagery EEG signal classification | |
Abbas et al. | DeepMI: Deep learning for multiclass motor imagery classification | |
CN112370066A (en) | Brain-computer interface method of stroke rehabilitation system based on generation of countermeasure network | |
Ieracitano et al. | A hybrid-domain deep learning-based BCI for discriminating hand motion planning from EEG sources | |
Chen et al. | A discriminant bispectrum feature for surface electromyogram signal classification | |
CN110013248A (en) | Brain electricity tensor mode identification technology and brain-machine interaction rehabilitation system | |
Sun et al. | Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces | |
Rejer | EEG feature selection for BCI based on motor imaginary task | |
Yue et al. | Exploring BCI control in smart environments: intention recognition via EEG representation enhancement learning | |
Xu et al. | EEG decoding method based on multi-feature information fusion for spinal cord injury | |
Li et al. | Multi-view fusion network-based gesture recognition using sEMG data | |
CN116522106A (en) | Motor imagery electroencephalogram signal classification method based on transfer learning parallel multi-scale filter bank time domain convolution | |
Al-dabag et al. | EEG motor movement classification based on cross-correlation with effective channel | |
Zou et al. | An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface | |
CN114305453A (en) | Multi-source manifold electroencephalogram feature transfer learning method | |
Wang et al. | Deep convolutional neural network for decoding EMG for human computer interaction | |
CN110321856B (en) | Time-frequency multi-scale divergence CSP brain-computer interface method and device | |
Yu et al. | The research of sEMG movement pattern classification based on multiple fused wavelet function | |
Bhalerao et al. | FBSE-based automated classification of motor imagery EEG signals in brain–computer interface | |
Rammy et al. | Recurrent deep learning for eeg-based motor imagination recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240115 Address after: 310007 station 30, 2nd floor, east area, building a, Zhejiang University Science Park, No. 525 Xixi Road, Xihu District, Hangzhou, Zhejiang Province Applicant after: Hangzhou Xingyuan intelligent Biotechnology Co.,Ltd. Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Applicant before: Beijing University of Technology Applicant before: Wang Zhuozheng Effective date of registration: 20240115 Address after: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Applicant after: Beijing University of Technology Applicant after: Wang Zhuozheng Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Applicant before: Beijing University of Technology |