Nothing Special   »   [go: up one dir, main page]

CN109141215A - GNSS monitoring data processing method based on inclination angle sensing - Google Patents

GNSS monitoring data processing method based on inclination angle sensing Download PDF

Info

Publication number
CN109141215A
CN109141215A CN201810908018.XA CN201810908018A CN109141215A CN 109141215 A CN109141215 A CN 109141215A CN 201810908018 A CN201810908018 A CN 201810908018A CN 109141215 A CN109141215 A CN 109141215A
Authority
CN
China
Prior art keywords
gnss
monitoring
data processing
displacement
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810908018.XA
Other languages
Chinese (zh)
Inventor
魏世玉
陈立川
陈柏林
吴孟
何飞
胡祝敏
李川
徐洪
李辉
李超
谢行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHONGQING HUADI ENGINEERING SURVEY AND DESIGN INSTITUTE
Chongqing Institute of Geology and Mineral Resources
Original Assignee
CHONGQING HUADI ENGINEERING SURVEY AND DESIGN INSTITUTE
Chongqing Institute of Geology and Mineral Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHONGQING HUADI ENGINEERING SURVEY AND DESIGN INSTITUTE, Chongqing Institute of Geology and Mineral Resources filed Critical CHONGQING HUADI ENGINEERING SURVEY AND DESIGN INSTITUTE
Priority to CN201810908018.XA priority Critical patent/CN109141215A/en
Publication of CN109141215A publication Critical patent/CN109141215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明公开了一种基于倾角传感的GNSS监测数据处理方法,该方法包括以下步骤:S1:通过GNSS获取监测点处的GNSS监测设备中心平面位移分量,通过双轴倾角传感器阵列获取安装立柱的倾斜角度,对平面位移分量进行预处理;S2:平面位移分量包括X位移分量和Y位移分量,预处理后的X位移分量和Y位移分量合成位移矢量,对位移矢量进行倾角归算修正;S3:当监测点主形变方向已知时,将修正后的位移矢量投影到主形变方向,以投影解析值按时间序列绘制监测点的形变过程曲线,来表征该监测点的形变特征。通过该方法,解决了GNSS位移监测过程中,真实变形矢量与数据表征矢量不相符的问题,具有监测数据可靠、观测精度高、数据分析简便和表征结果直观等优点。

The invention discloses a method for processing GNSS monitoring data based on inclination sensing. The method includes the following steps: S1: Obtain the central plane displacement component of the GNSS monitoring equipment at the monitoring point through GNSS, and obtain the displacement of the installation column through a dual-axis inclination sensor array. Tilt angle, preprocessing the plane displacement component; S2: The plane displacement component includes the X displacement component and the Y displacement component, the preprocessed X displacement component and the Y displacement component synthesize the displacement vector, and perform inclination correction on the displacement vector; S3 : When the main deformation direction of the monitoring point is known, the corrected displacement vector is projected to the main deformation direction, and the deformation process curve of the monitoring point is drawn in time series with the projected analytical value to characterize the deformation characteristics of the monitoring point. Through this method, the problem that the real deformation vector does not match the data representation vector in the process of GNSS displacement monitoring is solved, and it has the advantages of reliable monitoring data, high observation accuracy, simple data analysis and intuitive representation results.

Description

一种基于倾角传感的GNSS监测数据处理方法A GNSS Monitoring Data Processing Method Based on Inclination Sensing

技术领域technical field

本发明涉及地表形变监测领域,具体涉及一种基于倾角传感的GNSS监测数据处理方法。The invention relates to the field of surface deformation monitoring, in particular to a GNSS monitoring data processing method based on inclination angle sensing.

背景技术Background technique

全球卫星导航定位系统(global navigation satellite system),简称GNSS,目前主要有美国的GPS、俄罗斯的GLONAS、中国的COMPASS以及欧盟的GALILEO。通过GNSS可在任何时刻、任何位置为不同用户提供动态的三维位置,已经广泛应用到大地检测、精密工程测量、形变监测等领域。The Global Navigation Satellite System (GNSS) currently mainly includes GPS in the United States, GLONAS in Russia, COMPASS in China and GALILEO in the European Union. GNSS can provide dynamic three-dimensional positions for different users at any time and any position, and has been widely used in the fields of geodetic detection, precision engineering measurement, deformation monitoring and so on.

目前,对滑坡等地质灾害进行变形监测时,主要观测一系列因素随时间的变化量,如地表位移特征、降雨量、地下水位等,其中位移类监测其成果直观,成效明显,是最重要的变化量监测特征,故位移监测手段得到了最为广泛的应用。通过监测对象的移动方向、移动量和移动速度等特征的一项或多项,就能很大程度上的达到监测滑坡区域的目的。当前对移动特征的监测主要是采取GNSS地表位移监测方式,其作业方式简单方便,具有监测站间无需通视、能同时测定点的三维位移、不受气候条件限制等优点,能实现自动化的三维坐标监测。GNSS地表位移监测数据处理时多采用测量坐标系下坐标分量或二者合成矢量来表征变形体变形程度,其中最值得关注的是变形体沿主变形方向的位移量。At present, when monitoring the deformation of geological disasters such as landslides, it mainly observes the changes of a series of factors over time, such as surface displacement characteristics, rainfall, groundwater level, etc. Among them, displacement monitoring has intuitive results and obvious results, which is the most important. Therefore, the displacement monitoring method has been the most widely used. By monitoring one or more characteristics of the object's moving direction, moving amount and moving speed, the purpose of monitoring the landslide area can be largely achieved. The current monitoring of moving features mainly adopts the GNSS surface displacement monitoring method. Its operation method is simple and convenient, and it has the advantages of no need to see through between monitoring stations, can measure the three-dimensional displacement of points at the same time, and is not limited by climatic conditions. It can realize automatic three-dimensional Coordinate monitoring. In the processing of GNSS surface displacement monitoring data, the coordinate components in the measurement coordinate system or the composite vector of the two are often used to represent the deformation degree of the deformable body. The most noteworthy is the displacement of the deformable body along the main deformation direction.

在地质灾害监测中,GNSS位移监测点是反映地表形变信息的基础,但在监测作业中,监测站常常需要浇筑立柱并设基础水泥墩保护,实际监测点与目标监测点之间存在立柱高度差、角度倾斜差等,导致观测值中引入了新的误差。实际监测中,目标监测对象为立柱底部中心点,即实际地表位移点,而实际监测对象为接收机中心,参照图4。在地表监测中,主要关注两期监测数据中所求得监测点之间的差值,而不是监测点本身的坐标,这样两期监测中所含的共同系统误差虽然会分别影响两期的坐标值,但却不会影响所求得的变形量。但在地表变形过程中,由于立柱倾斜带来倾角误差,常常不能保证目标监测点与实际监测点处于同一竖直线上,实际高差小于立柱高差,即真实变形矢量与数据表征矢量不符从而引起位移测量的误差,使观测精度及可靠性难以保证。同时,目前技术人员常用的地表位移监测方法为传统的位移分量合成法,该方法以位移标量和位移方位角表征平面位移矢量,存在计算解析较繁琐,表征结果欠直观等问题。In geological disaster monitoring, GNSS displacement monitoring points are the basis for reflecting surface deformation information, but in monitoring operations, monitoring stations often need to pour columns and set up foundation cement piers for protection. There is a height difference between the actual monitoring points and the target monitoring points. , angular tilt difference, etc., which lead to the introduction of new errors in the observations. In actual monitoring, the target monitoring object is the center point at the bottom of the column, that is, the actual surface displacement point, and the actual monitoring object is the receiver center, as shown in Figure 4. In surface monitoring, the main focus is on the difference between the monitoring points obtained from the monitoring data of the two phases, rather than the coordinates of the monitoring points themselves, so that the common systematic errors contained in the two phases of monitoring will affect the coordinates of the two phases respectively. value, but does not affect the amount of deformation obtained. However, in the process of surface deformation, due to the inclination error caused by the inclination of the column, it is often impossible to ensure that the target monitoring point and the actual monitoring point are on the same vertical line, and the actual height difference is smaller than the column height difference, that is, the real deformation vector does not match the data representation vector. The error caused by displacement measurement makes it difficult to guarantee the observation accuracy and reliability. At the same time, the surface displacement monitoring method commonly used by technicians is the traditional displacement component synthesis method. This method uses the displacement scalar and the displacement azimuth to represent the plane displacement vector, which has problems such as complicated calculation and analysis, and the characterization results are not intuitive.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的上述不足,本发明的目的在于:提供一种能够有效分析地表形变监测数据的分析方法,能够解决GNSS位移监测过程中真实变形矢量与数据表征矢量不相符的问题,具有监测数据可靠、可提高观测精度、监测数据分析简便和表征结果直观等优点。In view of the above-mentioned deficiencies in the prior art, the purpose of the present invention is to provide an analysis method that can effectively analyze surface deformation monitoring data, which can solve the problem that the real deformation vector does not match the data representation vector in the process of GNSS displacement monitoring, and has the advantages of monitoring The data is reliable, the observation accuracy can be improved, the monitoring data analysis is simple, and the characterization results are intuitive.

本发明采用了如下的技术方案:The present invention adopts the following technical scheme:

一种基于倾角传感的GNSS监测数据处理方法,该方法包括以下步骤:A GNSS monitoring data processing method based on inclination sensing, the method comprises the following steps:

S1:通过全球卫星导航定位系统GNSS获取监测点处的地表形变监测数据,通过双轴倾角传感器阵列获取安装立柱的姿态数据,监测数据包括GNSS监测设备中心平面位移分量,姿态数据包括安装立柱的倾斜角度,对平面位移分量进行预处理;S1: Obtain the surface deformation monitoring data at the monitoring point through GNSS, and obtain the attitude data of the installation column through the dual-axis inclination sensor array. The monitoring data includes the displacement component of the center plane of the GNSS monitoring equipment, and the attitude data includes the inclination of the installation column. angle, the plane displacement component is preprocessed;

S2:所述平面位移分量包括X位移分量和Y位移分量,预处理后的X位移分量和Y位移分量合成位移矢量,对位移矢量进行倾角归算修正;S2: the plane displacement component includes an X displacement component and a Y displacement component, the preprocessed X displacement component and the Y displacement component synthesize a displacement vector, and the displacement vector is corrected by inclination angle reduction;

S3:当监测点主形变方向已知时,将修正后的位移矢量投影到主形变方向,以投影解析值按时间序列绘制监测点的形变过程曲线,来表征该监测点的形变特征。S3: When the main deformation direction of the monitoring point is known, project the corrected displacement vector to the main deformation direction, and use the projected analytical value to draw the deformation process curve of the monitoring point in time series to characterize the deformation characteristics of the monitoring point.

进一步地,对平面位移分量预处理的方法如下:Further, the method of preprocessing the plane displacement component is as follows:

S11:判断平面位移分量是否含有粗差,若是,则执行步骤S12,若否,则执行步骤S13;S11: Determine whether the plane displacement component contains gross errors, if yes, execute step S12, if not, execute step S13;

S12:对平面位移分量的粗差进行剔除与插补,然后执行步骤S13;S12: remove and interpolate the gross error of the plane displacement component, and then execute step S13;

S13:对平面位移分量进行信噪分离。S13: Perform signal-to-noise separation on the plane displacement component.

进一步地,对平面位移分量的粗差进行插补的方法包括线性内插、拉格朗日内插或多项式拟合。Further, the method for interpolating the gross error of the plane displacement component includes linear interpolation, Lagrangian interpolation or polynomial fitting.

进一步地,对平面位移分量进行信噪分离的方法包括曲线拟合、多元线性回归、灰色预测或小波信噪分离。Further, the method for signal-to-noise separation of the plane displacement component includes curve fitting, multiple linear regression, gray prediction or wavelet signal-to-noise separation.

进一步地,通过“3σ准则”来判定平面位移分量是否含有粗差。Further, whether the plane displacement component contains gross errors is determined by the "3σ criterion".

进一步地,所述位移矢量的倾角修正方法如下:Further, the inclination correction method of the displacement vector is as follows:

以安装砼基础中心点为原点,建立右手坐标系,由几何投影知识可得:Taking the center point of the installed concrete foundation as the origin, a right-handed coordinate system is established, which can be obtained from the knowledge of geometric projection:

Δx=H*cos|θ-π/2|*(-cosα)Δx=H*cos|θ-π/2|*(-cosα)

Δy=H*sin|θ-π/2|Δy=H*sin|θ-π/2|

其中,ɑ为倾斜状态时安装立柱与X轴正方向的夹角,θ为倾斜状态时安装立柱与Y轴正方向的夹角,H为倾斜状态时安装立柱顶端和底端的高度,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量,得到位移矢量的倾角修正为:Among them, ɑ is the angle between the installation column and the positive direction of the X axis in the inclined state, θ is the angle between the installation column and the positive direction of the Y axis in the inclined state, H is the height of the top and bottom of the installation column in the inclined state, Δx is the inclination The vector of the installation column in the X-axis direction in the state, Δy is the vector of the installation column in the Y-axis direction in the inclined state, and the inclination angle correction of the displacement vector is:

其中,表示GNSS监测合成位移矢量,表示监测点实际位移矢量,表示GNSS监测设备中心实际位移矢量,S表示监测点实际位移量。in, represents the GNSS monitoring synthetic displacement vector, represents the actual displacement vector of the monitoring point, Represents the actual displacement vector of the center of the GNSS monitoring equipment, and S represents the actual displacement of the monitoring point.

进一步地,当监测点主形变方向分布于不同象限时,投影量Δm分别表示为:Further, when the main deformation directions of the monitoring points are distributed in different quadrants, the projection amount Δm is expressed as:

ΔM=Δxcosα+Δysinα (1)ΔM=Δxcosα+Δysinα (1)

ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2)ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2)

ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3)ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3)

ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4)ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4)

其中,ɑ为主形变方向方位角,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量。Among them, ɑ is the main deformation direction azimuth, Δx is the vector of the installation column in the X-axis direction in the inclined state, and Δy is the vector of the installation column in the Y-axis direction in the inclined state.

进一步地,所述全球卫星导航定位系统GNSS包括多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块,数据处理模块的信息采集端和双轴倾角传感器阵列连接,数据处理模块的通信端和无线通讯模块连接,数据处理模块的控制端和控制电路模块连接,数据处理模块的供电端和电源管理模块连接。Further, the global satellite navigation and positioning system GNSS includes a plurality of dual-axis inclination sensor arrays, wireless communication modules, data processing modules, control circuit modules and power management modules, and the information acquisition end of the data processing module is connected to the dual-axis inclination sensor array. The communication terminal of the data processing module is connected to the wireless communication module, the control terminal of the data processing module is connected to the control circuit module, and the power supply terminal of the data processing module is connected to the power management module.

进一步地,所述全球卫星导航定位系统GNSS还包括GNSS天线、太阳能板、避雷针、数据采集箱和安装立柱,GNSS天线通过连接螺杆固定在安装立柱顶端,避雷针固定在安装立柱顶端,太阳能板通过支架固定在安装立柱上部,数据采集箱安装在安装立柱上部;多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块均安装在数据采集箱内。Further, the global satellite navigation and positioning system GNSS also includes a GNSS antenna, a solar panel, a lightning rod, a data acquisition box and an installation column. The GNSS antenna is fixed on the top of the installation column through a connecting screw, and the lightning rod is fixed on the top of the installation column. It is fixed on the upper part of the installation column, and the data acquisition box is installed on the upper part of the installation column; multiple dual-axis inclination sensor arrays, wireless communication modules, data processing modules, control circuit modules and power management modules are installed in the data acquisition box.

进一步地,所述双轴倾角传感器阵列采用圆周平面等距部署,每个双轴倾角传感器阵列包括三个倾角传感器。Further, the dual-axis inclination sensor arrays are deployed equidistantly on a circumferential plane, and each dual-axis inclination sensor array includes three inclination sensors.

相比于现有技术,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

本发明公开的基于倾角传感的GNSS监测数据处理方法,在监测站点安装高精度倾角传感器,通过平面位移监测数据表征方法,校正由安装立柱倾斜带来的监测位移误差;对平面位移分量进行误差剔除、信噪分离,然后合成位移矢量并投影到主形变方向,以此表征变形矢量。通过该方法,解决了GNSS位移监测过程中,真实变形矢量与数据表征矢量不相符的问题,提高了观测精度及可靠性。In the GNSS monitoring data processing method based on inclination angle sensing disclosed by the invention, a high-precision inclination sensor is installed at the monitoring site, and the monitoring displacement error caused by the inclination of the installation column is corrected through the plane displacement monitoring data characterization method; Removal, signal-to-noise separation, and then synthesizing the displacement vector and projecting it to the main deformation direction to characterize the deformation vector. This method solves the problem that the real deformation vector does not match the data representation vector in the process of GNSS displacement monitoring, and improves the observation accuracy and reliability.

附图说明Description of drawings

图1为本发明实施例中基于倾角传感的GNSS监测数据处理流程图;1 is a flowchart of GNSS monitoring data processing based on inclination sensing in an embodiment of the present invention;

图2为本发明实施例中平面位移分量预处理的流程图;Fig. 2 is the flow chart of plane displacement component preprocessing in the embodiment of the present invention;

图3为本发明实施例中GNSS系统的系统框图;3 is a system block diagram of a GNSS system in an embodiment of the present invention;

图4为本发明实施例中实际位移矢量示意图;4 is a schematic diagram of an actual displacement vector in an embodiment of the present invention;

图5为本发明实施例中位移矢量倾角修正几何示意图;Fig. 5 is the geometric schematic diagram of displacement vector inclination correction in the embodiment of the present invention;

图6为本发明实施例中监测站点的结构示意图;6 is a schematic structural diagram of a monitoring site in an embodiment of the present invention;

图7为本发明实施例中双轴倾角传感器阵列的结构图;7 is a structural diagram of a dual-axis tilt sensor array in an embodiment of the present invention;

图8为本发明实施例中投影解析示意图。FIG. 8 is a schematic diagram of projection analysis in an embodiment of the present invention.

附图标记:Reference number:

1、GNSS天线;2、连接螺杆;3、太阳能板;4、支架;5、避雷针;6、数据采集箱;7、安装立柱;8、法兰盘;9、水泥墩;10、倾角传感器。1. GNSS antenna; 2. Connecting screw; 3. Solar panel; 4. Bracket; 5. Lightning rod; 6. Data acquisition box; 7. Installation column; 8. Flange plate; 9. Cement pier; 10. Inclination sensor.

具体实施方式Detailed ways

下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。Embodiments of the technical solutions of the present invention will be described in detail below with reference to the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and are therefore only used as examples, and cannot be used to limit the protection scope of the present invention.

实施例:Example:

参照图1,一种基于倾角传感的GNSS监测数据处理方法,该方法包括以下步骤:Referring to Figure 1, a method for processing GNSS monitoring data based on inclination angle sensing, the method includes the following steps:

S1:通过全球卫星导航定位系统GNSS获取监测点处的地表形变监测数据,通过双轴倾角传感器阵列获取安装立柱的姿态数据,监测数据包括GNSS监测设备中心平面位移分量,姿态数据包括安装立柱的倾斜角度,对平面位移分量进行预处理;S1: Obtain the surface deformation monitoring data at the monitoring point through GNSS, and obtain the attitude data of the installation column through the dual-axis inclination sensor array. The monitoring data includes the displacement component of the center plane of the GNSS monitoring equipment, and the attitude data includes the inclination of the installation column. angle, the plane displacement component is preprocessed;

S2:所述平面位移分量包括X位移分量和Y位移分量,预处理后的X位移分量和Y位移分量合成位移矢量,对位移矢量进行倾角归算修正;S2: the plane displacement component includes an X displacement component and a Y displacement component, the preprocessed X displacement component and the Y displacement component synthesize a displacement vector, and the displacement vector is corrected by inclination angle reduction;

S3:当监测点主形变方向已知时,将修正后的位移矢量投影到主形变方向,以投影解析值按时间序列绘制监测点的形变过程曲线,来表征该监测点的形变特征。S3: When the main deformation direction of the monitoring point is known, project the corrected displacement vector to the main deformation direction, and use the projected analytical value to draw the deformation process curve of the monitoring point in time series to characterize the deformation characteristics of the monitoring point.

用上述监测数据处理方法观测地表变形过程中,会受观测环境、观测设备、观测人员等误差因素的影响,观测数据存在粗差、系统误差以及偶然误差三类误差。所以需要对原始平面位移分量进行预处理,剔除其粗差,信噪分离,提高一维分量数据的可靠性。然后再基于更为可靠的一维分量将变形信息投影至已知主变形方向,表征变形矢量。传统的监测表征法需要经过位移标量计算、位移象限角计算、位移方位角换算过程,表征结果需要辅以位移方位角或借助图件才能得到直观表达。和传统的监测表征法相比,本发明提供的方法基于相同投影原理,将位移分量直接投影至主变形方向并进行合成计算,该法解析计算较简便,表征结果也较为直观。In the process of observing the surface deformation with the above monitoring data processing method, it will be affected by the error factors such as the observation environment, observation equipment, and observers. There are three types of errors in the observation data: gross error, systematic error and accidental error. Therefore, it is necessary to preprocess the original plane displacement component, remove its gross error, separate the signal and noise, and improve the reliability of the one-dimensional component data. The deformation information is then projected to the known main deformation directions based on the more reliable one-dimensional components to characterize the deformation vector. The traditional monitoring characterization method needs to go through the process of displacement scalar calculation, displacement quadrant angle calculation, and displacement azimuth angle conversion. Compared with the traditional monitoring and characterization method, the method provided by the present invention is based on the same projection principle, and the displacement component is directly projected to the main deformation direction and the composite calculation is performed.

本实施例中,参照图2,对平面位移分量预处理的方法如下:In this embodiment, referring to FIG. 2 , the method for preprocessing the plane displacement component is as follows:

S11:判断平面位移分量是否含有粗差,若是,则执行步骤S12,若否,则执行步骤S13;S11: Determine whether the plane displacement component contains gross errors, if yes, execute step S12, if not, execute step S13;

S12:对平面位移分量的粗差进行剔除与插补,然后执行步骤S13;S12: remove and interpolate the gross error of the plane displacement component, and then execute step S13;

S13:对平面位移分量进行信噪分离。S13: Perform signal-to-noise separation on the plane displacement component.

本实施例中,对平面位移分量的粗差进行插补的方法包括线性内插、拉格朗日内插或多项式拟合。对平面位移分量进行信噪分离的方法包括曲线拟合、多元线性回归、灰色预测或小波信噪分离。通过“3σ准则”来判定平面位移分量是否含有粗差。剔除平面位移分量粗差是为了保证观测序列在时间域内的完整性。In this embodiment, the method for interpolating the gross error of the plane displacement component includes linear interpolation, Lagrangian interpolation or polynomial fitting. Methods for signal-to-noise separation of plane displacement components include curve fitting, multiple linear regression, grey prediction or wavelet signal-to-noise separation. The "3σ criterion" is used to determine whether the plane displacement component contains gross errors. The gross error of the plane displacement component is eliminated to ensure the integrity of the observation sequence in the time domain.

本实施例中,参照图5,在地表形变过程中,由于安装立柱倾斜,导致目标监测点与实际测量点出现了位移偏移,其偏移量与倾斜角度密切相关,即合成的位移矢量和真实位移矢量间存在倾角误差。所述位移矢量的倾角修正方法如下:In this embodiment, referring to FIG. 5 , during the surface deformation process, due to the inclination of the installation column, a displacement offset occurs between the target monitoring point and the actual measurement point, and the offset is closely related to the inclination angle, that is, the combined displacement vector and There is an inclination error between the true displacement vectors. The inclination correction method of the displacement vector is as follows:

以安装砼基础中心点为原点,立柱竖直由地面指向接收机为Z轴正方向,过原点水平面与竖直面相交的交线为X轴,指向立柱倾斜反方向,建立右手坐标系,由几何投影知识可得:Taking the center point of the installed concrete foundation as the origin, the vertical column points from the ground to the receiver as the positive direction of the Z-axis, the intersection of the horizontal plane passing through the origin and the vertical plane is the X-axis, pointing to the opposite direction of the column inclination, and establishing a right-handed coordinate system, by The knowledge of geometric projection can be obtained:

Δx=H*cos|θ-π/2|*(-cosα)Δx=H*cos|θ-π/2|*(-cosα)

Δy=H*sin|θ-π/2|Δy=H*sin|θ-π/2|

其中,ɑ为倾斜状态时安装立柱与X轴正方向的夹角,θ为倾斜状态时安装立柱与Y轴正方向的夹角,H为倾斜状态时安装立柱顶端和底端的高度,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量,得到位移矢量的倾角修正为:Among them, ɑ is the angle between the installation column and the positive direction of the X axis in the inclined state, θ is the angle between the installation column and the positive direction of the Y axis in the inclined state, H is the height of the top and bottom of the installation column in the inclined state, Δx is the inclination The vector of the installation column in the X-axis direction in the state, Δy is the vector of the installation column in the Y-axis direction in the inclined state, and the inclination angle correction of the displacement vector is:

其中,表示GNSS监测合成位移矢量,表示监测点实际位移矢量,表示GNSS监测设备中心实际位移矢量,S表示监测点实际位移量。in, represents the GNSS monitoring synthetic displacement vector, represents the actual displacement vector of the monitoring point, Represents the actual displacement vector of the center of the GNSS monitoring equipment, and S represents the actual displacement of the monitoring point.

本实施例中,参照图8,对平面位移量进行噪声处理、倾角改正后,基于更为可靠的位移分量,设主变形方向方位角为α,投影至主滑方向的位移量(变形速率或变形累计量)用△m表示,且滑坡后缘指向前缘位移量为正。当监测点主形变方向分布于不同象限时,投影量Δm分别表示为:In this embodiment, referring to FIG. 8 , after noise processing and inclination correction are performed on the plane displacement, based on a more reliable displacement component, the azimuth angle of the main deformation direction is set to be α, and the displacement amount projected to the main sliding direction (deformation rate or The cumulative amount of deformation) is represented by Δm, and the displacement from the trailing edge of the landslide to the leading edge is positive. When the main deformation directions of the monitoring points are distributed in different quadrants, the projection amount Δm is expressed as:

ΔM=Δxcosα+Δysinα (1)ΔM=Δxcosα+Δysinα (1)

ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2)ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2)

ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3)ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3)

ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4)ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4)

其中,ɑ为主形变方向方位角,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量。Among them, ɑ is the main deformation direction azimuth, Δx is the vector of the installation column in the X-axis direction in the inclined state, and Δy is the vector of the installation column in the Y-axis direction in the inclined state.

本实施例中,参照图3,所述全球卫星导航定位系统GNSS包括多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块,数据处理模块的信息采集端和双轴倾角传感器阵列连接,数据处理模块的通信端和无线通讯模块连接,数据处理模块的控制端和控制电路模块连接,数据处理模块的供电端和电源管理模块连接。In this embodiment, referring to FIG. 3 , the global satellite navigation and positioning system GNSS includes a plurality of dual-axis inclination sensor arrays, a wireless communication module, a data processing module, a control circuit module and a power management module, and the information collection end of the data processing module and The dual-axis inclination sensor array is connected, the communication end of the data processing module is connected with the wireless communication module, the control end of the data processing module is connected with the control circuit module, and the power supply end of the data processing module is connected with the power management module.

本实施例中,参照图6,所述全球卫星导航定位系统GNSS还包括GNSS天线1、太阳能板3、避雷针5、数据采集箱6和安装立柱7,GNSS天线通过连接螺杆2固定在安装立柱顶端,避雷针固定在安装立柱顶端,太阳能板通过支架4固定在安装立柱上部,数据采集箱安装在安装立柱上部;多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块均安装在数据采集箱内。安装立柱底端固定安装在水泥墩9内,在安装立柱的中部还安装有法兰盘8,提高连接稳定性。In this embodiment, referring to FIG. 6 , the global satellite navigation and positioning system GNSS further includes a GNSS antenna 1, a solar panel 3, a lightning rod 5, a data acquisition box 6 and an installation column 7, and the GNSS antenna is fixed on the top of the installation column through a connecting screw 2 , the lightning rod is fixed on the top of the installation column, the solar panel is fixed on the upper part of the installation column through the bracket 4, and the data acquisition box is installed on the upper part of the installation column; multiple dual-axis inclination sensor arrays, wireless communication modules, data processing modules, control circuit modules and power management The modules are installed in the data acquisition box. The bottom end of the installation column is fixedly installed in the cement pier 9, and a flange plate 8 is also installed in the middle of the installation column to improve the connection stability.

本实施例中,参照图7,所述双轴倾角传感器阵列采用圆周平面等距部署,每个双轴倾角传感器阵列包括三个倾角传感器10。In this embodiment, referring to FIG. 7 , the dual-axis inclination sensor arrays are deployed equidistantly on a circumferential plane, and each dual-axis inclination sensor array includes three inclination sensors 10 .

上述全球卫星导航定位系统GNSS中,基于双轴倾角MEMS传感器原理以及测量误差数据处理理论,通过对变形体的倾角元素进行观测,数据采集箱内由数据处理芯片进行数据处理,实现平面位移分量粗差的剔除和插补,得到可靠的平差值。设备选用成熟可靠的无线数据通讯模块,采用GPRS通讯方式,实现观测数据远程传输,同时接收远程控制指令,执行相应的远程控制操作。本发明中的双轴倾角传感器阵列和常见的倾角传感器观测装置有较大的区别,具有观测样本大,观测数据稳定,精度高,自动化程度高、互动性强等特性,可以为工民建、市政、水利等领域倾斜监测与质量检测提供新的手段。In the above-mentioned global satellite navigation and positioning system GNSS, based on the principle of dual-axis inclination MEMS sensor and the theory of measurement error data processing, through the observation of the inclination element of the deformable body, the data processing chip is used in the data acquisition box to process the data, so as to realize the coarse plane displacement component. Poor elimination and interpolation to obtain reliable adjustment values. The equipment adopts mature and reliable wireless data communication module and adopts GPRS communication mode to realize remote transmission of observation data, and at the same time, it receives remote control instructions and executes corresponding remote control operations. The dual-axis inclination sensor array in the present invention is quite different from the common inclination sensor observation device, and has the characteristics of large observation sample, stable observation data, high precision, high degree of automation, strong interaction, etc. It can be used for industrial and civil construction, Provide new means for tilt monitoring and quality inspection in municipal, water conservancy and other fields.

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的保护范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or Equivalent replacement, without departing from the spirit and scope of the technical solution of the present invention, should be included in the protection scope of the present invention.

Claims (10)

1.一种基于倾角传感的GNSS监测数据处理方法,其特征在于,该方法包括以下步骤:1. a GNSS monitoring data processing method based on inclination sensing, is characterized in that, the method comprises the following steps: S1:通过全球卫星导航定位系统GNSS获取监测点处的地表形变监测数据,通过双轴倾角传感器阵列获取安装立柱的姿态数据,监测数据包括GNSS监测设备中心平面位移分量,姿态数据包括安装立柱的倾斜角度,对平面位移分量进行预处理;S1: Obtain the surface deformation monitoring data at the monitoring point through GNSS, and obtain the attitude data of the installation column through the dual-axis inclination sensor array. The monitoring data includes the displacement component of the center plane of the GNSS monitoring equipment, and the attitude data includes the inclination of the installation column. angle, the plane displacement component is preprocessed; S2:所述平面位移分量包括X位移分量和Y位移分量,预处理后的X位移分量和Y位移分量合成位移矢量,对位移矢量进行倾角归算修正;S2: the plane displacement component includes an X displacement component and a Y displacement component, the preprocessed X displacement component and the Y displacement component synthesize a displacement vector, and the displacement vector is corrected by inclination angle reduction; S3:当监测点主形变方向已知时,将修正后的位移矢量投影到主形变方向,以投影解析值按时间序列绘制监测点的形变过程曲线,来表征该监测点的形变特征。S3: When the main deformation direction of the monitoring point is known, project the corrected displacement vector to the main deformation direction, and use the projected analytical value to draw the deformation process curve of the monitoring point in time series to characterize the deformation characteristics of the monitoring point. 2.根据权利要求1所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,对平面位移分量预处理的方法如下:2. the GNSS monitoring data processing method based on inclination sensing according to claim 1, is characterized in that, the method for plane displacement component preprocessing is as follows: S11:判断平面位移分量是否含有粗差,若是,则执行步骤S12,若否,则执行步骤S13;S11: Determine whether the plane displacement component contains gross errors, if yes, execute step S12, if not, execute step S13; S12:对平面位移分量的粗差进行剔除与插补,然后执行步骤S13;S12: remove and interpolate the gross error of the plane displacement component, and then execute step S13; S13:对平面位移分量进行信噪分离。S13: Perform signal-to-noise separation on the plane displacement component. 3.根据权利要求2所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,对平面位移分量的粗差进行插补的方法包括线性内插、拉格朗日内插或多项式拟合。3. The GNSS monitoring data processing method based on inclination sensing according to claim 2, wherein the method for interpolating the gross error of the plane displacement component comprises linear interpolation, Lagrangian interpolation or polynomial fitting . 4.根据权利要求2所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,对平面位移分量进行信噪分离的方法包括曲线拟合、多元线性回归、灰色预测或小波信噪分离。4. The GNSS monitoring data processing method based on inclination angle sensing according to claim 2, wherein the method for performing signal-to-noise separation on the plane displacement component comprises curve fitting, multiple linear regression, gray prediction or wavelet signal-to-noise separation . 5.根据权利要求2所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,通过“3σ准则”来判定平面位移分量是否含有粗差。5 . The GNSS monitoring data processing method based on inclination angle sensing according to claim 2 , wherein the “3σ criterion” is used to determine whether the plane displacement component contains gross errors. 6 . 6.根据权利要求1所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,所述位移矢量的倾角修正方法如下:6. the GNSS monitoring data processing method based on inclination sensing according to claim 1, is characterized in that, the inclination correction method of described displacement vector is as follows: 以安装砼基础中心点为原点,建立右手坐标系,由几何投影知识可得:Taking the center point of the installed concrete foundation as the origin, a right-handed coordinate system is established, which can be obtained from the knowledge of geometric projection: Δx=H*cos|θ-π/2|*(-cosα)Δx=H*cos|θ-π/2|*(-cosα) Δy=H*sin|θ-π/2|Δy=H*sin|θ-π/2| 其中,ɑ为倾斜状态时安装立柱与X轴正方向的夹角,θ为倾斜状态时安装立柱与Y轴正方向的夹角,H为倾斜状态时安装立柱顶端和底端的高度,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量,得到位移矢量的倾角修正为:Among them, ɑ is the angle between the installation column and the positive direction of the X axis in the inclined state, θ is the angle between the installation column and the positive direction of the Y axis in the inclined state, H is the height of the top and bottom of the installation column in the inclined state, Δx is the inclination The vector of the installation column in the X-axis direction in the state, Δy is the vector of the installation column in the Y-axis direction in the inclined state, and the inclination angle correction of the displacement vector is: 其中,表示GNSS监测合成位移矢量,表示监测点实际位移矢量,表示GNSS监测设备中心实际位移矢量,S表示监测点实际位移量。in, represents the GNSS monitoring synthetic displacement vector, represents the actual displacement vector of the monitoring point, Represents the actual displacement vector of the center of the GNSS monitoring equipment, and S represents the actual displacement of the monitoring point. 7.根据权利要求1所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,当监测点主形变方向分布于不同象限时,投影量Δm分别表示为:7. The GNSS monitoring data processing method based on inclination angle sensing according to claim 1, wherein when the main deformation directions of the monitoring points are distributed in different quadrants, the projection amount Δm is respectively expressed as: ΔM=Δxcosα+Δysinα (1)ΔM=Δxcosα+Δysinα (1) ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2)ΔM=-Δxcos(180°-α)+Δysin(180°-α)=Δxcosα+Δysinα (2) ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3)ΔM=-Δxcos(α-180°)-Δysin(α-180°)=Δxcosα+Δysinα (3) ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4)ΔM=Δxcos(360°-α)-Δysin(360°-α)=Δxcosα+Δysinα (4) 其中,ɑ为主形变方向方位角,Δx为倾斜状态时安装立柱在X轴方向上的矢量,Δy为倾斜状态时安装立柱在Y轴方向上的矢量。Among them, ɑ is the main deformation direction azimuth, Δx is the vector of the installation column in the X-axis direction in the inclined state, and Δy is the vector of the installation column in the Y-axis direction in the inclined state. 8.根据权利要求1所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,所述全球卫星导航定位系统GNSS包括多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块,数据处理模块的信息采集端和双轴倾角传感器阵列连接,数据处理模块的通信端和无线通讯模块连接,数据处理模块的控制端和控制电路模块连接,数据处理模块的供电端和电源管理模块连接。8. The GNSS monitoring data processing method based on inclination angle sensing according to claim 1, wherein the global satellite navigation and positioning system GNSS comprises a plurality of dual-axis inclination sensor arrays, a wireless communication module, a data processing module, a control The circuit module is connected to the power management module, the information acquisition end of the data processing module is connected to the dual-axis inclination sensor array, the communication end of the data processing module is connected to the wireless communication module, the control end of the data processing module is connected to the control circuit module, and the data processing module is connected to the control circuit module. The power supply terminal is connected to the power management module. 9.根据权利要求8所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,所述全球卫星导航定位系统GNSS还包括GNSS天线、太阳能板、避雷针、数据采集箱和安装立柱,GNSS天线通过连接螺杆固定在安装立柱顶端,避雷针固定在安装立柱顶端,太阳能板通过支架固定在安装立柱上部,数据采集箱安装在安装立柱上部;多个双轴倾角传感器阵列、无线通讯模块、数据处理模块、控制电路模块和电源管理模块均安装在数据采集箱内。9. The GNSS monitoring data processing method based on inclination sensing according to claim 8, wherein the global satellite navigation and positioning system GNSS also comprises a GNSS antenna, a solar panel, a lightning rod, a data acquisition box and an installation column, and the GNSS The antenna is fixed on the top of the installation column through the connecting screw, the lightning rod is fixed on the top of the installation column, the solar panel is fixed on the upper part of the installation column through the bracket, and the data acquisition box is installed on the upper part of the installation column; multiple dual-axis inclination sensor arrays, wireless communication modules, data processing The module, control circuit module and power management module are all installed in the data acquisition box. 10.根据权利要求9所述的基于倾角传感的GNSS监测数据处理方法,其特征在于,所述双轴倾角传感器阵列采用圆周平面等距部署,每个双轴倾角传感器阵列包括三个倾角传感器。10 . The GNSS monitoring data processing method based on inclination angle sensing according to claim 9 , wherein the dual-axis inclination sensor array is deployed equidistantly on a circumferential plane, and each dual-axis inclination sensor array comprises three inclination sensors. 11 . .
CN201810908018.XA 2018-08-10 2018-08-10 GNSS monitoring data processing method based on inclination angle sensing Pending CN109141215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810908018.XA CN109141215A (en) 2018-08-10 2018-08-10 GNSS monitoring data processing method based on inclination angle sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810908018.XA CN109141215A (en) 2018-08-10 2018-08-10 GNSS monitoring data processing method based on inclination angle sensing

Publications (1)

Publication Number Publication Date
CN109141215A true CN109141215A (en) 2019-01-04

Family

ID=64792695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810908018.XA Pending CN109141215A (en) 2018-08-10 2018-08-10 GNSS monitoring data processing method based on inclination angle sensing

Country Status (1)

Country Link
CN (1) CN109141215A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872290A (en) * 2019-02-20 2019-06-11 四川省建筑科学研究院有限公司 A method of correcting image deformation
CN110570628A (en) * 2019-09-18 2019-12-13 中国电建集团贵州电力设计研究院有限公司 Power transmission line pole tower geological disaster monitoring, early warning and analyzing system and using method
CN110736433A (en) * 2019-10-23 2020-01-31 中科顶峰智能科技(重庆)有限公司 quantitative video monitoring device
CN112444187A (en) * 2019-08-28 2021-03-05 千寻位置网络有限公司 Deformation monitoring method and device
CN112611347A (en) * 2020-12-30 2021-04-06 中科顶峰智能科技(重庆)有限公司 Method, system and equipment for monitoring inclination deflection
CN112880622A (en) * 2021-02-04 2021-06-01 上海航天控制技术研究所 Method for calibrating swing angle sensor of flexible spray pipe by using inclinometer
CN113358017A (en) * 2021-06-02 2021-09-07 同济大学 Multi-station cooperative processing GNSS high-precision deformation monitoring method
CN117687047A (en) * 2024-01-31 2024-03-12 中寰星网数字科技(大连)有限公司 Artificial intelligence GNSS high-precision displacement processing method based on edge calculation
CN118816744A (en) * 2024-09-19 2024-10-22 泉州信息工程学院 Building deformation monitoring method and system based on wireless sensor network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646520A (en) * 2016-10-13 2017-05-10 河北稳控科技有限公司 GNSS (Global Navigation Satellite System) three-dimensional displacement monitoring and correcting system and remote data processing method thereof
CN108132046A (en) * 2018-01-16 2018-06-08 重庆华地工程勘察设计院 Array type high-precision automatic inclination monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646520A (en) * 2016-10-13 2017-05-10 河北稳控科技有限公司 GNSS (Global Navigation Satellite System) three-dimensional displacement monitoring and correcting system and remote data processing method thereof
CN108132046A (en) * 2018-01-16 2018-06-08 重庆华地工程勘察设计院 Array type high-precision automatic inclination monitoring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈立川: "平面位移监测数据解析表征方法研究", 《城市建设理论研究(电子版)》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872290A (en) * 2019-02-20 2019-06-11 四川省建筑科学研究院有限公司 A method of correcting image deformation
CN109872290B (en) * 2019-02-20 2021-05-28 四川省建筑科学研究院有限公司 A method of correcting image deformation
CN112444187A (en) * 2019-08-28 2021-03-05 千寻位置网络有限公司 Deformation monitoring method and device
CN110570628A (en) * 2019-09-18 2019-12-13 中国电建集团贵州电力设计研究院有限公司 Power transmission line pole tower geological disaster monitoring, early warning and analyzing system and using method
CN110570628B (en) * 2019-09-18 2021-07-23 中国电建集团贵州电力设计研究院有限公司 Power transmission line pole tower geological disaster monitoring, early warning and analyzing system and using method
CN110736433A (en) * 2019-10-23 2020-01-31 中科顶峰智能科技(重庆)有限公司 quantitative video monitoring device
CN112611347A (en) * 2020-12-30 2021-04-06 中科顶峰智能科技(重庆)有限公司 Method, system and equipment for monitoring inclination deflection
CN112880622A (en) * 2021-02-04 2021-06-01 上海航天控制技术研究所 Method for calibrating swing angle sensor of flexible spray pipe by using inclinometer
CN113358017A (en) * 2021-06-02 2021-09-07 同济大学 Multi-station cooperative processing GNSS high-precision deformation monitoring method
CN117687047A (en) * 2024-01-31 2024-03-12 中寰星网数字科技(大连)有限公司 Artificial intelligence GNSS high-precision displacement processing method based on edge calculation
CN118816744A (en) * 2024-09-19 2024-10-22 泉州信息工程学院 Building deformation monitoring method and system based on wireless sensor network

Similar Documents

Publication Publication Date Title
CN109141215A (en) GNSS monitoring data processing method based on inclination angle sensing
CN109696663B (en) Vehicle-mounted three-dimensional laser radar calibration method and system
CN104122566B (en) Multi-path error removing method of navigation satellite system and multi-path hemisphere model
CN103837126B (en) Using position of heavenly body as the three-dimensional space direction angle measuring device of calibration benchmark and method
CN103217177B (en) A kind of radio wave refractive correction method, Apparatus and system
CN102346033B (en) Direct positioning method and system based on satellite observation angle error estimation
CN107860401B (en) A measuring device and method for real-time correction of pointing value of photoelectric theodolite
CN105549057A (en) Inertial auxiliary GPS/BDS fusion large-scale measurement device and method for quickly measuring land parcel
CN109059751A (en) A kind of deformation data monitoring method and system
WO2022098803A2 (en) Methods of and systems for remotely monitoring stationary systems using gnss-based technologies
CN114001756B (en) Small-field-of-view star sensor outfield ground star finding method
CN107316280A (en) Li Island satellite image RPC models high accuracy geometry location method
CN108333599A (en) One kind being based on GNSS scanning and measuring apparatus and application method
CN103852799A (en) Shipborne gravity measurement method based on PPP technology
CN208026870U (en) One kind being based on GNSS scanning and measuring apparatus
CN110187369A (en) A Method for Measurement and Verification of Perpendicular Deviation Based on GNSS Satellite Position Observation
CN113932727B (en) Slope deformation monitoring method and system based on scanning total station and GNSS
CN104181571A (en) Method for rapidly measuring precision coordinate and elevation of ground point in area with weak CORS signals or without CORS signals
CN203422089U (en) Centering rod slope correction device for satellite positioning and measuring
Meisina et al. Choice of surveying methods for landslides monitoring
CN113738600B (en) Real-time monitoring method and system for tower top displacement of wind generating set
Silva et al. DTM extraction using video-monitoring techniques: application to a fetch limited beach
CN116560207A (en) Method for measuring universal time
Kirchhöfer et al. Cultural Heritage Recording Utilising Low-Cost Closerange Photogrammetry
CN109696155A (en) The weak intersection optical satellite image simultaneous adjustment method and system of light coplanar constraint

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104

RJ01 Rejection of invention patent application after publication