CN109126697A - 一种天然材料复合吸附剂及其制备方法、应用 - Google Patents
一种天然材料复合吸附剂及其制备方法、应用 Download PDFInfo
- Publication number
- CN109126697A CN109126697A CN201811052729.8A CN201811052729A CN109126697A CN 109126697 A CN109126697 A CN 109126697A CN 201811052729 A CN201811052729 A CN 201811052729A CN 109126697 A CN109126697 A CN 109126697A
- Authority
- CN
- China
- Prior art keywords
- parts
- natural material
- material compound
- compound adsorbent
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/12—Naturally occurring clays or bleaching earth
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
- B01J2220/4825—Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明涉及水处理技术领域,为解决传统生物吸附材料机械强度低、重金属去除率低的问题,提供了一种天然材料复合吸附剂及其制备方法、应用,所述天然材料复合吸附剂包括以下重量份的组分:改性甲壳素10~20份,海藻酸钠20~40份,生物质碳材料50~80份,膨润土30~45份和微量元素氨基酸螯合物5~10份。本发明所选原料绿色环保,成本低,机械强度高,采用凝胶因子灵活调控重金属吸附动态平衡,赋予天然材料复合吸附剂较高的吸附率;制备方法简单,对设备无特殊要求,易于大规模工业化生产。
Description
技术领域
本发明涉及水处理技术领域,尤其涉及一种天然材料复合吸附剂及其制备方法、应用。
背景技术
重金属是造成水体污染的一类有毒物质,微量的重金属即可产生毒性效应,重金属对人体健康的危害是多方面、多层次的,其毒理作用主要表现在降低人体抵抗力,可沿食物链或食物网被生物吸收、蓄集,最终造成人体积累和慢性中毒。水体中重金属污染监测与防治一直是环境科学研究的热点。人们不断地开发、改进治理重金属废水的方法和技术,产生了如物理法、化学法、生物化学法等处理方法。
生物吸附法处理重金属废水是一种很有潜力的新型重金属废水处理技术。生物吸附法作为一种新兴的处理技术,特别是在处理低浓度的重金属废水方面,有着极为广阔的前景。所谓生物吸附法就是利用某些生物体本身的化学结构与成分特性来吸附溶于水中的金属离子,再通过固液分离去除水溶液中金属离子的一种方法。与非生物处理方法相比,生物吸附法的原材料来源丰富,品种多,成本低,不仅吸附设备简单、易操作,而且具有速度快、吸附量大、选择性好等优点。尤其在处理1~100ppm的重金属水溶液时特别有效。在后处理方面,用一般的化学方法就可以解吸生物量上吸附的金属离子,且解吸后的生物量可再次吸附重金属。
但是,传统的生物吸附法存在着以下缺陷:
(1)传统生物吸附材料吸附重金属经过一定时间后会达到相应的平衡阶段,吸附量随着时间的增长不会增加至吸附饱和,资源利用率低,而无法打破吸附平衡,导致吸附效果不高;
(2)多采用低成本农业废弃物,例如秸秆、树叶等生物质,制得的生物吸附剂具有机械强度低的缺点,在悬浮体系中难以维持长期废水冲击,造成散落等损失,在大量矿山废水处理中,化学沉淀法依然是主流应用技术,生物吸附技术得不到推广应用;
(3)利用固定化细胞、微生物、细菌等类的生物吸附剂成本高昂,不能大规模应用,存在着生物体容易腐败等后续处理问题、基因工程菌带来潜在风险不可知等问题。
中国专利文献上公开了“一种重金属生物吸附剂及吸附电镀废水中重金属的方法”,其公告号为CN 101444716A,该发明将制革污泥压干至含水量75~90%得到活性污泥,加入生石灰调节pH制得重金属生物吸附剂。但是该金属生物吸附剂并没有解决吸附率低的问题。
发明内容
本发明为了克服上述现有技术中存在的问题,提供了一种机械强度高、选择性高、处理效率高、pH值和温度条件范围宽、投资小、运行费用低以及可有效地回收的天然材料复合吸附剂。
本发明还提供了一种天然材料复合吸附剂的制备方法,该方法制备工艺简单,对设备无特殊要求,易于大规模工业化生产。
本发明还提供了一种天然材料复合吸附剂在重金属废水处理中的应用。
为了实现上述目的,本发明采用以下技术方案:
一种天然材料复合吸附剂,所述天然材料复合吸附剂包括以下重量份的组分:改性甲壳素10~20份,海藻酸钠20~40份,生物质碳材料50~80份,膨润土30~45份和微量元素氨基酸螯合物5~10份。
以低成本的生物质碳材料和膨润土为主料,通过微量元素氨基酸螯合物的改性,一方面利用螯合物自身的络合性能,增强体系的机械强度,使得复合吸附剂的抗冲击能力增强;另一方面增强与重金属废水中金属离子的络合捕获作用,提高重金属的吸附性能。
作为优选,所述生物质碳材料包括以下重量份的组分:酸性麦秆15~25份,稻谷秆20~30份和花生壳15~25份。原料来源广,成本底,资源利用率高。将麦秆预先进行酸处理,得到酸性麦秆,有利于改善吸附剂的体积pH环境,酸性体系下,水体中重金属的离子形态更为稳定,容易捕获脱除。
作为优选,所述改性甲壳素的制备方法为:先将甲壳素脱乙酰化得到壳聚糖,然后将壳聚糖与凝胶因子按照质量比(10~20):1复配制得。
甲壳素是继纤维素之后的自然界含量最丰富的多糖,是宇宙中唯一带正电的阳性食物纤维,本发明先通过甲壳素脱乙酰化得到壳聚糖,其分子中含有大量的-NH2和-OH基团,可借助氢键形成具有网络结构的笼形分子,能够对许多金属离子进行螯合。加入凝胶因子,通过低分子量的有机化合物分子间非共价键作用形成刺激响应和结构可控的特殊性能,赋予吸附剂更多的智能化调控性能。
作为优选,所述凝胶因子选自光响应凝胶因子或pH值响应性凝胶因子。
所述光响应凝胶因子的结构式为:
上述光响应凝胶因子是基于偶氮苯的凝胶因子,其在不同紫外光照下由于凝胶因子异构化的原因使得凝胶具有光响应性。将光响应凝胶因子与甲壳素脱乙酰化得到壳聚糖复配,赋予吸附剂光响应特性,借助紫外光的照射与关闭,灵敏地调节打破吸附剂处理重金属废水过程中动态平衡,从而避免随着时间的增长不会增加至吸附饱和,提高资源利用率,及重金属的吸附率。
所述pH值响应性凝胶因子的结构式为:
上述所选pH值响应性凝胶因子是基于杯芳烃的凝胶因子,可在中性或碱性水环境中溶解,当pH值降低至2.5以下,便形成凝胶。将pH值响应性凝胶因子与甲壳素脱乙酰化得到壳聚糖复配,赋予吸附剂pH值响应特性,借助重金属废水处理体系pH的调节,灵敏地打破吸附剂处理重金属废水过程中动态平衡,从而避免随着时间的增长不会增加至吸附饱和,提高资源利用率及重金属的吸附率。
作为优选,所述微量元素氨基酸螯合物为特异氨基酸螯合物蛋氨酸,赖氨酸或甘氨酸,上述螯合物绿色环保,且具有运输与贮存金属元素功能,有利于吸附剂对重金属的吸附。
一种天然材料复合吸附剂的制备方法,包括以下步骤:
(1)按照上述配比称取原料,将生物质碳材料与膨润土粉碎、混合均匀,得预混料;
(2)将微量元素氨基酸螯合物加入到乙醇溶剂中,然后加入步骤(1)所得的预混料,搅拌均匀,烘干至乙醇混发完毕,制成直径为2~10mm的球形吸附剂生坯;球形接触面积大,吸附效果好;
(3)在步骤(2)所得的球形吸附剂生坯外表面包覆海藻酸钠,低温回火焙烧;
(4)在经过步骤(3)处理后的球形吸附剂生坯表面包裹改性甲壳素,高温焙烧,即得天然材料复合吸附剂。
作为优选,步骤(1)中,所述预混料的粒径控制在0.1~1mm。
作为优选,步骤(3)中,低温回火焙烧的温度为120~180℃,时间为5~8h。
作为优选,步骤(4)中,高温焙烧的温度为800~1000℃,时间为1~3h。
一种天然材料复合吸附剂在重金属废水处理中的应用。
因此,本发明具有如下有益效果:
(1)原料绿色环保,成本低,机械强度高,采用凝胶因子灵活调控重金属吸附动态平衡,赋予天然材料复合吸附剂较高的吸附率;
(2)制备方法简单,对设备无特殊要求,易于大规模工业化生产。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
本发明以下实施例所用光响应凝胶因子的结构式为:
pH值响应性凝胶因子的结构式为:
实施例1
(1)先将甲壳素脱乙酰化得到壳聚糖,然后将壳聚糖与光响应凝胶因子按照质量比15:1复配,制得改性甲壳素;
(2)按照以下配比称取原料:改性甲壳素10g,海藻酸钠40g,酸性麦秆15g,稻谷秆20g和花生壳15g,膨润土45g和微量元素氨基酸螯合物10g;将生物质碳材料与膨润土粉碎、混合均匀,得平均粒径为0.1mm预混料;
(2)将微量元素氨基酸螯合物加入到乙醇溶剂中,然后加入步骤(1)所得的预混料,搅拌均匀,烘干至乙醇混发完毕,制成直径为2mm的球形吸附剂生坯;
(3)在步骤(2)所得的球形吸附剂生坯外表面包覆海藻酸钠,于120℃低温回火焙烧8h;
(4)在经过步骤(3)处理后的球形吸附剂生坯表面包裹改性甲壳素,于800℃高温焙烧3h,即得天然材料复合吸附剂。
实施例2
(1)先将甲壳素脱乙酰化得到壳聚糖,然后将壳聚糖与pH值响应性凝胶因子按照质量比10:1复配,制得改性甲壳素;
(2)按照以下配比称取原料:改性甲壳素20g,海藻酸钠40g,酸性麦秆25g,稻谷秆30g和花生壳25g,膨润土30g和微量元素氨基酸螯合物5g;将生物质碳材料与膨润土粉碎、混合均匀,得平均粒径为1mm预混料;
(2)将微量元素氨基酸螯合物加入到乙醇溶剂中,然后加入步骤(1)所得的预混料,搅拌均匀,烘干至乙醇混发完毕,制成直径为10mm的球形吸附剂生坯;
(3)在步骤(2)所得的球形吸附剂生坯外表面包覆海藻酸钠,于180℃低温回火焙烧5h;
(4)在经过步骤(3)处理后的球形吸附剂生坯表面包裹改性甲壳素,于800℃高温焙烧1h,即得天然材料复合吸附剂。
实施例3
(1)先将甲壳素脱乙酰化得到壳聚糖,然后将壳聚糖与光响应凝胶因子按照质量比20:1复配,制得改性甲壳素;
(2)按照以下配比称取原料:改性甲壳素15g,海藻酸钠30g,酸性麦秆20g,稻谷秆25g和花生壳20g,膨润土35g和微量元素氨基酸螯合物8g;将生物质碳材料与膨润土粉碎、混合均匀,得平均粒径为0.8mm预混料;
(2)将微量元素氨基酸螯合物加入到乙醇溶剂中,然后加入步骤(1)所得的预混料,搅拌均匀,烘干至乙醇混发完毕,制成直径为8mm的球形吸附剂生坯;
(3)在步骤(2)所得的球形吸附剂生坯外表面包覆海藻酸钠,于160℃低温回火焙烧6h;
(4)在经过步骤(3)处理后的球形吸附剂生坯表面包裹改性甲壳素,于850℃高温焙烧2h,即得天然材料复合吸附剂。
分别取实施例1-3制得的天然材料复合吸附剂50mg,置于含有低浓度(50ppm)的Cr3+、Cu2+、Pb2+、Zn2+重金属废液中,调节体系pH值或光照,对重金属废水处理1h后的结果如表1所示:
表1.检测结果
处理结束后,各实施例的天然材料复合吸附剂球体完整,没有散落,说明机械强度好,抗冲击能力强。由表1可以看出,本发明制备的天然材料复合吸附剂对去除水体中的低浓度的Cr3+、Cu2+、Pb2+、Zn2+效果明显,去除率最高可达到90%以上,其中,对Cr3+和Cu2+的去除效果明显优于Pb2+和Zn2+,且不同去除体系条件下,去除率也得到调控,为重金属离子的可调控去除奠定了研究基础。
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
Claims (10)
1.一种天然材料复合吸附剂,其特征在于,所述天然材料复合吸附剂包括以下重量份的组分:改性甲壳素10~20份,海藻酸钠20~40份,生物质碳材料50~80份,膨润土30~45份和微量元素氨基酸螯合物5~10份。
2.根据权利要求1所述的一种天然材料复合吸附剂,其特征在于,所述生物质碳材料包括以下重量份的组分:酸性麦秆15~25份,稻谷秆20~30份和花生壳15~25份。
3.根据权利要求1所述的一种天然材料复合吸附剂,其特征在于,所述改性甲壳素的制备方法为:先将甲壳素脱乙酰化得到壳聚糖,然后将壳聚糖与凝胶因子按照质量比(10~20):1复配制得。
4.根据权利要求3所述的一种天然材料复合吸附剂,其特征在于,所述凝胶因子选自光响应凝胶因子或pH值响应性凝胶因子。
5.根据权利要求1所述的一种天然材料复合吸附剂,其特征在于,所述微量元素氨基酸螯合物为特异氨基酸螯合物蛋氨酸,赖氨酸或甘氨酸。
6.一种如权利要求1或2或3或4或5所述的天然材料复合吸附剂的制备方法,其特征在于,包括以下步骤:
(1)按照上述配比称取原料,将生物质碳材料与膨润土粉碎、混合均匀,得预混料;
(2)将微量元素氨基酸螯合物加入到乙醇溶剂中,然后加入步骤(1)所得的预混料,搅拌均匀,烘干至乙醇混发完毕,制成直径为2~10mm的球形吸附剂生坯;
(3)在步骤(2)所得的球形吸附剂生坯外表面包覆海藻酸钠,低温回火焙烧;
(4)在经过步骤(3)处理后的球形吸附剂生坯表面包裹改性甲壳素,高温焙烧,即得天然材料复合吸附剂。
7.根据权利要求6所述的天然材料复合吸附剂的制备方法,其特征在于,步骤(1)中,所述预混料的粒径控制在0.1~1mm。
8.根据权利要求6所述的天然材料复合吸附剂的制备方法,其特征在于,步骤(3)中,低温回火焙烧的温度为120~180℃,时间为5~8h。
9.根据权利要求6所述的天然材料复合吸附剂的制备方法,其特征在于,步骤(4)中,高温焙烧的温度为800~1000℃,时间为1~3h。
10.一种如权利要求1或2或3或4或5所述的天然材料复合吸附剂在重金属废水处理中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811052729.8A CN109126697B (zh) | 2018-09-10 | 2018-09-10 | 一种天然材料复合吸附剂及其制备方法、应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811052729.8A CN109126697B (zh) | 2018-09-10 | 2018-09-10 | 一种天然材料复合吸附剂及其制备方法、应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109126697A true CN109126697A (zh) | 2019-01-04 |
CN109126697B CN109126697B (zh) | 2021-08-20 |
Family
ID=64824358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811052729.8A Active CN109126697B (zh) | 2018-09-10 | 2018-09-10 | 一种天然材料复合吸附剂及其制备方法、应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109126697B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109833850A (zh) * | 2019-01-14 | 2019-06-04 | 盐城工学院 | 一种甲硫氨酸改性蒙脱石及其制备方法和应用 |
CN110624510A (zh) * | 2019-09-11 | 2019-12-31 | 合肥学院 | 一种复合吸附剂及其用于处理含铬黑t印染废水的方法 |
CN110681371A (zh) * | 2019-09-26 | 2020-01-14 | 浙江海洋大学 | 一种用于去除重金属离子天然吸附剂的制备方法 |
CN110841611A (zh) * | 2019-09-30 | 2020-02-28 | 浙江海洋大学 | 改性贻贝壳对亚甲基蓝的吸附应用 |
CN111040768A (zh) * | 2020-01-02 | 2020-04-21 | 江苏省农业科学院 | 一种膨润土改性水热炭材料的制备及其在面源污染减排的应用 |
CN111729644A (zh) * | 2020-07-31 | 2020-10-02 | 河海大学 | 一种生物炭-膨润土多孔复合球及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111266A (zh) * | 2013-02-27 | 2013-05-22 | 南京工业大学 | 去除水中抗生素的颗粒状吸附剂的制备方法、制得吸附剂及应用 |
CN105176964A (zh) * | 2015-09-17 | 2015-12-23 | 李爱冰 | 一种基于壳聚糖修饰的光敏感天然无机酶固定化载体材料以及制备方法 |
CN105646905A (zh) * | 2016-01-19 | 2016-06-08 | 湖南工业大学 | 一种光、热双敏感快速响应复合凝胶的制备方法 |
CN106824104A (zh) * | 2017-01-04 | 2017-06-13 | 华中科技大学 | 一种复合型重金属吸附剂及其制备方法 |
CN107282019A (zh) * | 2017-07-13 | 2017-10-24 | 韦卓林 | 一种利用谷物壳制备的重金属吸附剂及其制备方法 |
-
2018
- 2018-09-10 CN CN201811052729.8A patent/CN109126697B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103111266A (zh) * | 2013-02-27 | 2013-05-22 | 南京工业大学 | 去除水中抗生素的颗粒状吸附剂的制备方法、制得吸附剂及应用 |
CN105176964A (zh) * | 2015-09-17 | 2015-12-23 | 李爱冰 | 一种基于壳聚糖修饰的光敏感天然无机酶固定化载体材料以及制备方法 |
CN105646905A (zh) * | 2016-01-19 | 2016-06-08 | 湖南工业大学 | 一种光、热双敏感快速响应复合凝胶的制备方法 |
CN106824104A (zh) * | 2017-01-04 | 2017-06-13 | 华中科技大学 | 一种复合型重金属吸附剂及其制备方法 |
CN107282019A (zh) * | 2017-07-13 | 2017-10-24 | 韦卓林 | 一种利用谷物壳制备的重金属吸附剂及其制备方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109833850A (zh) * | 2019-01-14 | 2019-06-04 | 盐城工学院 | 一种甲硫氨酸改性蒙脱石及其制备方法和应用 |
CN110624510A (zh) * | 2019-09-11 | 2019-12-31 | 合肥学院 | 一种复合吸附剂及其用于处理含铬黑t印染废水的方法 |
CN110624510B (zh) * | 2019-09-11 | 2021-10-29 | 合肥学院 | 一种复合吸附剂及其用于处理含铬黑t印染废水的方法 |
CN110681371A (zh) * | 2019-09-26 | 2020-01-14 | 浙江海洋大学 | 一种用于去除重金属离子天然吸附剂的制备方法 |
CN110841611A (zh) * | 2019-09-30 | 2020-02-28 | 浙江海洋大学 | 改性贻贝壳对亚甲基蓝的吸附应用 |
CN110841611B (zh) * | 2019-09-30 | 2021-11-09 | 浙江海洋大学 | 改性贻贝壳对亚甲基蓝的吸附应用 |
CN111040768A (zh) * | 2020-01-02 | 2020-04-21 | 江苏省农业科学院 | 一种膨润土改性水热炭材料的制备及其在面源污染减排的应用 |
CN111729644A (zh) * | 2020-07-31 | 2020-10-02 | 河海大学 | 一种生物炭-膨润土多孔复合球及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109126697B (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109126697A (zh) | 一种天然材料复合吸附剂及其制备方法、应用 | |
Long et al. | Packed bed column studies on lead (II) removal from industrial wastewater by modified Agaricus bisporus | |
Modak et al. | Biosorption of metals using nonliving biomass—a review | |
CN110327882B (zh) | 多位活化及改性芦苇-南荻生物炭的制备方法及应用 | |
Kalyani et al. | Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass | |
Gupta et al. | Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions | |
Cruz et al. | Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass | |
Tunali et al. | Zn (II) biosorption properties of Botrytis cinerea biomass | |
CN105753171A (zh) | 一种处理重金属废水的方法 | |
Bhatti et al. | Removal of lead and cobalt using lignocellulosic fiber derived from Citrus reticulata waste biomass | |
CN106861631A (zh) | 功能化中空介孔二氧化硅纳米微球及其制备方法与在吸附重金属离子中的应用 | |
CN102863045A (zh) | 采用改性壳聚糖吸附剂处理酸性含铀废水的方法 | |
HAQ et al. | Biosorption of Pb (II) and Co (II) on red rose waste biomass | |
Rinanti et al. | Improving biosorption of Cu (II)-ion on artificial wastewater by immobilized biosorbent of tropical microalgae | |
CN114988571A (zh) | 一种用于反硝化菌的碳源载体填料和制备方法 | |
CN102380348A (zh) | 果胶修饰的磁性纳米吸附剂及其制备方法和应用 | |
Kwarciak-Kozłowska et al. | Biosorption of lead from municipal wastewater by alginate beads, free and alginate-immobilized Chlorella vulgaris | |
US7906142B2 (en) | Agropolymer material for use in water purification and a method of producing the same | |
JPH0759197B2 (ja) | 重金属カチオンを含む水溶液の処理方法 | |
Cihangir et al. | Removal of cadmium by Pleurotus sajor‐caju basidiomycetes | |
CN102965312A (zh) | 一种提高细菌重金属吸附能力的修饰方法、吸附剂及其应用 | |
Chhikara et al. | Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass | |
Biswas et al. | Biomass-based absorbents for heavy metal removal | |
Nadeem et al. | Biosorption of Cu (II) ions from aqueous effluents by blackgram bran (BGB) | |
CN103521183A (zh) | 一种处理丙烯腈废水的吸附剂及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |