高钙高磷钒渣的提钒方法
技术领域
本发明涉及高钙高磷钒渣的提钒方法,属于氧化钒的提取领域。
背景技术
钒钛磁铁矿经高炉或电炉高温处理后得到含钒铁水,从铁水中选择性氧化出钒渣,钒渣经过钠化焙烧-水浸提钒或是钙化焙烧-酸浸提钒,半钢则进一步吹炼成合格钢水,这是目前比较主流的提钒-炼钢方法。
近年来,随着用户对钢性能要求越来越严格,优质钢要求P≤0.015wt%,航空低温用钢管、镀锡板等要求P≤0.01wt%。如果采用钒钛磁铁矿冶炼,铁水中的P含量往往较高,为0.06wt%~0.08wt%,经脱硫提钒或提钒脱硫处理后,S含量可降低到0.015wt%以下,但半钢中的P仍高达0.060wt%~0.090wt%,若仅在半钢炼钢工序脱磷,无法大批量生产P≤0.015wt%或P≤0.010wt%的钢种。
相关研究表明,转炉提钒-炼钢流程在设备、工艺上与国内外的双联转炉脱磷炼钢工艺相似,可以采用提钒转炉进行含钒铁水提钒的同时实现预脱磷,其优势突出:1、最终钢水中P含量低至0.011wt%,可以达到低磷钢甚至超低磷钢冶炼的要求;2、所得钒渣中TFe含量下降3个百分点以上,经济效益显著。然而,上述方法同时存在所得钒渣中P、CaO含量高的问题(含钒铁水在提钒过程中需加入脱磷剂——氧化钙),一般分别在0.3wt%、10wt%以上(属于高钙高磷钒渣),远高于现有钒渣的水平。由于无论是钠化焙烧-水浸提钒,或是钙化焙烧-酸浸提钒,都对钒渣中磷含量有严格的限制,要求钒渣中P≤0.05wt%,这样将导致现有的钠化提钒工艺和钙化提钒工艺都不能直接生产。
专利107164643A公开了一种高钙高磷钒渣除磷提钒的方法,将高钙高磷钒渣破碎并磨细后,在pH值为1.5-4.0的缓冲溶液或者弱酸溶液中进行浸出脱磷处理后,再进行固液分离,得到含磷滤液和低磷钒渣;将低磷钒渣进行干燥处理后再进行常规提钒。其技术上是可行,但由于高钙高磷钒渣仅进行了脱磷处理,低磷钒渣中氧化钙含量仍然偏高,进一步回收利用困难,另外脱磷处理量大,脱磷后的溶液处理代价高,因此也很难实施。
专利105132696A公开了一种高钙高磷钒渣提钒脱磷的方法。该方法通过在熟料第一次酸浸反应前30min开始除磷来实现溶液深度除磷的目的;第一次酸浸残渣通过第二次酸浸的方式实现残渣脱磷,同时进一步回收残渣中的钒,但存在第二酸浸液回收钒过程难、成本高的问题,很难实现产业化。
迄今为此,尚未见针对高钙高磷钒渣可行的提钒方法。
发明内容
本发明的目的在于提供高钙高磷钒渣的提钒方法。
本发明提供了高钙高磷钒渣的提钒方法,包括如下步骤:
a、取高钙高磷钒渣,焙烧,得到焙烧熟料;
b、一级浸出:浸出pH为3.0-3.5,固液分离,得到第一浸出液和第一残渣;
c、一级除磷:在第一浸出液中加入除磷剂,固液分离,收集液相,即得含钒液;
所述高钙高磷钒渣中V2O5含量为9%-25%,CaO含量为5%-14%、P含量为0.3%-1.5%。
进一步地,所述的提钒方法满足以下至少一项:
所述高钙高磷钒渣中V2O5含量为10%-15%,CaO含量为6%-11%、P含量为0.3%-0.8%;
所述高钙高磷钒渣粒度小于0.12mm;
在840-930℃氧化性气氛下焙烧30-120min;
优选地,在890-900℃氧化性气氛下焙烧60-90min;
将焙烧熟料破碎至0.12mm以下;
用硫酸控制浸出pH为3.0-3.5;
一级浸出温度为10-70℃;
优选地,一级浸出温度为45-68℃;
一级浸出时间为20-120min;
优选地,一级浸出时间为45-60min;
一级浸出液固比为2.0-3.5:1,ml:g;
优选地,一级浸出液固比为3:1,ml:g;
所述除磷剂为聚合硫酸铁;
优选地,按Fe/P摩尔比为(0.8-1.2):1在第一浸出液中加入聚合硫酸铁;
优选地,按Fe/P摩尔比为1:1在第一浸出液中加入聚合硫酸铁;
加入聚合硫酸铁后搅拌反应5-10min。
进一步地,所述的提钒方法还包括如下步骤:
d、二级浸出:取第一残渣进行浸出,浸出pH为1.3-2.0,固液分离,得到第二浸出液和第二残渣;
e、二级除磷:将第二浸出液用碱性试剂调节pH到2.5-3.5,固液分离,收集液相,得到除磷液;
f、将除磷液返回一级浸出,作为母液使用。
进一步地,所述的提钒方法满足以下至少一项:
二级浸出pH为1.3-1.6;
二级浸出温度为10-70℃;
优选地,二级浸出温度为10-50℃;
二级浸出时间为1-5min;
优选地,二级浸出时间为3-5min;
二级浸出母液:步骤a所得焙烧熟料的比例为(0.7-3.5):1,ml:g;
优选地,二级浸出母液:步骤a所得焙烧熟料的比例为3:1,ml:g;
将第二浸出液用碱性试剂调节pH到3.0-3.1;
优选地,将第二浸出液用碱性试剂调节pH到3.1;
加入碱性试剂后于28-45℃搅拌反应5-15min;
所述碱性试剂为NaOH、浓度为25-28%w/w的氨水、高钙高磷钒渣钙化焙烧熟料中一种或两种以上,其中,所述高钙高磷钒渣中V2O5含量为9%-25%,CaO含量为5%-14%、P含量为0.3%-1.5%。
进一步地,所述的提钒方法还包括如下步骤:
g、三级浸出:取第二残渣进行浸出,浸出pH为0.7-1.3,固液分离,得到第三浸出液;
h、将第三浸出液返回二级浸出,作为母液使用。
进一步地,所述的提钒方法满足以下至少一项:
三级浸出的浸出pH为0.7-1.1;
三级浸出母液:步骤a所得焙烧熟料的比例为0.7-2.5:1,ml:g;
优选地,三级浸出母液:步骤a所得焙烧熟料的比例为3:1,ml:g;
三级浸出温度为10-70℃;
优选地,三级浸出温度为10-43℃;
三级浸出时间为5-10min;
优选地,三级浸出时间为7-10min。
本发明提供了五氧化二钒的制备方法,包括如下步骤:根据所述方法提钒,向所得含钒液中加入硫酸铵沉钒,固液分离,收集固相物,煅烧,即得。
进一步地,所述沉钒步骤满足以下至少一项:
硫酸铵/钒质量比为(1-3):1;
调节pH=1.4-2.5;
优选地,调节pH=1.4-2.2;
用硫酸调节pH;
沉钒温度为90-100℃;
沉钒时间为40-120min。
进一步地,在500-550℃煅烧30-120min。
其中,沉钒得到的废水用石灰中和或电解法除磷、除锰后,过滤得回用水,可进一步返回浸出工序使用。
本发明提供了高钙高磷钒渣的提钒方法,主要具有以下优势:
1、以高钙高磷钒渣为原料制备出符合行业标准要求的五氧化二钒产品。
2、通过两次除磷,尤其是第二次低钒高磷溶液除磷,解决了高钒高磷浸出液深度除磷过程中钒损失大的难题,钒的收率达到了85%以上。
3、本工艺流程简短,投资少,易实施。
附图说明
图1为实施例中提钒工艺流程示意图。
具体实施方式
本发明具体实施方式中使用的原料、设备均为已知产品,通过购买市售产品获得。
高钙高磷钒渣直接钙化焙烧熟料中的钒主要以钒酸钙形式存在,理论上它的溶解率在pH≈3和pH=0-1区间范围内有两个极大值,pH=0-1时溶解率较pH≈3时溶解率高4-7个百分点。而熟料中磷主要以磷酸钙形式存在,理论上它的溶解率随着浸出pH值的降低而升高。
发明人研究发现,如果按照目前常规的浸出方法,将钙化焙烧熟料在pH=2.5左右进行一级浸出,钒、磷溶解率分别为82%-82%、15%-25%;由于高钙高磷钒渣中的磷含量偏高,会导致浸出液中的V/P质量比远远小于1000,达不到酸性沉钒工艺的要求,进而无法制备出合格的氧化钒产品。
本发明针对上述问题进行了深入剖析和试验研究,提供了高钙高磷钒渣提钒方法,包括如下步骤:a、取高钙高磷钒渣,焙烧,得到焙烧熟料;b、一级浸出:浸出pH为3.0-3.5,固液分离,得到第一浸出液和第一残渣;c、一级除磷:在第一浸出液中加入除磷剂,固液分离,收集液相,即得含钒液。
上述方法通过控制浸出pH为3.0-3.5,可让焙烧熟料中绝大部分的钒被浸出,而极少量的磷先被溶解,后再与除磷剂如聚合硫酸铁形成沉淀除去,钒的浸出率可达到≥80%,而浸出液中TV/P质量比≥1000,且TV浓度≥20g/L,可以制备出合格的氧化钒产品。
进一步地,常规二级浸出的pH在1以下,此时虽然钒的浸出率可以大幅提高4-7个百分点,但磷的浸出率高达70%-90%,导致溶液中P含量超高,不但无法制备出合格的氧化钒产品,而且因钒与磷容易形成杂多酸,导致沉钒率低,大幅降低了钒的收得率。
针对上述问题,本发明提供了二级浸出和二级除磷的方法:d、二级浸出:取第一残渣进行浸出,浸出pH为1.3-2.0,固液分离,得到第二浸出液和第二残渣;e、二级除磷:将第二浸出液用碱性试剂调节pH到2.5-3.5,固液分离,收集液相,得到除磷液;f、将除磷液用于一级浸出。
其中,二级除磷能够深度去除第二浸出液中磷、硅、铁等杂质,其原理是通过加入碱性试剂后,使溶液中pH从1.3-2.0提高到2.5-3.5,进一步Fe3+发生水解反应,通过化学沉淀(Fe3++PO4 3-→FePO4↓)和吸附沉淀等多种方式,达到去除溶液中磷、硅、铁等杂质的目的。
进一步地,本发明采用2-3级逆流浸出,通过分步提高浸出酸度,破坏渣中包裹钒的物相结构,提高浸出推动力,尽可能多地浸出钒,最终提钒尾渣中的钒可降低到0.6%以下。同时,浸出液逆流回用后,不仅大幅减少了二级除磷调pH的碱性试剂用量,而且巧妙地实现了系统内部水循环利用。
综上所述,本发明提出了一种高钙高磷钒渣直接钙化焙烧-逆流酸浸除磷—沉钒制取合格氧化钒的方法,其核心为三级逆流浸出和两次选择性除磷。
实施例1采用本发明方法从高钙高磷钒渣中提钒
将高钙高磷钒渣(V2O5=10.71%、CaO=6.75%、P=0.38%)磨细至粒度小于0.12mm,置于通入空气的马弗炉中,加热到890℃保温90min,取出冷却制样到0.12mm以下。
取100g制样后的熟料进行酸浸(第一级浸出),母液300mL,在搅拌条件下用硫酸控制体系pH=3.0-3.2,温度为55℃,浸出45min,向第一次浸出液中加入0.5g聚合硫酸铁(第一级除磷),再搅拌反应5min,液固分离得含钒液,测得含钒液中TV=32.86g/L,P=0.025g/L。
按硫酸铵/钒质量比为2:1的比例向上述含钒液中加入的硫酸铵,用硫酸控制pH=1.4,温度90℃~100℃条件下沉淀40min,液固分离、洗涤后得APV产品和废水。
将上述APV产品在500-550℃煅烧30min,得到五氧化二钒产品。五氧化二钒产品中V2O5、P含量分别为98.73%、P=0.018%。
以上工艺产生的提钒残渣(即下述第一残渣)的再利用:
第二级浸出:取第一残渣,在pH为1.44的条件下浸出5min,母液300mL,浸出温度为10-27℃,然后过滤,得第二浸出液(pH=1.8)和第二残渣;
第二次除磷(第二浸出液的再利用):取第二浸出液,用浓氨水(浓度为25-28%w/w)调节pH到3.1,于35℃搅拌5min,液固分离得除磷液,除磷液返回第一级浸出,作为母液使用;
第三级浸出(第二残渣的再利用):取第二残渣,加入到300mLpH=0.7的回用水中,搅拌反应10min,浸出温度为10-30℃,过滤得第三残渣(即最终产生的提钒尾渣)和第三级浸出液,第三级浸出液返回第二级浸出,作为母液使用。
经检测,第三残渣TV为0.46%,钒的回收率达到了89.87%。
实施例2采用本发明方法从高钙高磷钒渣中提钒
将高钙高磷钒渣(V2O5=14.52%、CaO=10.16%、P=0.74%)磨细至粒度小于0.12mm,置于通入空气的马弗炉中,加热到900℃保温60min,取出冷却制样到0.12mm以下。
取100g制样后的熟料进行酸浸(第一级浸出),母液300mL,在搅拌条件下用硫酸控制体系pH=3.0-3.3,温度为68℃,浸出60min,向第一次浸出液中加入0.65g聚合硫酸铁(第一级除磷),再搅拌反应10min,液固分离得含钒液,测得含钒液中TV=36.73g/L,P=0.022g/L。
按硫酸铵/钒质量比为3:1的比例向上述含钒液中加入硫酸铵,用硫酸控制pH=1.7,沸腾(90℃~100℃)条件下沉淀120min,液固分离、洗涤后得APV产品和废水。
将上述APV产品在530℃煅烧120min,得到五氧化二钒产品。五氧化二钒产品中V2O5、P含量分别为99.12%、P=0.023%。
以上工艺产生的提钒残渣(即下述第一残渣)的再利用:
第二级浸出:取第一残渣,在pH为1.52的条件下浸出3min,母液300mL,浸出温度为10-50℃,然后过滤,得第二浸出液(pH=2.0)和第二残渣;
第二次除磷(第二浸出液的再利用):取第二浸出液,用浓氨水(浓度为25-28%w/w)调节pH到3.1,于45℃搅拌13min,液固分离得除磷液,除磷液返回第一级浸出,作为母液使用;
第三级浸出(第二残渣的再利用):取第二残渣,加入到300mLpH=0.8的回用水中,搅拌反应10min,浸出温度为10-43℃,过滤得第三残渣(即最终产生的提钒尾渣)和第三级浸出液,第三级浸出液返回第二级浸出,作为母液使用。
经检测,第三残渣TV为0.82%,钒的回收率达到了88.64%。
实施例3采用本发明方法从高钙高磷钒渣中提钒
将高钙高磷钒渣(V2O5=12.75%、CaO=8.91%、P=0.50%)磨细至粒度小于0.12mm,置于通入空气的马弗炉中,加热到900℃保温60min,取出冷却制样到0.12mm以下。
取100g制样后的熟料进行酸浸(第一级浸出),母液300mL,在搅拌条件下用硫酸控制体系pH=3.2-3.5,温度为45℃,浸出60min,向第一次浸出液中加入0.4g聚合硫酸铁(第一级除磷),再搅拌反应5min,液固分离得含钒液,测得含钒液中TV=34.59g/L,P=0.025g/L。
按硫酸铵/钒质量比为1:1的比例向上述含钒液中加入硫酸铵,用硫酸控制pH=2.2,沸腾(90℃~100℃)条件下沉淀80min,液固分离、洗涤后得APV产品和废水。
将上述APV产品在525℃煅烧60min,得到五氧化二钒产品。五氧化二钒产品中V2O5、P含量分别为98.78%、P=0.020%。
以上工艺产生的提钒残渣(即下述第一残渣)的再利用:
第二级浸出:取第一残渣,在pH为1.35的条件下浸出5min,母液300mL,浸出温度为10-50℃,然后过滤,得第二浸出液(pH=1.7)和第二残渣;
第二次除磷(第二浸出液的再利用):取第二浸出液,用浓氨水(浓度为25-28%w/w)调节pH到3.1,于28℃搅拌8min,液固分离得除磷液,除磷液返回第一级浸出,作为母液使用;
第三级浸出(第二残渣的再利用):取第二残渣,加入到300mLpH=1.1的回用水中,搅拌反应7min,浸出温度为10-25℃,过滤得第三残渣(即最终产生的提钒尾渣)和第三级浸出液,第三级浸出液返回第二级浸出,作为母液使用。
经检测,第三残渣TV为0.65%,钒的回收率达到了88.14%。