Nothing Special   »   [go: up one dir, main page]

CN109449244B - 一种二维半导体和铁电材料功能互补型超宽光谱探测器 - Google Patents

一种二维半导体和铁电材料功能互补型超宽光谱探测器 Download PDF

Info

Publication number
CN109449244B
CN109449244B CN201811226478.0A CN201811226478A CN109449244B CN 109449244 B CN109449244 B CN 109449244B CN 201811226478 A CN201811226478 A CN 201811226478A CN 109449244 B CN109449244 B CN 109449244B
Authority
CN
China
Prior art keywords
dimensional semiconductor
ferroelectric material
source electrode
electrode
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811226478.0A
Other languages
English (en)
Other versions
CN109449244A (zh
Inventor
王建禄
王旭东
沈宏
林铁
孟祥建
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201811226478.0A priority Critical patent/CN109449244B/zh
Publication of CN109449244A publication Critical patent/CN109449244A/zh
Priority to US16/658,614 priority patent/US10957811B2/en
Application granted granted Critical
Publication of CN109449244B publication Critical patent/CN109449244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述光谱探测器包括:衬底、二维半导体、源电极、漏电极、铁电材料、栅电极;所述衬底的上表面设置有所述二维半导体、所述源电极、所述漏电极,所述源电极和所述漏电极分别设置在所述二维半导体的上表面的两端;所述二维半导体的两侧分别与所述源电极的下层金属和所述漏电极的下层金属连接;所述铁电材料设置在所述二维半导体、源电极和漏电极的上表面;所述栅电极的下表面与所述铁电材料的上表面连接。基于二维半导体和铁电材料的多功能互补来实现超宽光谱响应。

Description

一种二维半导体和铁电材料功能互补型超宽光谱探测器
技术领域
本发明涉及光电探测领域,特别是涉及一种二维半导体和铁电材料功能互补型超宽光谱探测器。
背景技术
随着双色/多波段光电探测器在遥感、国防及工业等领域需求的不断增长,相关探测技术正朝着高灵敏、宽光谱、高分辨率、低功耗、小型化和智能化的方向发展。双色/多波段光电探测器可以实现不同波长的探测,成倍的扩大系统信息量,能够更加准确的获取目标信息,进而可以准确的辨别目标的绝对温度和各自特征,最终实现对目标的快速准确识别。在对目标的空间分布特征高速精确分辩的过程中,探测器阵列的规模、尺寸、工作速度和工作温度都是关键因素。然而,传统的双色/多波段探测器大多都是采用独立的探测成像器件,体积和功耗都很大,并且对制冷要求非常高。因此,非制冷型的双色/多波段光电探测器的微型化和大面积阵列成为必然趋势。
近年来,二维半导体由于其独特的物理、光学等特性,在光电探测应用领域展现出极大的潜力。与零带隙的石墨烯相比,多数过渡金属硫族化物因具备一定的带隙,属于典型半导体,这类材料在光电领域具备独特的优势。然而,受限于背景载流子浓度及迁移率等因素,无法方便高效地提高过渡金属硫族化物的光电流开关比、响应时间以及探测率等指标,导致它们在可见到近红外波段的光电性能受到限制。此外,由于禁带宽度的局限性,使大多数过渡金属硫族化物的截止探测波长只能到近红外波段,因此在很大程度上限制了其在宽光谱探测方面的应用。通过改变层数、应力、组分等方法,可以在一定范围内调控带隙的大小,如Ying Xie等人通过在二硫化钼(MoS2)的原子晶格中引入缺陷,将MoS2的探测波长拓展至2717nm。尽管利用能带调控的方法在一定程度上可拓展过渡金属硫族化物的探测波长,但应用单一的过渡金属硫族化物由于其低维特征,限制了其量子效率的提高,作为宽光谱探测器的光敏元仍然存在巨大挑战。
铁电材料是一类具有自发极化的电介质材料,并且其自发极化可以随外加电场的大小和方向的改变而改变。不仅如此,铁电材料还具备优异的热释电性、压电性等特性。其中,聚偏氟乙烯(PVDF)基聚合物是一类典型的有机铁电材料,以其独特的性能广泛的应用于非易失性铁电存储器、红外探测器、传感器等领域。基于热释电效应,铁电材料在非制冷红外探测器领域已得到广泛应用,然而此类探测器属于热红外技术领域,在响应率和响应时间上尚无法和光电导型光电探测器比拟。
将二维半导体与铁电材料相结合,已经在存储器、传感器和光电探测器等领域展开广泛研究。如基于聚偏二氟乙烯调控下的二维半导体光电探测器,在铁电极化电场的作用下,使得二维半导体的响应率、探测率、响应时间和探测波长等指标均得到大幅度改善。
发明内容
本发明的目的是提供一种能够拓宽光谱检测范围的二维半导体和铁电材料功能互补型超宽光谱探测器。
为实现上述目的,本发明提供了如下方案:
一种二维半导体和铁电材料功能互补型超宽光谱探测器,所述光谱探测器包括:衬底1、二维半导体2、源电极3、漏电极4、铁电材料5、栅电极6;
所述衬底1的上表面设置有所述二维半导体2、所述源电极3、所述漏电极4,所述源电极3和所述漏电极4分别设置在所述二维半导体2的上表面的两端;
所述源电极3和所述漏电极4均包括上层金属和下层金属,所述上层金属的厚度大于所述下层金属的厚度;
所述二维半导体2的两侧分别与所述源电极3的下层金属和所述漏电极4的下层金属连接;
所述铁电材料5设置在所述二维半导体2、所述源电极3和所述漏电极4的上表面;
所述栅电极6的下表面与所述铁电材料5的上表面连接。
可选的,所述衬底1为超薄绝缘衬底,厚度小于2微米。
可选的,所述二维半导体2为过渡金属硫族化合物半导体,所述二维半导体2的层数为1层至10层分子。
可选的,所述源电极3和所述漏电极4的材料为铬、钛、镍、钯、钪、金、铂中的至少一者。
可选的,所述源电极3的下层金属的厚度为5-15纳米,所述源电极3的上层金属的厚度为30-50纳米。
可选的,所述铁电材料5为聚偏氟乙烯基有机铁电聚合物,所述铁电材料5的厚度为300-1200纳米。
可选的,所述栅电极6为高透光性超薄金属薄膜,所述栅电极6包括铝、铬、钛、镍中的任意一者,所述栅电极6在紫外到长波红外波段透光率大于50%。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明公开了一种二维半导体和铁电材料功能互补型超宽光谱探测器,在紫外至近红外波段,二维半导体为功能层,基于光电导效应,能够对该波段的入射光产生高灵敏光响应,铁电材料为辅助层,极化诱导电场能够用于耗尽所述二维半导体的背景载流子,增强所述二维半导体的光电导效应,改善所述二维半导体的响应率、探测率、响应时间;在中红外至长波红外波段,铁电材料转变为功能层,基于铁电材料的热释电效应,能够对该波段的入射光产生明显的光响应,二维半导体此时为辅助层,用于读取入射光引起的沟道电流变化,一方面极化后的铁电材料在红外光的照射下,内部温度发生变化,导致极化大小瞬间产生变化,另一方面基于二维半导体对界面电场的敏感特性,由极化电场束缚的二维半导体沟道载流子浓度会同时产生变化,该电流变化量可由外加源漏偏压读出。总之,在不同波段的入射光照射下,二维半导体和铁电材料因相互辅助,形成多功能互补,最终实现高灵敏的超宽光谱光电探测器。
所述的超宽光谱响应是基于二维半导体和铁电材料的多功能互补来实现的,主要包括二维半导体的光电导效应及其界面敏感效应、铁电材料的极化效应和热释电效应中的两种或两种以上物理机制的功能互补。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的二维半导体和铁电材料功能互补型超宽光谱探测器结构截面图;
图2为本发明提供的二维半导体和铁电材料功能互补型超宽光谱探测器在紫外至近红外波段的工作原理图;
图3为本发明提供的二维半导体和铁电材料功能互补型超宽光谱探测器在中红外至长波红外波段的工作原理图;
图4为实施例1中提供的入射光波长为375nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图5为实施例1中提供的入射光波长为637nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图6为实施例1中提供的入射光波长为1550nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图7为实施例1中提供的入射光波长为4μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图8为实施例1中提供的入射光波长为8μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图9为实施例1中提供的入射光波长为10μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图10为实施例2中提供的入射光波长为375nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图11为实施例2中提供的入射光波长为637nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图12为实施例2中提供的入射光波长为1550nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图13为实施例2中提供的入射光波长为4μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图14为实施例2中提供的入射光波长为8μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图15为实施例2中提供的入射光波长为10μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图16为实施例3中提供的入射光波长为375nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图17为实施例3中提供的入射光波长为637nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图18为实施例3中提供的入射光波长为1550nm,功率为100nW,源漏偏压为1V时器件的光电流开关特性图;
图19为实施例3中提供的入射光波长为4μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图20为实施例3中提供的入射光波长为8μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图;
图21为实施例3中提供的入射光波长为10μm,功率为130nW,源漏偏压为1V时器件的光电流开关特性图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种能够拓宽光谱检测的二维半导体和铁电材料功能互补型超宽光谱探测器。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种二维半导体和铁电材料功能互补型超宽光谱探测器,所述光谱探测器包括:衬底1、二维半导体2、源电极3、漏电极4、铁电材料5、栅电极6;
所述衬底1的上表面设置有所述二维半导体2、所述源电极3、所述漏电极4,所述源电极3和所述漏电极4分别设置在所述二维半导体2的上表面的两端;
所述源电极3和所述漏电极4均包括上层金属和下层金属,所述上层金属的厚度大于所述下层金属的厚度;
所述二维半导体2的两侧分别与所述源电极3的下层金属和所述漏电极4的下层金属连接;
所述铁电材料5设置在所述二维半导体2、所述源电极3和所述漏电极4的上表面;
所述栅电极6的下表面与所述铁电材料5的上表面连接。
为了提高红外波段的灵敏度,需要最大程度地降低所述衬底1的热容,所述衬底为超薄绝缘衬底,厚度小于2微米,用于支撑所述二维半导体2和所述铁电材料5和所述栅电极6。
所述二维半导体2为过渡金属硫族化合物半导体,具体包括二硫化钼、二硒化钼、二碲化钼、二硫化钨、二硒化钨,所述二维半导体2在紫外到近红外波段具有优异的光电导特性,所述二维半导体能够采用机械剥离、化学气相沉积等工艺制备。
所述二维半导体2的层数为1层至10层分子。
所述源电极3和所述漏电极4的材料为铬、钛、镍、钯、钪、金、铂中的至少一者。所述源电极3的下层金属的厚度为5-15纳米,所述源电极3的上层金属的厚度为30-50纳米。
所述铁电材料5为聚偏氟乙烯基有机铁电聚合物,所述铁电材料5的厚度为300-1200纳米。
所述栅电极6为高透光性超薄金属薄膜,所述栅电极6包括铝、铬、钛、镍中的任意一者,所述栅电极6在紫外到长波红外波段透光率大于50%,所述栅电极6的厚度为7-10纳米。
实施例1:
本实施例中提供一种二维半导体和铁电材料功能互补型超宽光谱探测器,所述探测器的结构截面如图1所示。
所述探测器自下而上依次为衬底1、二维半导体2、源电极3、漏电极4、铁电材料5、栅电极6。
实施例1中衬底1为超薄聚酰亚胺衬底,厚度为1.7μm;二维半导体2为少层MoS2,厚度为3层;源电极3和漏电极4的金属材料均为铬/金(Cr/Au),其中Cr的厚度为15nm,Au的厚度为50nm;铁电材料5为聚偏二氟乙烯(P(VDF-TrFE)),厚度为300nm;栅电极6为超薄铝(Al),厚度为8nm。在进行光电测试前,对探测器的栅电极施加-40V的栅压,并持续2秒后,再撤去该栅压,可使P(VDF-TrFE)极化向上并产生一定的剩余极化电场。随后在源电极、漏电极上引线,即可进行光电测试,其光工作状态示意图如图1所示,此时只需在源、漏电极两端施加一较小偏压用于读取沟道电流变化即可。
图2中的Φb源漏电极与二维半导体材料之间的势垒高度差、EC二维半导体材料的导带、EF二维半导体材料的费米能级、EV二维半导体材料的价带、hv入射光的能量、IP光电流。
图2利用MoS2的能带结构示意图描述了探测器在紫外至近红外波段的探测机理。在向上的极化电场作用下,MoS2的费米能级被降低,源、漏电极与二维半导体沟道的势垒高度差增大,阻挡了多数载流子流过沟道,因此有效地降低了器件的暗电流。此时,在紫外到近红外波段入射光的照射下,基于MoS2的光电导效应,将产生大量的光生载流子越过势垒并流过沟道,形成光电流,因此探测器在该波段工作时具有低暗电流、高光电流开关比、高探测率、高响应率、快速响应等特点。
图3利用P(VDF-TrFE)的极化强度对红外光敏感的特性,描述了探测器在中红外至长波红外的探测机理。首先,在P(VDF-TrFE)极化电场的调控下,能够使MoS2沟道一直处于低电流态;其次,基于P(VDF-TrFE)的热释电效应,在中红外至长波红外波段入射光的照射下,由于内部温度升高,P(VDF-TrFE)的极化强度减小,导致MoS2内部的载流子浓浓及费米能级高度随之发生变化,使得沟道电流增大。因此,在MoS2对界面电场敏感的特性辅助下,能够有效提高探测器在该波段的灵敏度。
本实施例中的二维半导体和铁电材料功能互补型超宽光谱探测器在紫外到长波红外波段的光电响应结果如图4-9所示。可以看出,基于MoS2和P(VDF-TrFE)的多功能互补,探测器在375nm–10μm的单色光照射下具有明显的光电流开关特性。
实施例2:
本实施例中提供一种二维半导体和铁电材料功能互补型超宽光谱探测器,其器件结构截面及工作状态示意图如图1所示。
探测器自下而上依次为衬底1、二维半导体2、源电极3、漏电极4、铁电材料5、栅电极6。
本实施例中衬底1为超薄聚酰亚胺衬底,厚度为1.5μm;二维半导体2为少层MoS2,厚度为1层;源电极3和漏电极4的金属材料均为铬/金(Cr/Au),其中Cr的厚度为5nm,Au的厚度为40nm;铁电材料5为聚偏二氟乙烯(P(VDF-TrFE)),厚度为800nm;栅电极6为超薄铝(Al),厚度为7nm。在进行光电测试前,对探测器的栅电极施加-100V的栅压,并持续2秒后,再撤去该栅压,可使P(VDF-TrFE)极化向上并产生一定的剩余极化电场。随后在源电极、漏电极上引线,即可进行光电测试,其光工作状态示意图如图1所示,此时只需在源、漏电极两端施加一较小偏压用于读取沟道电流变化即可。
图2利用MoS2的能带结构示意图描述了探测器在紫外至近红外波段的探测机理。在向上的极化电场作用下,MoS2的费米能级被降低,源、漏电极与二维半导体沟道的势垒高度差增大,阻挡了多数载流子流过沟道,因此有效地降低了器件的暗电流。此时,在紫外到近红外波段入射光的照射下,基于MoS2的光电导效应,将产生大量的光生载流子越过势垒并流过沟道,形成光电流,因此探测器在该波段工作时具有低暗电流、高光电流开关比、高探测率、高响应率、快速响应等特点。
图3利用P(VDF-TrFE)的极化强度对红外光敏感的特性,描述了探测器在中红外至长波红外的探测机理。首先,在P(VDF-TrFE)极化电场的调控下,能够使MoS2沟道一直处于低电流态;其次,基于P(VDF-TrFE)的热释电效应,在中红外至长波红外波段入射光的照射下,由于内部温度升高,P(VDF-TrFE)的极化强度减小,导致MoS2内部的载流子浓浓及费米能级高度随之发生变化,使得沟道电流增大。因此,在MoS2对界面电场敏感的特性辅助下,能够有效提高探测器在该波段的灵敏度。
本实施例中的二维半导体和铁电材料功能互补型超宽光谱探测器在紫外到长波红外波段的光电响应结果如图10-15所示。可以看出,基于MoS2和P(VDF-TrFE)的多功能互补,探测器在375nm–10μm的单色光照射下具有明显的光电流开关特性。
实施例3:
本实施例中提供一种二维半导体和铁电材料功能互补型超宽光谱探测器如图1所示。
探测器自下而上依次为衬底1、二维半导体2、铁电材料5、栅电极6,其中所述二维半导体两端分别设置源极3和漏极4。
本实施例中衬底1为超薄聚酰亚胺衬底,厚度为2μm;二维半导体2为少层MoS2,厚度为10层;金属源极3和金属漏极4均为铬/金(Cr/Au),其中Cr的厚度为10nm,Au的厚度为30nm;铁电材料5为聚偏二氟乙烯(P(VDF-TrFE)),厚度为1200nm;栅电极6为超薄铝(Al),厚度为10nm。
如图1所示,在紫外至近红外波段,二维半导体为功能层,基于二维半导体的光电导效应,能够对该波段的入射光产生明显的光响应,铁电材料此时为辅助层,其极化特性用于增强二维半导体的光电导效应,改善二维半导体的响应率、探测率、响应时间等指标;在中红外至长波红外波段,铁电材料转变为功能层,基于铁电材料的热释电效应,能够对该波段的入射光产生明显的光响应,二维半导体此时为辅助层,用于读取入射光引起的沟道电流变化,基于二维半导体对界面电场的敏感特性,能够有效提高探测器在红外波段的灵敏度。在进行光电测试前,对上探测器的栅电极施加-150V的栅压,并持续2秒后,再撤去该栅压,可使P(VDF-TrFE)极化向上并产生一定的剩余极化电场。随后在源极、漏极上引线,即可进行光电测试,其光电测试示意图如图1所示,此时只需在源、漏端施加一较小偏压用于读取沟道电流变化即可。
图2利用MoS2的能带结构示意图描述了探测器在紫外至近红外波段的探测机理。在向上的极化电场作用下,MoS2的费米能级被降低,源、漏电极与二维半导体沟道的势垒差增大,阻挡了多数载流子流过沟道,因此有效地降低了器件的暗电流。此时,在紫外到近红外波段入射光的照射下,基于MoS2的光电导效应,将产生大量的光生载流子越过势垒并流过沟道,形成光电流,因此探测器在该波段工作时具有低暗电流、高光电流开关比、高探测率、高响应率、快速响应等特点。
图3利用P(VDF-TrFE)的极化强度对红外光敏感的特性,描述了探测器在中红外至长波红外的探测机理。首先,在P(VDF-TrFE)极化电场的调控下,能够使MoS2沟道一直处于低电流态;其次,基于P(VDF-TrFE)的热释电效应,在中红外至长波红外波段入射光的照射下,内部温度升高,P(VDF-TrFE)的极化强度减小,导致MoS2内部的载流子浓浓及费米能级高度随之发生变化,使得沟道电流增大。因此,在MoS2对界面电场敏感的特性辅助下,能够有效提高探测器在该波段的灵敏度。
本实施例中的二维半导体和铁电材料功能互补型超宽光谱探测器在紫外到长波红外波段的光电响应结果如图16-21所示。能够看出,基于MoS2和P(VDF-TrFE)的多功能互补,探测器在375nm–10μm的单色光照射下具有明显的光电流开关特性。
本发明的有益效果:
在紫外到近红外波段,基于二维半导体的光电导特性,能够对该波段产生明显的光响应,基于铁电材料剩余极化电场的辅助,二维半导体的响应率、探测率、响应时间等均得到大幅度改善。
在中红外到长波红外波段,基于铁电材料的热释电效应,能够对该波段产生明显的光响应,二维半导体作为辅助层,用于读取由入射光引起的沟道电流变化,极化后的铁电材料不仅能够有效降低器件暗电流,同时在受到红外光的照射后,其内部温度发生变化,导致极化大小瞬间产生变化,由于二维半导体对界面电场的敏感特性,此时由极化电场束缚的二维半导体中载流子浓度会同时产生变化,因此沟道电流产生明显变化。
与传统的二维半导体光电探测器相比,本发明所提供的探测器具有更高的响应率、探测率、更快的响应速度以及更宽的探测波长范围。
与传统的红外热释电探测器相比,本发明所提供的探测器将传统热释电探测器单元中的灵敏元及相应的读出电路简化为单个晶体管器件,在结构上作了极大地优化,此外还具有比传统热释电探测器更高的灵敏度及更宽的探测波长范围。
本发明提供的超宽光谱响应探测器在工作时仅需施加较小源漏偏压,完全满足低功耗要求。
本发明提供的超宽光谱响应探测器响应波长范围覆盖紫外至长波红外,可应用于双色/多波段探测器等领域。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述光谱探测器包括:衬底(1)、二维半导体(2)、源电极(3)、漏电极(4)、铁电材料(5)、栅电极(6);所述衬底(1)的上表面设置有所述二维半导体(2)、所述源电极(3)、所述漏电极(4),所述源电极(3)和所述漏电极(4)分别设置在所述二维半导体(2)的上表面的两端;所述源电极(3)和所述漏电极(4)均包括上层金属和下层金属,所述上层金属的厚度大于所述下层金属的厚度;所述二维半导体(2)的两侧分别与所述源电极(3)的下层金属和所述漏电极(4)的下层金属连接;所述铁电材料(5)设置在所述二维半导体(2)、所述源电极(3)和所述漏电极(4)的上表面;所述栅电极(6)的下表面与所述铁电材料(5)的上表面连接;
所述衬底(1)为超薄绝缘衬底,厚度小于2微米;
所述二维半导体(2)为过渡金属硫族化合物半导体,所述二维半导体(2)的层数为1层至10层分子。
2.根据权利要求1所述的一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述源电极(3)和所述漏电极(4)的材料为铬、钛、镍、钯、钪、金、铂中的至少一者。
3.根据权利要求1所述的一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述源电极(3)的下层金属的厚度为5-15纳米,所述源电极(3)的上层金属的厚度为30-50纳米。
4.根据权利要求1所述的一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述铁电材料(5)为聚偏氟乙烯基有机铁电聚合物,所述铁电材料(5)的厚度为300-1200纳米。
5.根据权利要求1所述的一种二维半导体和铁电材料功能互补型超宽光谱探测器,其特征在于,所述栅电极(6)为高透光性超薄金属薄膜,所述栅电极(6)包括铝、铬、钛、镍中的任意一者,所述栅电极(6)在紫外到长波红外波段透光率大于50%。
CN201811226478.0A 2018-10-22 2018-10-22 一种二维半导体和铁电材料功能互补型超宽光谱探测器 Active CN109449244B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811226478.0A CN109449244B (zh) 2018-10-22 2018-10-22 一种二维半导体和铁电材料功能互补型超宽光谱探测器
US16/658,614 US10957811B2 (en) 2018-10-22 2019-10-21 Ultra-broad spectrum detector integrated with functions of two-dimensional semiconductor and ferroelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811226478.0A CN109449244B (zh) 2018-10-22 2018-10-22 一种二维半导体和铁电材料功能互补型超宽光谱探测器

Publications (2)

Publication Number Publication Date
CN109449244A CN109449244A (zh) 2019-03-08
CN109449244B true CN109449244B (zh) 2020-06-26

Family

ID=65547547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811226478.0A Active CN109449244B (zh) 2018-10-22 2018-10-22 一种二维半导体和铁电材料功能互补型超宽光谱探测器

Country Status (2)

Country Link
US (1) US10957811B2 (zh)
CN (1) CN109449244B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN111029409B (zh) * 2019-10-31 2023-06-02 上海集成电路研发中心有限公司 一种性能可调的晶体管
CN111081807A (zh) * 2019-12-02 2020-04-28 华南师范大学 一种光电探测器及其制备方法和应用
CN111411398B (zh) * 2020-01-17 2021-07-02 华中科技大学 一种二维NdOCl单晶材料的制备方法、产品及应用
CN111404604B (zh) * 2020-03-06 2021-04-09 杭州高烯科技有限公司 一种中红外通讯装置
CN115699338A (zh) 2020-06-15 2023-02-03 三菱电机株式会社 电磁波检测器以及电磁波检测器阵列
CN111969011B (zh) * 2020-08-14 2023-07-04 京东方科技集团股份有限公司 一种可折叠显示模组、显示装置、制作方法和使用方法
CN112968055B (zh) * 2021-02-23 2022-06-10 电子科技大学 二维铁电半导体沟道铁电介电层场效应管及其制备方法
JP7399361B2 (ja) * 2021-12-13 2023-12-15 三菱電機株式会社 電磁波検出器及び電磁波検出器アレイ
CN114551632A (zh) * 2022-02-25 2022-05-27 北京科技大学 一种二维碲和过渡金属硫化物的pn结型自驱动光电探测器及其制备方法
CN114813882A (zh) * 2022-05-23 2022-07-29 四川大学 一种二硫化钼气敏探测器
CN115165122B (zh) * 2022-08-03 2024-07-19 国科大杭州高等研究院 一种全温区三色测温系统与测温方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538288A (zh) * 2014-12-09 2015-04-22 哈尔滨工业大学 一种直接生长原子尺度二维半导体异质结的装置及方法
CN104789219A (zh) * 2015-04-27 2015-07-22 杭州电子科技大学 一种提高单层MoS2发光效率的分子修饰方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857038A1 (de) * 1998-12-10 2000-06-29 Siemens Ag FEMFET-Vorrichtung und Verfahren zu deren Herstellung
JP2007255929A (ja) * 2006-03-20 2007-10-04 Kyoto Univ 焦電型赤外線センサ
CN102903789B (zh) * 2012-07-09 2015-04-15 电子科技大学 复合材料红外探测器制备方法
KR102476806B1 (ko) * 2016-04-01 2022-12-13 에스케이하이닉스 주식회사 강유전체막을 포함하는 반도체 메모리 장치
CN105762281A (zh) * 2016-04-15 2016-07-13 中国科学院上海技术物理研究所 一种铁电局域场增强型二维半导体光电探测器及制备方法
US9853150B1 (en) * 2016-08-15 2017-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of fabricating epitaxial gate dielectrics and semiconductor device of the same
CN107170893B (zh) * 2017-07-12 2023-07-04 中国科学院上海技术物理研究所 一种极化电场调控二维半导体能带结构及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538288A (zh) * 2014-12-09 2015-04-22 哈尔滨工业大学 一种直接生长原子尺度二维半导体异质结的装置及方法
CN104789219A (zh) * 2015-04-27 2015-07-22 杭州电子科技大学 一种提高单层MoS2发光效率的分子修饰方法

Also Published As

Publication number Publication date
US10957811B2 (en) 2021-03-23
US20200127155A1 (en) 2020-04-23
CN109449244A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109449244B (zh) 一种二维半导体和铁电材料功能互补型超宽光谱探测器
Guan et al. Recent progress in short‐to long‐wave infrared photodetection using 2D materials and heterostructures
Zha et al. Infrared photodetectors based on 2D materials and nanophotonics
Pi et al. Broadband convolutional processing using band-alignment-tunable heterostructures
Xie et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions
Wang et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm
Huo et al. Recent progress and future prospects of 2D‐based photodetectors
Wang et al. Recent progress on localized field enhanced two‐dimensional material photodetectors from ultraviolet—visible to infrared
Liao et al. A Dual‐Gate MoS2 Photodetector Based on Interface Coupling Effect
Li et al. High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3
Konstantatos et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain
CN110392933B (zh) 电磁波检测器、电磁波检测器阵列以及电磁波检测方法
WO2018012076A1 (ja) 電磁波検出器及び電磁波検出器アレイ
Bonavolontà et al. Reduced graphene oxide on silicon-based structure as novel broadband photodetector
Jawa et al. Wavelength‐controlled photocurrent polarity switching in BP‐MoS2 heterostructure
Wang et al. Next‐Generation Photodetectors beyond Van Der Waals Junctions
CN110431672B (zh) 光伏场效应晶体管
Gréboval et al. HgTe nanocrystal-based photodiode for extended short-wave infrared sensing with optimized electron extraction and injection
Zhang et al. Light-induced positive and negative photoconductances of InAs nanowires toward rewritable nonvolatile memory
Liu et al. Realizing the switching of optoelectronic memory and ultrafast detector in functionalized‐black phosphorus/MoS2 heterojunction
Gegevičius et al. High‐Speed, Sensitive Planar Perovskite Photodetector Based on Interdigitated Pt and Au Electrodes
Peng et al. Asymmetric Schottky contacts induced via localized ultrafast laser irradiation for ultrasensitive, self-powered, 2D photodetectors
Liu et al. Ferroelectric Polarization‐Assisted Sensitive and High‐Power Photodetector in Broad Ultraviolet‐to‐Visible Range
Li et al. Ultrahigh and Tunable Negative Photoresponse in Organic‐Gated Carbon Nanotube Film Field‐Effect Transistors
Chen et al. Ideal Photodetector Based on WS2/CuInP2S6 Heterostructure by Combining Band Engineering and Ferroelectric Modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant