Nothing Special   »   [go: up one dir, main page]

CN109150191A - 信息处理的方法、装置和通信设备 - Google Patents

信息处理的方法、装置和通信设备 Download PDF

Info

Publication number
CN109150191A
CN109150191A CN201710454030.3A CN201710454030A CN109150191A CN 109150191 A CN109150191 A CN 109150191A CN 201710454030 A CN201710454030 A CN 201710454030A CN 109150191 A CN109150191 A CN 109150191A
Authority
CN
China
Prior art keywords
matrix
column
row
submatrix
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710454030.3A
Other languages
English (en)
Inventor
金杰
童文
王俊
亚历山大·帕特尤斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201710454030.3A priority Critical patent/CN109150191A/zh
Priority to CN201810771585.5A priority patent/CN109067407B/zh
Priority to KR1020197027252A priority patent/KR102194029B1/ko
Priority to BR112019020158-0A priority patent/BR112019020158B1/pt
Priority to CA3055231A priority patent/CA3055231C/en
Priority to EP22198435.4A priority patent/EP4187794A1/en
Priority to AU2017418080A priority patent/AU2017418080B9/en
Priority to CN201780092144.6A priority patent/CN110754042B/zh
Priority to EP17913431.7A priority patent/EP3588786B1/en
Priority to CN202010009164.6A priority patent/CN111416625B/zh
Priority to RU2019133313A priority patent/RU2740154C1/ru
Priority to PCT/CN2017/092878 priority patent/WO2018227681A1/zh
Priority to JP2019556313A priority patent/JP6820438B2/ja
Priority to PCT/CN2018/091423 priority patent/WO2018228514A1/zh
Publication of CN109150191A publication Critical patent/CN109150191A/zh
Priority to US16/566,331 priority patent/US10742235B2/en
Priority to ZA2019/06314A priority patent/ZA201906314B/en
Priority to US16/923,841 priority patent/US11296726B2/en
Priority to JP2021000141A priority patent/JP7221999B2/ja
Priority to US17/684,144 priority patent/US11611356B2/en
Priority to US18/185,998 priority patent/US11996863B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/1154Low-density parity-check convolutional codes [LDPC-CC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请公开了编码方法,装置、通信设备和通信系统。该方法包括:使用低密度奇偶校验LDPC矩阵对输入比特序列进行编码;其中,所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、B、C、D和E,其中,所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;所述子矩阵C为mA行mD列的全0矩阵;所述子矩阵E为mD行mD列的单位矩阵。本申请的编码方法、装置、通信设备和通信系统,能够支持多种长度的信息比特序列的编码需求。

Description

信息处理的方法、装置和通信设备
技术领域
本发明实施例涉及通信领域,尤其涉及信息处理的方法、和通信装置。
背景技术
低密度奇偶校验(low density parity check,LDPC)码是一类具有稀疏校验矩阵的线性分组编码,具有结构灵活,译码复杂度低的特点。由于它采用部分并行的迭代译码算法,从而比传统的Turbo码具有更高的吞吐率。LDPC码可用于通信系统的纠错码,从而提高信道传输的可靠性和功率利用率。LDPC码还可以广泛应用于空间通信、光纤通信、个人通信系统、ADSL和磁记录设备等。目前在第五代移动通信中已考虑采用LDPC码作为信道编码方式之一。
实际使用过程中,可以采用具有特殊结构化特征的LDPC矩阵。该具有特殊结构化特征的LDPC矩阵H可以由准循环(quasi cycle,QC)结构的LDPC基矩阵扩展得到。
通常情况下,待编码的信息比特序列长度从几十到上百不等,通信系统要求的码率也灵活多变。如何支持多种长度的信息比特序列的编码,符合系统的码率要求,成为一个需要解决的问题。
发明内容
本发明实施例提供了一种信息处理的方法、通信装置和系统,可以支持多种长度的信息比特序列的编码和译码,符合系统灵活的码长码率要求。
第一方面,提供了一种编码方法及编码器,所述编码器使用低密度奇偶校验LDPC矩阵对输入序列进行编码。
第二方面,提供了一种译码方法及译码器,所述译码器使用低密度奇偶校验LDPC矩阵对输入序列进行译码。
在上述第一方面或第二方面的第一种实现方式中:所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、B、C、D和E,其中,
所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;
所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;
所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;
所述子矩阵C为mA行mD列的全0矩阵;
所述子矩阵E为mD行mD列的单位矩阵。
基于上述实现方式,在一种可能的实现方式中,所述基图的最后10行中任意相邻两行是正交。
基于上述实现方式,在一种可能的实现方式中,所述基图的最后10行中包括至少5组,所述至少5组中每一组包括至少2行,所述至少2行是正交的。
基于上述任一实现方式,在一种可能的实现方式中,所述矩阵F中9行的权重为3,1行的权重为2。
一种设计中,所述矩阵F中,其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。
基于第一种实现方式,在又一种可能的实现方式中,所述矩阵F中符合正交结构的行数大于或者等于10,且,所述矩阵F中,其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。
又一种设计中,所述矩阵F中,9行的权重为3,1行的权重为2。
又一种设计中,所述矩阵F包括至少10行,所述至少10行中任意相邻两行是正交。
又一种设计中,所述矩阵F包括至少5组,所述至少5组中每一组包括至少2行,所述至少2行是正交的。可选地,所述至少2行可以是连续的行。例如,所述至少10行可以是基图30a的最后10行。
在上述任一实现方式中,若mA>4,所述矩阵F中其余列的权重为0。
例如,矩阵F中符合正交结构的10行中可以包括如基图30a中第25行至第34行以及第0列至第13列组成的矩阵块的各行或者各列,或者,矩阵F中符合正交结构的10行中可以包括如基图30a中第25行至第34行以及第0列至第16列组成的矩阵块的各行或者各列。其中矩阵F中各行之间可以交换,各列之间也能相互交换。
基于上述实现方式,基图30a的基矩阵可以为如基矩阵30b-1、30b-2、30b-3、30b-4、30b-5、30b-6、30b-7和30b-8中任一个矩阵,或是该矩阵的行/列变换后的矩阵。
基于上述实现方式,矩阵F的偏移矩阵可以30b-1至30b-8中任一矩阵中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以包括30b-1至30b-8中任一矩阵中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
为了支持不同块长,LDPC码需要不同的扩展因子Z,基于前述实现方式,在一种可能的实现方式中,基于不同的扩展因子Z采用与之对应的基矩阵。例如,Z=a×2j,a∈{2,3,5,7,9,11,13,15},
若扩展因子Z=2×2j,j=0,1,2,3,4,5,6,7中的一个,则矩阵F的偏移矩阵可以是30b-1中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-1中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-1所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=3×2j,j=0,1,2,3,4,5,6,7中的一个,则矩阵F的偏移矩阵可以是30b-2中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-2中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-2所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=5×2j,j=0,1,2,3,4,5,6中的一个,则矩阵F的偏移矩阵可以是30b-3中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-3中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-3所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=7×2j,j=0,1,2,3,4,5中的一个,则矩阵F的偏移矩阵可以是30b-4中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-4中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-4所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=9×2j,j=0,1,2,3,4,5中的一个,则矩阵F的偏移矩阵可以是30b-5中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-5中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-5所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=11×2j,j=0,1,2,3,4,5中的一个,则矩阵F的偏移矩阵可以是30b-6中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-6中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-6所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=13×2j,j=0,1,2,3,4中的一个,则矩阵F的偏移矩阵可以是30b-7中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-7中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-7所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
若扩展因子Z=15×2j,j=0,1,2,3,4中的一个,则矩阵F的偏移矩阵可以是30b-8中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-8中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-8所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
进一步地,可选地,基于上述实现方式,对于各扩展因子Z,还可以根据上述各集合的基矩阵得到Z的基矩阵中第i行第j列元素Pi,j=f(Vi,j,Z),其中,Vi,j是该扩展因子Z所在集合的基矩阵中第i行第j列元素。
例如,
在又一种可能的实现方式中,基图或者基矩阵还可以包括至少1列内置打孔比特列。
上述各实现方式中的LDPC矩阵的基图和基矩阵可以满足块长为20至2560比特的码块的性能需求。
基于上述各方面,或者各方面任一种可能的实现方式,在又一种可能的实现方式中,还包括:确定扩展因子Z。例如,根据输入序列的长度K来确定扩展因子Z的取值,如:若输入序列长度为K,可以在多个系统定义的扩展因子中确定满足10*Z≥K的最小值。
可选地,LDPC矩阵可以基于Z对应的基矩阵得到,或者,基于Z的偏移矩阵得到。
对于发送端的通信设备,使用LDPC矩阵对所述输入序列进行编码包括:
使用扩展因子Z对应的LDPC矩阵对所述输入序列进行编码;或者扩展因子Z对应的LDPC矩阵经过了行/列变换,使用行/列变换后的矩阵对输入序列进行编码后的矩阵对所述输入序列进行编码。本申请中行/列变换是指行变换、列变换、或者行变换和列变换。
对于接收端的通信设备,使用LDPC矩阵对输入序列进行译码包括:
使用扩展因子Z对应的LDPC矩阵对输入序列进行译码;或者扩展因子Z对应的LDPC矩阵经过了行/列变换,使用行/列变换后的矩阵对输入序列进行编码后的矩阵对所述输入序列进行编码。本申请中行/列变换是指行变换、列变换、或者行变换和列变换。
在一种可能的实现方式中,可以保存LDPC矩阵,使用该LDPC矩阵对输入序列进行编码,或者基于该LDPC矩阵进行变换(行/列变换)或扩展获得可用于编码的LDPC矩阵。
在另一种可能的实现方式中,可以保存参数,依据所述参数可以获得用于编码或者译码的LDPC矩阵,从而可以基于LDPC矩阵对输入序列进行编码或者译码。所述参数包括以下至少之一:基图、基矩阵、基于基图或基矩阵行/列变换后的变换矩阵、基于基图或基矩阵的扩展矩阵、基矩阵中非零元素的偏移值、或者与获得LDPC矩阵相关的任何参数。
在又一种可能的实现方式中,LDPC矩阵的基矩阵可以保存在存储器中。
在又一种可能的实现方式中,LDPC矩阵的基图保存在存储器中,LDPC矩阵的基矩阵中非零元素的偏移值可以保存在存储器中。
基于上述各可能的实现方式,在一种可能的设计中,用于LDPC编码或者译码的基图和基矩阵中至少一个是上述LDPC矩阵的基图和基矩阵中至少一个经过行交换、或者列交换、或者行交换和列交换后得到的。
第三方面,提供一种通信装置可以包含用于执行上述方法设计中相对应的模块。所述模块可以是软件和/或是硬件。
在一个可能的设计中,第三方面提供的通信装置,包括处理器和收发组件,该处理器和收发组件可用于实现上述编码或者译码方法中各部分的功能。在该设计中,如果该通信装置是终端、基站或者其他网络设备,其收发组件可以是收发机,如果该通信装置是基带芯片或基带单板,其收发组件可以是基带芯片或基带单板的输入/输出电路,用于实现输入/输出信号的接收/发送。所述通信装置可选的还可以包括存储器,用于存储数据和/或指令。
在一种实现方式中,所述处理器可以包括如上述第一方面所述的编码器以及确定单元。所述确定单元用于确定对输入序列编码所需的扩展因子Z。所述编码器用于使用所述扩展因子Z对应的LDPC矩阵对所述输入序列进行编码。
在另一种实现方式中,所述处理器可以包括如上述第二方面所述的译码器以及获取单元。所述获取单元用于获取LDPC码的软值和扩展因子Z。所述译码器用于基于扩展因子Z对应的基矩阵HB对LDPC码的软值译码得到信息比特序列。
第四方面,提供了一种通信装置,包括一个或多个处理器。
在一种可能的设计中,一个或多个所述处理器可实现第一方面所述编码器的功能,在另一种可能的设计中,第一方面所述编码器可以是所述处理器的一部分,处理器除了实现第一方面所述编码器的功能,还可以实现其他功能。
在一种可能的设计中,一个或多个所述处理器可实现第二方面所述译码器的功能,在另一种可能的设计中,第二方面所述译码器可以是所述处理器的一部分。
可选地,所述通信装置还可以包括收发器以及天线。
可选的,所述通信装置还可以包括用于产生传输块CRC的器件、用于码块分割和CRC校验的器件、用于交织的交织器、或者用于调制处理的调制器等。
可选的,所述通信装置还可以包括,用于解调操作的解调器、用于解交织的解交织器、或者用于解速率匹配的器件等等。可以通过一个或多个处理器实现这些器件的功能。
在一种可能的设计中,可以通过一个或多个处理器实现这些器件的功能。
第五方面,本发明实施例提供了一种通信系统,该系统包括上述第三方面所述的通信装置。
第六方面,本发明实施例提供了一种通信系统,该系统包括一个或多个第四方面所述的通信装置。
再一方面,本发明实施例提供了一种计算机存储介质,其上存储有程序,当其运行时,使得计算机执行上述方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本发明实施例的信息处理的方法、装置、通信设备和通信系统,在编码性能和错误平层上能够适应系统灵活多变的码长码率需要。
附图说明
图1为一LDPC码的基图、基矩阵及其循环置换矩阵的示意图;
图2为一LDPC码的基图的结构示意图;
图3a为本发明一实施例提供的LDPC码基图的示意图;
图3b为图3a所示的基图的基矩阵的示意图;
图4为本发明另一实施例提供的性能示意图;
图5为本发明另一实施例提供的信息处理装置的结构示意图;
图6为本发明另一实施例提供的通信系统的示意图。
具体实施方式
为便于理解下面对本申请中涉及到的一些名词做些说明。
本申请中,名词“网络”和“系统”经常交替使用,“装置”和“设备”也经常交替使用,但本领域的技术人员可以理解其含义。“通信装置”可以是芯片(如基带芯片,或者数据信号处理芯片,或者通用芯片等等),终端,基站,或者其他网络设备。终端是一种具有通信功能的设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端可以叫做不同的名称,例如:用户设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为终端。基站(base station,BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入系统中基站的叫法可能有所不同,例如在而在通用移动通讯系统(Universal Mobile Telecommunications System,UMTS)网络中基站称为节点B(NodeB),而在LTE网络中的基站称为演进的节点B(evolved NodeB,eNB或者eNodeB),在新空口(new radio,NR)网络中的基站称为收发点(transmission reception point,TRP)或者下一代节点B(generation nodeB,gNB),或者其他各种演进网络中的基站也可能采用其他叫法。本发明并不限于此。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
LDPC码通常可以用奇偶校验矩阵H来表示。LDPC码的奇偶校验矩阵H可以通过基图(base graph)和偏移(shift)值得到。基图通常可以包括m*n个矩阵元素(entry),可以用m行n列的矩阵形式表示,矩阵元素的值为0或1,其中值为0的元素,有时候也称之为零元素,表示该元素可以被Z*Z的全零矩阵(zero matrix)替换,值为1的元素,有时候也称之为非零元素,表示该元素可以被Z*Z的循环置换矩阵(circulant permutation matrix)替换。也就是说,每个矩阵元素代表的是一个全零矩阵或者一个循环置换矩阵。如图1中10a所示为一个示例性的m=4,n=20具有QC结构的LDPC码的基图中的各元素。需要说明的是,在本文中,基图和矩阵的行号和列号均是从0开始编号的,仅仅是为了方便理解。可以理解的是,行号和列号也可以从1开始编号,则相应的行号和列号在本文所示的行号和列号基础上加1。
若基图中第i行第j列的元素值为1,其偏移值为Pi,j,Pi,j为大于或者等于0的整数,则表示第i行第j列的值为1的元素可以被Pi,j对应的Z*Z的循环置换矩阵替换,该循环置换矩阵可通过将Z*Z的单位矩阵进行Pi,j次向右循环移位得到。可见,将基图中每个值为0的元素用Z*Z的全零矩阵替换,每个值为1的元素采用其偏移值对应的Z*Z的循环置换矩阵进行替换,则可以得到LDPC码的奇偶校验矩阵。Z为正整数,也可以称之为扩展(lifting)因子,可以根据系统支持的码块大小和信息数据的大小确定的。可见奇偶校验矩阵H的大小为(m*Z)*(n*Z)。例如,扩展因子Z=4,则每个零元素被一个4*4大小的全0矩阵11a替换,若P2,3=2,则第2行第3列的非0元素被4*4的循环置换矩阵11d替换,该矩阵是由4*4的单位矩阵11b经过2次向右循环移位得到的,若P2,4=0,则第2行第4列的非0元素被单位矩阵11b替换。需要说明的是,此处仅仅只是举例说明,并不以此为限制。
由于Pi,j可以是基于扩展因子Z得到的,对于同一个位置上值为1的元素,采用不同的扩展因子Z可能存在不同的Pi,j。为了简化实现,通常系统也会定义一个m*n的基矩阵(basematrix),在基矩阵中每个元素和基图中每个元素的位置一一对应,基图中的零元素在基矩阵中位置不变,采用-1表示,基图中第i行第j列值为1的非零元素在基矩阵中位置不变,可表示为Vi,j,Vi,j可以是相对于一个预定或者特定的扩展因子Z定义的偏移值,例如,是相对于扩展因子Z所在集合中最大扩展因子Zmax的偏移值,则,其中Vi,j可以是采用Z所在集合中最大扩展因子Zmax时第i行第j列的非0元素的偏移值。在本申请实施例中,有时也将基矩阵称为基图矩阵的偏移矩阵。
Pi,j可以基于Vi,j和Z得到。例如,可以表示成Pi,j=f(Vi,j,Z),其中f(Vi,j,Z)表示以Vi,j和Z为参数的函数。例如,
如图1中10b所示为基图10a对应的一个基矩阵。
通常LDPC码的基图或基矩阵中还可以包括p列内置打孔(built-in puncture)比特列,p可以为0~2的整数,这些列参与编码,但是其编码对应的系统比特不被发送,则LDPC码基矩阵的码率满足R=(n-m)/(n-p)。对于一个4行20列(4*20)的基矩阵来讲,如果有2列内置打孔比特列,则码率为(20-4)/(20-2)=8/9。
无线通信系统中采用的LDPC码,其基图的矩阵大小为m*n,可以包括5个子矩阵A、B、C、D和E,其中,矩阵的权重是由非零元素的个数决定的,行的权重(行重)是指一行中包括的非零元素的个数,列的权重(列重)是指一列中包括的非零元素的个数。如图2中200所示,其中:
子矩阵A为mA行nA列的矩阵,其大小可以为mA*nA,其中每列对应LDPC码中的Z个系统比特,系统比特有时候也称为信息比特。
子矩阵B为为mA行mA列的方阵,其大小可以为mA*mA,每列对应于LDPC码中的Z个校验比特。子矩阵B包括双对角结构的子矩阵B’和一列权重为3的矩阵列(简称为3列重列),其中列重为3的矩阵列可以位于子矩阵B’之前,如图2中20a所示;子矩阵B还可以包括一列或多列列重为1的矩阵列(简称为单列重列),例如,一种可能的实现方式如图2中20b或20c所示。
通常基于子矩阵A和B生成的矩阵为核心矩阵,可以用来支持高码率的编码。
子矩阵C为全零矩阵,其大小为mA×mD
子矩阵E为单位矩阵,其大小为mD×mD
子矩阵D大小为mD×(nA+mA),通常可用来生成低码率的校验位。
由于子矩阵C和E的结构相对确定,子矩阵A、B和D两部分的结构是LDPC码的编译码性能的影响因素之一。
通常LDPC码可基于基图和基矩阵获得,对基图或者基矩阵采用密度进化的方法可以确定出LDPC码的性能上限,并且根据基矩阵中的偏移值确定出LDPC码的错误平层。改善编译码性能和降低错误平层是确定基图和基矩阵的目标之一。无线通信系统中码长灵活多变,例如,可以是40比特,1280比特等,图3a、3b分别是一个LDPC码的基图和基矩阵示例,可满足块长为20至2560比特的码块的性能需求。为方便说明及理解,附图中3a、3b中在最上侧以及最左侧,分别示出了列号和行号。
图4给出了图3a~3b所示的LDPC码的性能示意图,LDPC 1表示该LDPC码是基于基图30a对应的各个基矩阵编码得到的,LDPC 2表示作为对比的一种常用的LDPC码,其中横坐标表示信息比特序列的长度,单位为比特,纵坐标为符号信噪比(Es/N0),性能曲线为BLER为0.0001时,LDPC 1和LDPC 2在不同信息比特序列长度下符号信噪比的性能。可以看出在同样的BLER下,LDPC 1在不同信息比特序列长度下的符号信噪比低于LDPC 2,也就是性能优于LDPC 2。
图3a所示为一个LDPC码的基图30a示例,其中,图中最上面一行0~51表示列编号,最左面一列0~41表示行编号,也就是基图30a的矩阵大小为42行52列。
子矩阵A对应系统比特,大小为mA行10列,其中,4≤mA≤7,例如,mA=4,在基图30a中由第0行至第3行以及第0列至第9列的元素构成,又例如,mA>4,以mA=7为例,在基图30a中由第0行至第6行以及第0列至第9列的元素构成;
子矩阵B对应校验比特,大小为mA行mA列,在基图30a中由第0行至第(mA-1)行以及第10列至第(10+mA-1)列的元素构成;
子矩阵A和子矩阵B构成了LDPC码基图的核心矩阵部分,也即构成了一个mA行(mA+nA)列的矩阵,可用于高码率编码。为了方便描述,以下以mA=7为例,LDPC码的基图的核心矩阵部分为7行17列。
其中,子矩阵A中可以包括2列内置打孔比特列,则打孔后,核心矩阵可以支持的码率为10/(17-2)=2/3。
其中,子矩阵B中包括1列3列重列,即子矩阵B的第0列(核心矩阵的第10列)列重为3,子矩阵B的第1至3列(核心矩阵的第11至13列),第0至3行为双对角结构,子矩阵B还包括3列单列重的列。
以mA=7为例,基图30a的核心矩阵中,包括了2行权重为10的行,2行权重为8的行,2行权重为6的行,和1行权重为4的行。也就是,子矩阵A和子矩阵B构成的核心矩阵中各行的权值分别为8,10,8,10,4,6和6。需要说明的是,核心矩阵中各行的顺序是可以交换的,例如第0行和第2行交换,第1行和第3行交换等等。可以分别为基图30a的核心矩阵中第0至第6行,第0至第16列所示的各行,之一。这些行顺序可以交换,各列的顺序也可以交换。例如,可以将核心矩阵的第8列和第14列交换等。需要说明的是,此处仅为举例,实际应用中,列顺序的交换,行顺序的交换,是可以根据系统需求灵活设计。
可以理解的是,由于矩阵行之间可以交换、列之间也可以交换,行交换不改变矩阵中列的权重,列交换不改变矩阵中行的权重,矩阵中非零元素的个数是没有发生改变的。经过行交换和列交换后的基图的各行的权重没有改变。使用经过行交换,或者列交换,或者行交换和列交换后的基图不影响性能。
需要说明的是,本申请中,不影响性能是指的从整体讲,影响可接受,在容忍范围内,例如,可能对某些场景或者在某些范围内,性能在允许范围内下降,但是在某些场景或者某些范围内,性能有所改善,整体上看对性能影响不大。
通常对于一个LDPC码给定的基图或者基矩阵而言,对矩阵元素的少量修改对性能影响是可接受的。例如,在一种实现方式中,可以基于基图30a的核心矩阵,进行少量修改,例如,其中1行的权重满足大于或者等于2,且小于或者等于5,其余6行的权重分别满足大于或者等于6,且小于或者等于12。可以理解,也可以参照本申请提供的方案,使其中某些行的权重增加或减少1~2,本申请并不对此进行限定。
为了获得灵活的码率,可以基于核心矩阵添加相应大小的子矩阵C、子矩阵D和子矩阵E,来获得不同的码率。由于子矩阵C为全零矩阵,子矩阵为单位矩阵,其大小主要是根据码率来确定,结构相对固定。影响到编译码性能的主要在于核心矩阵和子矩阵D部分。在核心矩阵的基础上添加行列,形成相应的C、D和E部分可以得到不同码率。例如,可以以基图30a的核心矩阵部分或者基图80a的核心矩阵部分作为核心矩阵,为满足不同码率编码或译码的需求,添加相应的子矩阵C、D和E。
子矩阵D的列数mD为子矩阵A和B的列数之和,其行数主要与码率相关。以基图30a为例,若mA=4,则相应的子矩阵D的列数为(nA+mA)=14列,若mA=7,则相应的子矩阵D的列数为(nA+mA)=17列=。若LDPC码支持的码率为Rm,则其基图或者基矩阵的大小为m*n,其中,n=nA/Rm+p,m=n-nA=nA/Rm+p-nA。若最低码率Rm=1/5,内置打孔列数p=2,以基图30a为例,则n=52,m=42,子矩阵D的行数mD最大可以为m-mA=42-mA,若mA=4,则0≤mD≤38,若mA=7,则0≤mD≤35。
为了方便描述,可以定义一个大小为mF行(mA+nA)列的矩阵F,则子矩阵D可以包括其中的mD行,也就是0≤mD≤mF,且35≤mF≤38。仍以mA=7为例,基图30a中,mA+mD=42。若mD=35,相应地子矩阵D大小为35行17列,也就是子矩阵D即矩阵F,对应LDPC码支持的码率为10/50=1/5。可见,对于mA=7,基图30a中第7行至第41行以及第0列至第17列构成的矩阵即为矩阵F。对于mA=4,基图30a中第4行至第41行以及第0列至第13列构成的矩阵即为矩阵F。需要说明的是,此处仅为举例,并不以此为限,mA也可以为4至7中任一整数值,矩阵F的列数也相应改变。
在本发明中,若基图中相邻两行的同一列最多只有1个非零元素,则这两行彼此正交。若基图中相邻两行除了部分列以外的其他列中,同一列最多只有1个非零元素,则这两行是准正交的。
矩阵F可以包括多行准正交结构和至少两行正交结构。例如,矩阵F至少包括15行符合准正交结构的行,这15行中任意相邻2行中除了内置打孔比特列以外的其余列中,同一列中最多只有一个非零元素,也就是矩阵F中至少15行中除了内置打孔比特列以外的其余列构成的矩阵块具有正交结构。矩阵F还可以包括10至20行符合正交结构的行,也就是这些行中,任意相邻2行中同一列最多只有一个非零元素,也就是内置打孔比特列中也最多只有一个非零元素。
例如,以基图30a为例,矩阵F中最后10行符合正交结构,其中9行的权重为3,1行的权重为2。矩阵F的列重分布可以是,其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。若mA>4,所述矩阵F中其余列的权重为0。
以mA=7为例,在基图30a所示例的矩阵F中,其行重依次为5,3,4,4,4,3,4,4,3,4,4,3,3,3,3,2,3,3,2,4,2,3,2,4,2,3,3,3,3,3,2,3,3,3,3。
由于子矩阵E为单位矩阵,因此基图30a中每一行的权重分别为8,10,8,10,4,6,6,6,4,5,5,5,4,5,5,4,5,5,4,4,4,4,3,4,4,3,5,3,4,3,5,3,4,4,4,4,4,3,4,4,4,4。
仍以mA=7为例,若mD=15,LDPC码基图中子矩阵D大小为15行17列,可以是由基图30a中矩阵F的第0-14行,也就是基图30a的第7行至第21行,第0列至第16列的矩阵构成,对应LDPC码支持的码率为10/30=1/3,也就是在该码率下,LDPC码的基图对应于基图30a的第0行至第21行,第0列至第31列构成的矩阵部分,其中子矩阵E为15行15列的单位矩阵,子矩阵C为7行15列的全0矩阵;
若mD=25,LDPC码基图中子矩阵D大小为25行17列,可以是由基图30a中矩阵F的第0-24行,也就是基图30a的第7行至第31行,第0列至第16列的矩阵构成构成,对应LDPC码支持的码率为10/40=1/4,也就是在该码率下,LDPC码的基图对应于基图30a的第0行至第31行,第0列至第41列构成的矩阵部分,其中子矩阵E为25行25列的单位矩阵,子矩阵C为7行25列的全0矩阵。
以此类推,不一一阐述。
需要说明的是,LDPC码的基图和基矩阵中各行是可以相互交换的,各列也是可以相互交换的。例如,可将基图30a的第34行和第36行进行交换,并且将第44列和第45列进行交换。又例如,子矩阵D包括矩阵F中mD行,这mD行可以不进行行交换,也可以将其中一行或多行之间进行行交换,子矩阵E仍为对角结构,不做行、列交换,例如,将矩阵F的第27行和第29行进行行交换,子矩阵D包括矩阵F中mD行,子矩阵E仍为对角结构。矩阵F在进行行交换前是一个准正交的矩阵,经过交换后仍然为一个准正交的矩阵。可以理解的是,若基图或基矩阵包括子矩阵D,那么对核心矩阵的列进行交换时,相应的子矩阵D中列也需要进行交换。
如图3b所示基矩阵30b-1至30b-8为基图30a的多个基矩阵示例。其中,基图30a中第i行第j列的非零元素在基矩阵30b-1至30b-8各矩阵中的位置不变,值为偏移值Vi,j,零元素在偏移矩阵中以-1或者null表示。其中,子矩阵D在基矩阵中相应的部分可以包括矩阵F的偏移矩阵的mD行,可以根据码率的不同选择mD的值。子矩阵D对应的偏移矩阵为矩阵F的偏移矩阵中的mD行。
其中,一种可能的实现方式中,矩阵F的偏移矩阵可以是30b-1至30b-8中任一矩阵中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以包括30b-1至30b-8中任一矩阵中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
为了支持不同块长,LDPC码需要不同的扩展因子Z,例如,对于扩展因子Z=a×2j,a∈{2,3,5,7,9,11,13,15}。可以划分成如表一所述的8个集合:
表一
集合1 Z=2×2<sup>j</sup>,j=0,1,2,3,4,5,6,7
集合2 Z=3×2<sup>j</sup>,j=0,1,2,3,4,5,6,7
集合3 Z=5×2<sup>j</sup>,j=0,1,2,3,4,5,6
集合4 Z=7×2<sup>j</sup>,j=0,1,2,3,4,5
集合5 Z=9×2<sup>j</sup>,j=0,1,2,3,4,5
集合6 Z=11×2<sup>j</sup>,j=0,1,2,3,4,5
集合7 Z=13×2<sup>j</sup>,j=0,1,2,3,4
集合8 Z=15×2<sup>j</sup>,j=0,1,2,3,4
为了保证不同块长下的LDPC码性能,可以分别基于不同的扩展因子Z的集合采用与之对应的基矩阵。
其中,在一种可能的实现方式中:
若扩展因子Z为集合1中的一个,则矩阵F的偏移矩阵可以是30b-1中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-1中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-1所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合2中的一个,则矩阵F的偏移矩阵可以是30b-2中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-2中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-2所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合3中的一个,则矩阵F的偏移矩阵可以是30b-3中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-3中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-3所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合4中的一个,则矩阵F的偏移矩阵可以是30b-4中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-4中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-4所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合5中的一个,则矩阵F的偏移矩阵可以是30b-5中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-5中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-5所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合6中的一个,则矩阵F的偏移矩阵可以是30b-6中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-6中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-6所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合7中的一个,则矩阵F的偏移矩阵可以是30b-7中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-7中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-7所示的矩阵,或者是该矩阵的行/列变换后的矩阵;
若扩展因子Z为集合8中的一个,则矩阵F的偏移矩阵可以是30b-8中第7行至第41行以及第0列至第16列所示的矩阵,或者是该矩阵的行/列变换后的矩阵;或者矩阵F的偏移矩阵可以是30b-8中第4行至第41行以及第0列至第14列所示的矩阵,或者是该矩阵的行/列变换后的矩阵。相应地,基图30a的基矩阵可以是30b-8所示的矩阵,或者是该矩阵的行/列变换后的矩阵。
例如,根据输入序列的长度K来确定扩展因子Z的取值,如:若输入序列长度为K,可以在多个系统定义的扩展因子中确定满足10*Z≥K的最小值作为矩阵的扩展因子的取值。进一步,可以根据确定的扩展因子选择相应的基矩阵。
同样的,基矩阵中各行也是可以交换的,各列也可以交换。若基图经过行交换或列交换中至少一种交换,则相应部分的基矩阵也进行同样的交换。
可以理解的是,本申请中准正交结构并不仅仅局限于相邻两行,符合准正交结构的矩阵也可以设计为包含多个组,每个组包含至少2行,例如3行,或者4行等,每个组内包括的行是准正交的。
图4所示的性能曲线图中,LDPC 1表示该LDPC码是基于基图30a对应的一个基矩阵编码得到的,LDPC 2表示作为对比的一种常用的LDPC码,其中横坐标表示信息比特序列的长度,单位为比特,纵坐标为符号信噪比(Es/N0),性能曲线为BLER分别为0.01和0.0001时,LDPC 1和LDPC 2在不同信息比特序列长度下符号信噪比的性能。可以看出在同样的BLER下,LDPC 1在不同信息比特序列长度下的符号信噪比低于LDPC 2,也就是性能优于LDPC 2。
在本发明一实施例提供的编码方法中,编码器使用LDPC矩阵对输入序列进行编码;该LDPC矩阵的基图可以为前述示例中的任一基图,该LDPC矩阵的基矩阵可以为前述示例中的任一基矩阵。其中,编码器的输入序列可以是信息比特序列。
进一步地,还包括:确定扩展因子Z;可以根据输入序列的长度K来确定扩展因子Z的取值。信息比特序列有时也称为码块(code block),可以通过对传输块进行码块划分得到。若信息比特序列长度为K,可以在多个系统定义的扩展因子中确定满足10*Z≥K的最小值,例如,K=128,系统定义的扩展因子包括前述表一中各集合中的扩展因子,例如,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,22,24,26,28,30,32,36,40,44,48,52,56,60,64,72,80,88,96,104,112,120,128,144,160,176,192,208,224,240,256,则可以确定Z为13,在集合7中。需要说明的是,此处只是举例,并不以此为限制。
编码器使用LDPC矩阵对输入序列进行编码可以是使用扩展因子Z对应的LDPC矩阵对输入序列进行编码。
例如,Z为13,在集合7中,则基于集合7对应的基矩阵3b-7得到LDPC矩阵对输入序列进行编码;
又一种设计中,也可以扩展因子Z的基矩阵,第i行第j列元素Pi,j满足下述关系:
其中,Vi,j可以是Z所在集合的基矩阵中第i行第j列的元素的偏移值,也就是Z所在集合中最大扩展因子的基矩阵的第i行第j列的非零元素的偏移值。
例如,以Z为13为例,其基矩阵中第i行第j列的元素Pi,j满足
其中,Vi,j是基矩阵3b-7中第i行第j列的非0元素的偏移值。
需要说明的是,此处仅为举例,本发明不限于此。
其中LDPC矩阵基矩阵HB可以是前述各实施例中例举的任一基矩阵或者相对于前述例举的任一基矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵,其基图至少包括子矩阵A和子矩阵B,还可以包括子矩阵C、子矩阵D和子矩阵E,各部分可以参考前述各实施例中的描述,此处不再赘述。
在一种可能的实现方式中,LDPC码的基矩阵HB可以是保存在存储器中,编码器获取扩展因子Z对应的LDPC矩阵,从而对输入序列进行编码。在又一种可能的实现方式中,由于LDPC码的基矩阵HB有多个,按照矩阵结构保存会占用较大的存储空间,也可以将LDPC码的基图保存在存储器中,分别逐行或者逐列保存各基矩阵中非零元素的偏移值,然后根据基图和扩展因子Z对应的基矩阵的偏移值得到LDPC矩阵。
需要说明的是,此处均只是举例,并不以此为限制。
对信息比特序列进行编码时,可以根据Z对基矩阵HB进行扩展得到编码的LDPC矩阵H。对基矩阵HB中每一非零元素Pi,j,确定Z*Z大小的循环置换矩阵hi,j,其中hi,j为单位矩阵经过Pi,j次循环移位得到的循环置换矩阵,将hi,j替换非零元素Pi,j,将Z*Z大小的全零矩阵替换基矩阵HB中的零元素,从而得到奇偶校验矩阵H;
在通信系统中,可采用上述方法编码后得到LDPC码。获得LDPC码后,通信装置,还可以进行以下一个或多个操作:对LDPC码进行速率匹配;根据交织方案对速率匹配后的LDPC码进行交织;根据调制方案对交织后的LDPC码进行调制得到比特序列B;发送比特序列B。
在本发明另一实施例提供的译码方法中,译码器使用LDPC矩阵对输入序列进行译码;该LDPC矩阵的基图可以为前述示例中的任一基图,该LDPC矩阵的基矩阵HB可以为前述示例中的任一基矩阵。其中,译码器的输入序列可以是LDPC码的软值序列。
进一步地,还包括:确定扩展因子Z。接收端的通信设备可以接收包含基于LDPC编码的信号,获取其中LDPC码的软值序列,并确定出相应的扩展因子Z。
译码器使用LDPC矩阵对输入序列进行译码可以是使用扩展因子Z对应的LDPC矩阵对LDPC码的软值序列进行译码。
其中LDPC矩阵基矩阵HB可以是前述各实施例中例举的任一基矩阵或者相对于前述例举的任一基矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵,其基图至少包括子矩阵A和子矩阵B,还可以包括子矩阵C、子矩阵D和子矩阵E,各部分可以参考前述各实施例中的描述,此处不再赘述。
在一种可能的设计中,LDPC码的基矩阵HB可以是保存在存储器中,获取到扩展因子Z对应的LDPC矩阵可以对LDPC码的软值进行译码;
在又一种可能的实现方式中,由于LDPC码的基矩阵有多个,按照矩阵结构保存会占用较大的存储空间,也可以将LDPC码的基图保存在存储器中,分别逐行或者逐列保存各基矩阵中非零元素的偏移值,然后根据基图和扩展因子Z对应的基矩阵的偏移值得到LDPC矩阵。
需要说明的是,此处均只是举例,并不以此为限制。
译码是编码的逆过程,其使用的基矩阵HB具有与编码方法实施例中的基矩阵相同的特征。对基矩阵HB扩展得到LDPC矩阵H也可以参考编码方法实施例。
在通信系统中,所述译码方法之前,通信装置还可以进行以下一个或多个操作:接收包含基于LDPC编码的信号,对信号进行解调,解交织以及解速率匹配得到LDPC码的软值。
在一种可能的实现方式中,可以保存以下一个或多个:
a)用于获得上述各实现方式中列举的任一基矩阵HB中的参数,基于所述参数可以获得所述基矩阵HB;例如,所述参数可以包括以下一个或多个:基矩阵中的偏移值,或者,扩展因子,或者,基矩阵的基图,或者,码率等。
b)上述各实现方式中列举的任一基矩阵HB
c)基于所述基矩阵HB扩展后的矩阵;
d)基于上述各实现方式中列举的任一基矩阵HB经过行/列变换后的基矩阵。本申请中,行/列变换是指行变换、或者列变换、或者行变换和列变换;
e)基于所述行/列变换后的基矩阵扩展后的矩阵。
在一种可能的实现方式中,使用低密度奇偶校验LDPC矩阵对输入序列进行编码,可以是在编码或者译码过程中,按照以下方式的一种或者多种进行:
i.基于上述a)获得基矩阵HB,基于获得的基矩阵HB编码或者译码;或者基于获得的基矩阵HB进行行/列交换,基于行/列变换后的基矩阵编码或者译码。这里基于基矩阵编码或者译码,可选的,还可以包括基于基矩阵的扩展矩阵编码或者译码;
ii.基于b)或者d)保存的基矩阵(保存基矩阵HB、或者保存的基于基矩阵HB行/列变换后的基矩阵)编码或者译码,或者基于所述保存的基矩阵进行行/列变换,基于行/列变换后的基矩阵编码或者译码。这里,基于基矩阵编码或者译码,可选的,还可以包括基于基矩阵的扩展矩阵编码或者译码;
iii.基于c)或者e)进行编码或者译码。
本申请中涉及的保存,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、芯片、通信装置、或者终端。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、芯片、通信装置、或者终端中,存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
图5给出了一种通信装置500的结构示意图,装置500可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置500可以是芯片,基站,终端或者其他网络设备。
所述通信装置500包括一个或多个处理器501。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,所述通信装置500包括一个或多个所述处理器501,所述一个或多个处理器501可实现上述编码器的功能,在另一种可能的设计中,上述编码器可以是所述处理器501的一部分,处理器501除了实现编码器的功能,还可以实现其他功能。
所述通信装置500使用LDPC矩阵对输入序列进行编码;该LDPC矩阵的基图可以为前述示例中的任一基图或者相对于前述例举的任一基图而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基图,该LDPC矩阵的基矩阵HB可以为前述实施例中的任一基矩阵或者相对于前述例举的任一基矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵。其中,编码器的输入序列可以是信息比特序列。
在一种可能的设计中,一个或多个所述处理器501可实现上述译码器的功能,在另一种可能的设计中,上述译码器可以是所述处理器501的一部分。
所述通信装置500可用于使用LDPC矩阵对输入序列进行译码;该LDPC矩阵的基图可以为前述示例中的任一基图或者相对于前述例举的任一基图而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基图,该LDPC矩阵的基矩阵HB可以为前述示例中的任一基矩阵或者相对于前述例举的任一基矩阵而言行顺序发生变换、或者列顺序发生变换,或者行顺序和列顺序均发生变换的基矩阵。其中,译码器的输入序列可以是软值序列。
可选的一种设计中,处理器501也可以包括指令503,所述指令可以在所述处理器上被运行,使得所述通信装置500执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置500也可以包括电路,所述电路可以实现前述方法实施例中编码器、或者译码器、或者编码器和译码器的功能。
可选的,所述通信装置500中可以包括一个或多个存储器502,其上存有指令504,所述指令可在所述处理器上被运行,使得所述通信装置500执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。可选的,一个或多个存储器502可以存储与基矩阵相关的参数,例如偏移值,基图,基于基图扩展到矩阵、基矩阵中的各行,扩展因子等等。可选的,所述一个或者多个存储器502可以存储基矩阵或者基于基矩阵扩展到矩阵。
可选的,所述通信装置500还可以包括收发器505以及天线506。所述处理器501可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线506实现通信装置的收发功能.
可选的,所述通信装置500还可以包括用于产生传输块CRC的器件、用于码块分割和CRC校验的器件、用于交织的交织器、或者用于调制处理的调制器等。可以通过一个或多个处理器501实现这些器件的功能。
可选的,所述通信装置500还可以包括,用于解调操作的解调器、用于解交织的解交织器、或者用于解速率匹配的器件等等。可以通过一个或多个处理器501实现这些器件的功能。
图6给出了一种通信系统600的示意图,通信系统600中包括通信设备60和通信设备61,其中,信息数据在通信设备60和通信设备61之间接收和发送。通信设备60和61可以是所述通信装500,或者通信设备备60和分别包括通信装置500,对信息数据进行接收和发送。在一个例子中,通信设备60可以为终端,相应的通信设备61可以为基站;在另一个例子中,通信设备60为基站,相应的通信设备61可以为终端。
本领域技术任何还可以了解到本发明实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本发明实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储器也可以设置于UE中的不同的部件中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本发明实施例所述的流程或功能。当使用软件程序实现时,也可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定义中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

1.一种编码方法,其特征在于,所述方法包括:
使用低密度奇偶校验LDPC矩阵对输入序列进行编码;
所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、子矩阵B、子矩阵C、子矩阵D和子矩阵E,其中,
所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;
所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;
所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;
所述子矩阵C为mA行mD列的全0矩阵;
所述子矩阵E为mD行mD列的单位矩阵;
其中,所述矩阵F中,9行的权重为3,1行的权重为2。
2.一种译码方法,其特征在于,所述方法包括:
使用低密度奇偶校验LDPC矩阵对输入序列进行译码;
所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、子矩阵B、子矩阵C、子矩阵D和子矩阵E,其中,
所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;
所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;
所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;
所述子矩阵C为mA行mD列的全0矩阵;
所述子矩阵E为mD行mD列的单位矩阵;
其中,所述矩阵F中,9行的权重为3,1行的权重为2。
3.根据权利要求1或2所述的方法,其特征在于,所述矩阵F中,其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。
4.根据权利要求3所述的方法,其特征在于,若mA>4,所述矩阵F中其余列的权重为0。
5.一种编码方法,其特征在于,所述方法包括:
使用低密度奇偶校验LDPC矩阵对输入序列进行编码;
所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、子矩阵B、子矩阵C、子矩阵D和子矩阵E,其中,
所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;
所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;
所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;
所述子矩阵C为mA行mD列的全0矩阵;
所述子矩阵E为mD行mD列的单位矩阵;
其中,所述矩阵F中其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。
6.一种译码方法,其特征在于,所述方法包括:
使用低密度奇偶校验LDPC矩阵对输入序列进行译码;
所述LDPC矩阵是基于基图得到的,所述基图包括子矩阵A、子矩阵B、子矩阵C、子矩阵D和子矩阵E,其中,
所述子矩阵A为mA行nA列的矩阵,mA、nA为正整数,且4≤mA≤7,nA=10;
所述子矩阵B为mA行mA列的矩阵,所述子矩阵B包括权重为3的列和双对角结构的子矩阵B’;
所述子矩阵D包括矩阵F中mD行,所述矩阵F为mF行(mA+nA)列的矩阵,mD、mF为正整数,0≤mD≤mF,35≤mF≤38;
所述子矩阵C为mA行mD列的全0矩阵;
所述子矩阵E为mD行mD列的单位矩阵;
其中,所述矩阵F中,其中1列的权重为16,1列的权重为18,1列权重为11,2列的权重为10,1列的权重为9,1列的权重为8,1列的权重为7,1列的权重为6,2列的权重为4,1列的权重为3,2列的权重为2。
7.根据权利要求5或6所述的方法,其特征在于,若mA>4,所述矩阵F中其余列的权重为0。
8.根据权利要求5至7任一项所述的方法,其特征在于,所述矩阵F中符合正交结构的10行中,9行的权重为3,1行的权重为2。
9.根据权利要求1至9任一项所述的方法,所述矩阵F包括至少10行,所述至少10行中任意相邻两行是正交。
10.根据权利要求1至9任一项所述的方法,所述矩阵F包括至少5组,所述至少5组中每一组包括至少2行,所述至少2行是正交的。可选地,所述至少2行可以是连续的行。
11.根据权利要求9或10所述的方法,其特征在于,所述矩阵F中的10行,其中1行中的14列为,
其余9行中的14列分别为以下之一,
12.根据权利要求11所述的方法,其特征在于,所述矩阵F中的10行中的14列包括以下各行,或者各列:
13.根据权利要求12所述的方法,其特征在于,mA=7,所述矩阵F的各行的权重分别为:
5,3,4,4,4,3,4,4,3,4,4,3,3,3,3,2,3,3,2,4,2,3,2,4,2,3,3,3,3,3,2,3,3,3,3。
14.根据权利要求13所述的方法,其特征在于,所述矩阵F中的14列包括以下各行,或者各列:
15.根据权利要求14所述的方法,其特征在于,mA+mD=42,所述基图包括如基图30a中各行或者各列。
16.根据权利要求1至15任一项所述的方法,其特征在于,所述LDPC矩阵是基于所述基图经过行交换、或者列交换、或者行交换和列交换后的基图得到的。
17.一种装置,用于执行如权利要求1至16项任一项所述的方法。
18.一种通信装置,其特征在于,所述通信装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述通信装置执行如权利要求1至16项任一项所述的方法。
19.一种终端,其特征在于,包括如权利要求17所述的装置或权利要求18所述的通信装置。
20.一种基站,其特征在于,包括如权利要求17所述的装置或权利要求18所述的通信装置。
21.一种通信系统,其特征在于包括如权利要求19所述的终端以及如权利要求20所述的基站。
22.一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16任一项所述的方法。
23.一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至16任一项所述的方法。
CN201710454030.3A 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备 Pending CN109150191A (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CN201710454030.3A CN109150191A (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备
CN201810771585.5A CN109067407B (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备
CN202010009164.6A CN111416625B (zh) 2017-06-15 2017-07-13 信息处理的方法和通信装置
PCT/CN2017/092878 WO2018227681A1 (zh) 2017-06-15 2017-07-13 信息处理的方法和通信装置
CA3055231A CA3055231C (en) 2017-06-15 2017-07-13 Information processing method and communication apparatus
EP22198435.4A EP4187794A1 (en) 2017-06-15 2017-07-13 Qc-ldpc codes for 3gpp 5g mobile radio
AU2017418080A AU2017418080B9 (en) 2017-06-15 2017-07-13 Information processing method and communication apparatus
CN201780092144.6A CN110754042B (zh) 2017-06-15 2017-07-13 信息处理的方法和通信装置
EP17913431.7A EP3588786B1 (en) 2017-06-15 2017-07-13 Qc-ldpc codes for 3gpp 5g mobile radio
KR1020197027252A KR102194029B1 (ko) 2017-06-15 2017-07-13 정보 프로세싱 방법 및 통신 장치
RU2019133313A RU2740154C1 (ru) 2017-06-15 2017-07-13 Способ обработки информации и устройство связи
BR112019020158-0A BR112019020158B1 (pt) 2017-06-15 2017-07-13 Método de codificação, método de decodificação, método de processamento de informações, aparelho, terminal, estação base, sistema de comunicação, mídia de armazenamento legível por computador e produto de programa de computador
JP2019556313A JP6820438B2 (ja) 2017-06-15 2017-07-13 情報処理方法および通信装置
PCT/CN2018/091423 WO2018228514A1 (zh) 2017-06-15 2018-06-15 信息处理的方法和通信装置
US16/566,331 US10742235B2 (en) 2017-06-15 2019-09-10 Method and apparatus for low density parity check channel coding in wireless communication system
ZA2019/06314A ZA201906314B (en) 2017-06-15 2019-09-25 Information processing method and communication apparatus
US16/923,841 US11296726B2 (en) 2017-06-15 2020-07-08 Method and apparatus for low density parity check channel coding in wireless communication system
JP2021000141A JP7221999B2 (ja) 2017-06-15 2021-01-04 情報処理方法および通信装置
US17/684,144 US11611356B2 (en) 2017-06-15 2022-03-01 Method and apparatus for low density parity check channel coding in wireless communication system
US18/185,998 US11996863B2 (en) 2017-06-15 2023-03-17 Method and apparatus for low density parity check channel coding in wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710454030.3A CN109150191A (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810771585.5A Division CN109067407B (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备

Publications (1)

Publication Number Publication Date
CN109150191A true CN109150191A (zh) 2019-01-04

Family

ID=64816458

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710454030.3A Pending CN109150191A (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备
CN201810771585.5A Active CN109067407B (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810771585.5A Active CN109067407B (zh) 2017-06-15 2017-06-15 信息处理的方法、装置和通信设备

Country Status (1)

Country Link
CN (2) CN109150191A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49989E1 (en) 2017-06-10 2024-05-28 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029362A1 (zh) * 2009-09-11 2011-03-17 北京泰美世纪科技有限公司 Ldpc码校验矩阵的构造方法以及基于该方法的编码方法和编码装置
CN105075128A (zh) * 2013-02-13 2015-11-18 高通股份有限公司 具有高并行性、低差错本底和简单编码原理的经提升ldpc码的设计
US20160087648A1 (en) * 2014-09-18 2016-03-24 Broadcom Corporation Puncture-aware low density parity check (LDPC) decoding
CN105827251A (zh) * 2015-01-23 2016-08-03 英派尔科技开发有限公司 奇偶校验码编码器
US20160345028A1 (en) * 2015-05-19 2016-11-24 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973440A (zh) * 2004-04-02 2007-05-30 北方电讯网络有限公司 Ldpc编码器、解码器、系统及方法
CN101515839A (zh) * 2008-02-22 2009-08-26 大唐移动通信设备有限公司 一种编码输出的方法、装置及其系统
CN101662290B (zh) * 2008-08-26 2013-08-28 华为技术有限公司 生成准循环ldpc码及编码的方法与装置
CN101834613B (zh) * 2009-03-09 2012-11-21 电信科学技术研究院 一种ldpc码的编码方法及编码器
CN102315911B (zh) * 2011-09-29 2017-10-27 中兴通讯股份有限公司 一种低密度奇偶校验码编码方法及装置
KR101929145B1 (ko) * 2013-06-12 2018-12-13 소니 주식회사 데이터 처리 장치, 및 데이터 처리 방법
CN104917536B (zh) * 2014-03-11 2019-11-12 中兴通讯股份有限公司 一种支持低码率编码的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029362A1 (zh) * 2009-09-11 2011-03-17 北京泰美世纪科技有限公司 Ldpc码校验矩阵的构造方法以及基于该方法的编码方法和编码装置
CN105075128A (zh) * 2013-02-13 2015-11-18 高通股份有限公司 具有高并行性、低差错本底和简单编码原理的经提升ldpc码的设计
US20160087648A1 (en) * 2014-09-18 2016-03-24 Broadcom Corporation Puncture-aware low density parity check (LDPC) decoding
CN105827251A (zh) * 2015-01-23 2016-08-03 英派尔科技开发有限公司 奇偶校验码编码器
US20160345028A1 (en) * 2015-05-19 2016-11-24 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49989E1 (en) 2017-06-10 2024-05-28 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code

Also Published As

Publication number Publication date
CN109067407B (zh) 2019-11-15
CN109067407A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US11689220B2 (en) Method and device for interleaving data
CN109327225B (zh) 信息处理的方法、装置和通信设备
CN110535474B (zh) 信息处理的方法、通信装置
JP6815537B2 (ja) 情報処理方法、機器、及び通信装置
CN108809487A (zh) 传输数据的方法、基站和终端设备
KR20200017520A (ko) 극성 코드 인코딩 방법 및 디바이스
JP6820438B2 (ja) 情報処理方法および通信装置
CN116366072A (zh) 数据编码方法及其设备
TW202116021A (zh) 用於多ru操作的具有交織器和音調映射器的聯合編碼方案
CN108809486A (zh) Polar码编译码方法及装置
CN109150191A (zh) 信息处理的方法、装置和通信设备
CN107733439B (zh) 一种ldpc编码方法、编码装置及通信设备
CN103516478A (zh) 信息发送方法和设备
WO2018201554A1 (zh) 信息处理的方法、通信装置
WO2018201553A1 (zh) 信息处理的方法、通信装置
WO2018201547A1 (zh) 信息处理的方法、通信装置
WO2018201609A1 (zh) 信息处理的方法和通信装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination