CN109072347A - 铝、钴、铁和镍的fcc材料及由其制成的产物 - Google Patents
铝、钴、铁和镍的fcc材料及由其制成的产物 Download PDFInfo
- Publication number
- CN109072347A CN109072347A CN201780023230.1A CN201780023230A CN109072347A CN 109072347 A CN109072347 A CN 109072347A CN 201780023230 A CN201780023230 A CN 201780023230A CN 109072347 A CN109072347 A CN 109072347A
- Authority
- CN
- China
- Prior art keywords
- weight
- composition
- alloy bulk
- product
- matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/17—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
- B23K10/027—Welding for purposes other than joining, e.g. build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0093—Welding characterised by the properties of the materials to be welded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Forging (AREA)
Abstract
本公开内容涉及包含Al、Co、Fe和Ni的新材料。新材料可紧低于材料的固相线温度实现面心立方(fcc)固溶体结构的单相场。新材料可包括至少一个沉淀相,并且具有至少1000℃的固溶线温度。新材料可包括4.4‑11.4重量%的Al、4.9‑42.2重量%的Co、4.6‑28.9重量%的Fe和44.1‑86.1重量%的Ni。在一个实施例中,沉淀物选自L12相、B2相及其组合。新合金可实现改进的高温性质。
Description
背景技术
铬镍铁合金625是镍基合金,其标称组成为61重量%的Ni、21.5重量%的Cr、9重量%的Mo和3.6重量%的(Nb+Ta)。铬镍铁合金625具有从低温温度到980℃的高强度和韧性,良好的抗氧化性,疲劳强度和耐腐蚀性。
发明内容
广泛地,本专利申请涉及新的铝-钴-铁-镍材料(“新材料”),其具有紧低于材料的固相线温度的面心立方(fcc)固溶体结构的单相场。新材料可包括至少一个沉淀相,并且具有至少1000℃的固溶线温度。固溶线温度是材料在高温下的强度和热稳定性的指示。一般地,固溶线温度越高,在高温下的强度和热稳定性越高。新材料可包括4.4-11.4重量%的Al、4.9-42.2重量%的Co、4.6-28.9重量%的Fe和44.1-86.1重量%的Ni。在一个实施例中,沉淀物选自L12相、B2相及其组合。沉淀相可通过固态转化过程形成。在一种具体方法中,新材料可包括4.8-10.4重量%的Al、5.4-38.3重量%的Co、5.1-26.3重量%的Fe和49.0-81.9重量%的Ni,允许任选的偶存元素和不可避免的杂质。下文详细描述了与新材料有关的其它方面、方法和实施例。
附图说明
图1是bcc、fcc和hcp晶胞的示意图。
图2a是四元组成图,其以实心圆圈展示本发明合金的非限制性例子。
图2b是一组二元组成图,其以实心圆圈展示本发明合金的非限制性例子。
图3是生产新材料的方法的一个实施例的流程图。
图4是获得具有fcc固溶体结构的锻造产物的方法的一个实施例的流程图,所述固体溶液结构在其中具有一种或多种沉淀物。
具体实施方式
如上所述,本专利申请涉及新的铝-钴-铁-镍材料(“新材料”),其具有紧低于材料的固相线温度的面心立方(fcc)固溶体结构的单相场。如本领域技术人员已知的,并且如图1所示,面心立方(fcc)晶胞具有在立方体的八个拐角各自处的原子加上在立方体的每个面上的一个原子。拐角原子各自是另一个立方体的拐角,因此拐角原子在八个晶胞中是共享的,而面原子与两个单位晶胞是共享的。
由于本文所述的独特组成,新材料可紧低于材料的固相线温度实现fcc固溶体结构的单相场。新材料还可具有高液相线温度和窄平衡冷冻范围(例如,用于限制在凝固期间的微观偏析),使其适合于通过常规铸锭处理以及粉末冶金、成形铸造、增材制造及其组合(混合处理)的生产。新材料可用于高温应用。
新材料一般具有fcc晶体结构,并且包括4.4-11.4重量%的Al、4.9-42.2重量%的Co、4.6-28.9重量%的Fe和44.1-86.1重量的Ni(“合金元素”),其中所述材料包括足够量的Al、Co、Fe和Ni以实现fcc固溶体结构。该材料可由Al、Co、Fe和Ni组成,允许偶存元素和不可避免的杂质。如本文使用的,“偶存元素”包括可用于合金中的晶界改性剂、铸造助剂和/或晶粒结构控制材料,例如碳、硼、锆、铪等等。例如,碳、硼、锆、铪等等中的一种或多种可以足以提供晶界改性的量加入。添加的量应该限制在足以提供晶界改性,而不会例如通过金属间化合物形成不适当地降解材料性质的量。作为一个非限制性例子,至多0.15重量%的C、至多0.15重量%的B、至多0.5重量%的Hf和至多0.5重量%的Zr可加入材料中,条件是添加的量不导致材料性质的不适当降解。新材料的各种组成实施例显示于图2a-2b中。实心圆是本发明合金的非限制性例子。下表1对应于图2a-2b的一些合金,并且包括根据本专利申请有用的合金类型的非限制性例子。合金1-3是第1层合金,合金4-7是第2层合金,合金8是第3层合金,并且剩余合金是第4层合金。
表1
表2-合金层性质
在一种方法中,新材料包括至少一个沉淀相,并且具有至少1000℃的固溶线温度。在这种方法中,新材料可包括4.4-11.4重量%的Al、4.9-42.2重量%的Co、4.6-28.9重量%的Fe和44.1-86.1重量%的Ni。在一个实施例中,沉淀物选自L12相、B2相及其组合。沉淀相可在固态沉淀过程中形成。在一种具体方法中,新材料可包括4.8-10.4重量%的Al、5.4-38.3重量%的Co、5.1-26.3重量%的Fe和49.0-81.9重量%的Ni。
在一种方法中,新材料包括至少一个沉淀相,并且具有至少1100℃的固溶线温度。在这种方法中,新材料可包括4.4-11.4重量%的Al、4.9-18.2重量%的Co、4.6-17.3重量%的Fe和57.4-86.1重量%的Ni。在一个实施例中,沉淀物选自L12相、B2相及其组合。沉淀相可在固态沉淀过程中形成。在一种具体方法中,新材料可包括4.8-10.4重量%的Al、5.4-16.5重量%的Co、5.1-15.7重量%的Fe和63.8-81.9重量%的Ni。在一个实施例中,该材料的非平衡冷冻范围不大于300℃。在另一个实施例中,该材料的非平衡冷冻范围不大于250℃。在另一个实施例中,该材料的非平衡冷冻范围不大于150℃。在另一个实施例中,该材料的非平衡冷冻范围不大于125℃。
在一种方法中,新材料包括至少一个沉淀相,并且具有至少1100℃的固溶线温度,并且材料的非平衡冷冻范围不大于80℃。在这种方法中,新材料可包括6.8-11.4重量%的Al、4.9-12.5重量%的Co、4.8-17.3重量%的Fe和64.1-83.5重量%的Ni。在一个实施例中,沉淀物选自L12相、B2相及其组合。沉淀相可在固态沉淀过程中形成。在一种具体方法中,新材料可包括7.5-10.4重量%的Al、5.5-11.3重量%的Co、5.3-15.7重量%的Fe和71.2-78.7重量%的Ni。
在一种方法中,并且现在参考图3,产生新材料的方法包括以下步骤:(100)加热包含Al、Co、Fe和Ni的混合物,并且在上述组成的范围内,高于混合物的液相线温度,从而形成液体,(200)将混合物从高于液体温度冷却到低于固相线温度,其中由于冷却,混合物形成具有fcc(面心立方)固溶体结构(由于微观偏析可能具有其它相)的固体产物,并且其中混合物包含足够量的Al、Co、Fe和Ni,以实现fcc固溶体结构,和(300)将固体产物冷却至低于混合物的沉淀相的固溶线温度,从而在固体产物的fcc固溶体结构内形成沉淀相,其中混合物包含足够量的Al、Co、Fe和Ni,以实现在fcc固溶体结构内的沉淀相。在一个实施例中,fcc固溶体是由液体形成的第一相。
在一个实施例中,采用材料的受控冷却以促进适当的最终产物的实现。例如,方法可包括(400)将混合物冷却至环境温度的步骤,并且方法可包括在至少冷却步骤(300)和(400)期间控制冷却速率,使得在步骤结束时(400),即,在达到环境温度时,实现无裂纹铸锭。受控冷却可通过例如使用适当的水冷铸模来完成。
如本文使用的,“铸锭”意指任何形状的铸造产物。术语“铸锭”包括铸坯。如本文使用的,“无裂纹铸锭”指足够不含裂纹的铸锭,使得其可用作制造铸锭。如本文使用的,“制造铸锭”意指适合于随后加工成最终产物的铸锭。随后的加工可包括例如经由轧制、锻造、挤压中的任一种的热加工和/或冷加工,以及通过压缩和/或拉伸的应力消除。
在一个实施例中,可适当地处理无裂纹产物,例如无裂纹铸锭,以从该材料获得最终的锻造产物。例如,并且现在参考图3-4,上述图3的步骤(100)-(400)可视为图4中所示的铸造步骤(10),导致上述无裂纹铸锭。在其它实施例中,无裂纹产物可为通过例如成形铸造、增材制造或粉末冶金生产的无裂纹预制件。在任何情况下,可进一步处理无裂纹产物,以获得具有fcc固溶体结构的锻造最终产物,任选地在其中具有一个或多个沉淀相。该进一步处理可包括适当的下述溶解(20)和加工(30)步骤的任何组合,以实现最终产物形式。一旦实现最终产物形式,材料就可沉淀硬化(40),以形成强化沉淀物。例如,最终产物形式可为轧制产物、挤压产物或锻造产物。
继续参考图4,由于铸造步骤(10),铸锭可包括一些第二相颗粒。该方法因此可包括一个或多个溶解步骤(20),其中将铸锭、中间产物形式和/或最终产物形式加热至高于可应用的沉淀物的固溶线温度但低于材料的固相线温度,从而溶解一些或所有第二相颗粒。溶解步骤(20)可包括将材料浸泡足以溶解可应用的第二相颗粒的时间。在浸泡后,可将材料冷却至环境温度用于后续加工。可替代地,在浸泡后,可经由加工步骤(30)立即将材料热加工。
加工步骤(30)一般涉及铸锭和/或中间产物形式的热加工和/或冷加工。例如,热加工和/或冷加工可包括材料的轧制、挤压或锻造。加工(30)可在任何溶解步骤(20)之前和/或之后发生。例如,在溶解步骤(20)结束后,可允许材料冷却至环境温度,然后再加热至适当的温度用于热加工。可替代地,材料可在大约环境温度下冷加工。在一些实施例中,可将材料热加工,冷却至环境温度,然后冷加工。在另外其它实施例中,热加工可在溶解步骤(20)浸泡之后开始,使得对于热加工不需要产物的再加热。
加工步骤(30)可导致第二相颗粒沉淀。在这方面,可适当地利用任何数目的加工后溶解步骤(20),以溶解由于加工步骤(30)可能已形成的一些或所有第二相颗粒。
在任何适当的溶解(20)和加工(30)步骤之后,最终产物形式可为沉淀硬化的(40)。沉淀硬化(40)可包括将最终产物形式加热至高于可应用的沉淀物的固溶线温度,共足以溶解由于加工而沉淀的至少一些第二相颗粒的时间,然后将最终产物形式快速冷却至低于可应用的沉淀物的固溶线温度,从而形成沉淀颗粒。沉淀硬化(40)还包括将产物保持在靶温度下足以形成强化沉淀物的时间,然后将产物冷却至环境温度,从而实现其中具有强化沉淀物的最终老化产物。在一个实施例中,最终老化产物含有≥0.5体积%的强化沉淀物。强化沉淀物优选位于fcc固溶体结构的基质内,从而通过与位错的相互作用对产物赋予强度。
由于新材料的结构和组成,新材料可实现改进的性质组合,例如密度、延展性、强度、断裂韧性、抗氧化性、抗疲劳性、抗蠕变性和耐高温性及其它中的至少两种的改进组合。因此,新材料可用于各种应用,例如用于汽车(客车、卡车及任何其它陆基车辆)和航空航天工业中的高温应用,仅举几例。例如,新材料可用作发动机或其它高温应用中的涡轮机部件。其它部件包括用于发动机的叶片、盘、导叶、环和壳体。在一个实施例中,新材料用于需要在600℃至1000℃或更高温度下操作的应用中。
上述新的fcc材料也可用于生产成形铸造产物或预制件。成形铸造产物是在铸造工艺之后达到其最终产物形式或接近最终产物形式的那些产物。新材料可成形铸造为任何所需形状。在一个实施例中,新材料被成形铸造成汽车或航空航天部件(例如,成形铸造为发动机部件)。在铸造之后,成形铸造产物可经受任何适当的溶解(20)或沉淀硬化(40)步骤,如上所述。在一个实施例中,成形铸造产物基本上由Al、Co、Fe和Ni组成,并且在上述组成的范围内。在一个实施例中,成形铸造产物包括≥0.5体积%的强化沉淀物。
尽管该专利申请一般已描述为涉及其中具有一种或多种上文列举的沉淀相的fcc基质合金材料,但应了解其它硬化相可适用于新的fcc基质合金材料,并且所有这些硬化相(相干或非相干的)可用于本文所述的fcc合金材料。
新fcc材料的增材制造
还能够通过增材制造来制造上述新材料。如本文使用的,“增材制造”意指“从3D模型数据连接材料以制备物体的过程,通常是逐层的,与减材制造方法相反”,如名称为“Standard Terminology for Additively Manufacturing Technologies”的ASTM F2792-12a中限定的。新材料可经由该ASTM标准中描述的任何适当的增材制造技术进行制造,所述技术例如粘结剂喷射、定向能量沉积、材料挤出、材料喷射、粉末床熔化或片材层压及其他。
在一个实施例中,增材制造方法包括沉积一种或多种粉末的相继层,然后选择性地熔融和/或烧结粉末,以逐层产生增材制造主体(产物)。在一个实施例中,增材制造工艺使用选择性激光烧结(SLS)、选择性激光熔融(SLM)和电子束熔融(EBM)及其他中的一种或多种。在一个实施例中,增材制造工艺使用可从EOS GmbH(Robert-Stirling-Ring 1,82152Krailling/Munich,德国)获得的EOSINT M 280直接金属激光烧结(DMLS)增材制造系统或可比较系统。
作为一个例子,包含(或基本上由其组成)合金元素和任何任选的偶存元素,并且在上述组成范围内的原料例如粉末或线材,可用于增材制造仪器中,以产生包含fcc固溶体结构的增材制造主体,任选地在其中具有沉淀相。在一些实施例中,增材制造主体是无裂纹预制件。可将粉末选择性地加热到高于材料的液相线温度,从而形成具有合金元素和任何任选的偶存元素的熔池,随后为熔池的快速凝固。
如上所述,增材制造可用于逐层产生金属产物(例如合金产物),例如经由金属粉末床。在一个实施例中,金属粉末床用于产生产物(例如,定制的合金产物)。如本文使用的,“金属粉末床”等等意指包含金属粉末的床。在增材制造期间,相同或不同组成的颗粒可熔融(例如,快速熔融),然后凝固(例如,在不存在均匀混合的情况下)。因此,可生产具有均匀或非均匀微结构的产物。制备增材制造主体的方法的一个实施例可包括(a)分散包含合金元素和任何任选的偶存元素的粉末,(b)将粉末的一部分选择性地加热(例如,通过激光)至高于待形成的特定主体的液相线温度的温度,(c)形成具有合金元素和任何任选的偶存元素的熔池,和(d)以至少1000℃/秒的冷却速率冷却熔池。在一个实施例中,冷却速率为至少10,000℃/秒。在另一个实施例中,冷却速率为至少100,000℃/秒。在另一个实施例中,冷却速率为至少1,000,000℃/秒。步骤(a)-(d)可根据需要重复,直到主体完成,即,直到形成/完成最终增材制造主体。包含fcc固溶体结构,任选地在其中具有沉淀相的最终增材制造主体,可具有复杂的几何形状,或者可具有简单的几何形状(例如,以片或板的形式)。在生产之后或生产期间,可使增材制造的产物变形(例如,通过轧制、挤出、锻造、拉伸、压缩中的一种或多种)。
用于增材制造新材料的粉末可通过将新材料的材料(例如,铸锭或熔体)雾化成相对于要使用的增材制造工艺的适当尺寸的粉末来生产。如本文使用的,“粉末”意指包含多个颗粒的材料。粉末可在粉末床中使用,以经由增材制造生产定制的合金产物。在一个实施例中,在增材制造工艺自始至终使用相同的通用粉末来生产金属产物。例如,最终定制的金属产物可包括通过在增材制造工艺过程中使用一般相同的金属粉末而生产的单个区域/基质。最终定制的金属产物可替代地可包括至少两个分开产生的不同区域。在一个实施例中,不同的金属粉末床类型可用于生产金属产物。例如,第一金属粉末床可包括第一金属粉末,并且第二金属粉末床可包括不同于第一金属粉末的第二金属粉末。第一金属粉末床可用于生产合金产物的第一层或一部分,并且第二金属粉末床可用于生产合金产物的第二层或一部分。如本文使用的,“颗粒”意指具有适用于粉末床的粉末中的尺寸(例如,5微米至100微米的尺寸)的微小物质碎片。颗粒可例如经由雾化产生。
如上所述,增材制造主体可经受任何适当的溶解(20)、加工(30)和/或沉淀硬化步骤(40)。如果采用的话,则溶解(20)和/或加工(30)步骤可对增材制造主体的中间产物形式进行和/或可对增材制造主体的最终形式进行。如果采用的话,则沉淀硬化步骤(40)一般相对于增材制造主体的最终形式进行。在一个实施例中,增材制造主体基本上由合金元素和任何偶存元素和杂质组成,例如上述材料组成中的任一种,任选地在其中具有≥0.5体积%的沉淀相。
在另一个实施例中,新材料是用于后续加工的预制件。预制件可为铸锭、成形铸件、增材制造产物或粉末冶金产物。在一个实施例中,预制件具有的形状接近于最终产物的最终所需形状,但预制件设计成允许随后的加工以获得最终产物形状。因此,预制件可例如通过锻造、轧制或挤出来加工(30),以生产中间产物或最终产物,所述中间产物或最终产物可经受任何进一步适当的溶解(20)、加工(30)和/或沉淀硬化步骤(40),如上所述,以获得最终产物。在一个实施例中,加工包括高温等静压(热等静压(hipping))以压缩零件。在一个实施例中,可压缩合金预制件并且可减少孔隙度。在一个实施例中,将热等静压温度维持低于合金预制件的初始熔点。在一个实施例中,预制件可为近净形状的产物。
在一种方法中,电子束(EB)或等离子体电弧技术用于生产增材制造主体的至少一部分。电子束技术可促进生产比经由激光增材制造技术容易生产的更大的零件。在一个实施例中,方法包括将小直径金属丝(例如,直径≤2.54mm)进料到电子束枪的送丝器部分。金属丝可具有如上所述的组成。电子束(EB)将金属丝加热到高于待形成的主体的液相线点,随后为熔池的快速凝固(例如,至少100℃/秒),以形成沉积的材料。线材可通过传统的铸锭工艺或通过粉末固结工艺制造。这些步骤可根据需要重复,直到产生最终产物。等离子体电弧焊丝进料可类似地与本文公开的合金一起使用。在未示出的一个实施例中,电子束(EB)或等离子体电弧增材制造仪器可采用具有相应的多重不同辐射源的多个不同线材,所述线材和源各自被适当地进料且激活,以提供具有含有合金元素和任何任选的偶存元素的金属基质的产物。
在另一种方法中,方法可包括(a)将一种或多种金属粉末选择性地朝向建筑基材或在建筑基材上喷射,(b)经由辐射源加热金属粉末和任选的建筑基材,高于待形成的产物的液相线温度,从而形成熔池,(c)冷却熔池,从而形成金属产物的固体部分,其中所述冷却包括以至少100℃/秒的冷却速率冷却。在一个实施例中,冷却速率为至少1000℃/秒。在另一个实施例中,冷却速率为至少10,000℃/秒。冷却步骤(c)可通过将辐射源移动远离熔池和/或通过将具有熔池的建筑基材移动远离辐射源来完成。步骤(a)-(c)可根据需要重复,直至金属产物完成。喷射步骤(a)可经由一个或多个喷嘴来完成,并且金属粉末的组成可适当地改变,以提供具有金属基质的定制的最终金属产物,所述金属基质具有合金元素和任何任选的偶存元素。通过在不同喷嘴中使用不同的粉末和/或通过实时改变提供给任何一个喷嘴的粉末组成,可实时改变在任何时间加热的金属粉末的组成。工件可为任何合适的基材。在一个实施例中,建筑基材本身是金属产物(例如合金产物)。
如上所述,焊接可用于生产金属产物(例如,以生产合金产物)。在一个实施例中,通过以不同组成的多种金属组分的形式施加到前体材料的熔融操作来生产产物。前体材料可相对于彼此并置存在,以允许同时熔融和混合。在一个例子中,熔融在电弧焊接的过程中发生。在另一个例子中,可在增材制造期间通过激光或电子束进行熔融。熔融加工导致多个金属组分在熔融状态下混合,并且形成例如以合金形式的金属产物。前体材料可以多个物理上分开的形式提供,例如不同组成的金属或金属合金的多个细长股线或纤维、或者第一组成的细长股线或管和例如包含在管内第二组成的相邻粉末、或者具有一个或多个熔覆层的股线。前体材料可形成为结构,例如,具有多根股线或纤维的绞合或编织电缆或线材、或者具有外壳和包含在其内腔中的粉末的管。然后可处理该结构以使其一部分(例如尖端)经受熔融操作,例如,通过将其用作焊接电极或用作增材制造的原料。当如此使用时,结构及其组分前体材料可熔融,例如以连续或离散工艺熔融,以形成沉积用于增材制造的材料线或点的焊缝。
在一个实施例中,金属产物是插入在材料或焊接材料之间并且将其连接的焊接主体或填料,例如相同或不同材料的两个主体或具有填料至少部分填充的小孔的单个材料的主体。在另一个实施例中,填料显示出相对于其与之焊接的材料改变组成的过渡区,使得所得组合可视为合金产物。
新fcc材料基本上由fcc固溶体结构组成
虽然上述公开内容一般描述了如何生产其中具有沉淀相的新fcc材料,但还能够生产基本上由fcc固溶体结构组成的材料。例如,在如上所述生产铸锭、锻造主体、成形铸件或增材制造主体之后,可例如以相对于上文溶解步骤(20)所述的方式将材料均质化。通过适当的快速冷却,可抑制/限制任何第二相颗粒的沉淀,从而实现基本上不含任何第二相颗粒的fcc固溶体材料,即基本上由fcc固溶体结构组成的材料。
虽然已详细描述了本文描述的新技术的各种实施例,但显而易见本领域技术人员将想到那些实施例的修改和适应。然而,应明确地理解,此类修改和适应在本公开技术的精神和范围内。
Claims (33)
1.一种物质组合物,其包含:
4.4-11.4重量%的Al;
4.9-42.2重量%的Co;
4.6-28.9重量%的Fe;和
44.1-86.1重量%的Ni;
余量是任何任选的偶存元素和杂质。
2.根据权利要求1所述的物质组合物,其中所述偶存元素包含至多0.15重量%的C、至多0.15重量%的B、至多0.5重量%的Hf和至多0.5重量%的Zr。
3.根据权利要求1所述的物质组合物,其中所述物质组合物包含4.9-18.2重量%的Co、4.6-17.3重量%的Fe和57.4-86.1重量%的Ni。
4.根据权利要求1所述的物质组合物,其中所述物质组合物包含6.8-11.4重量%的Al、4.9-12.5重量%的Co、4.8-17.3重量%的Fe和64.1-83.5重量%的Ni。
5.根据权利要求1所述的物质组合物,其中所述物质组合物包含4.8-10.4重量%的Al、5.4-38.3重量%的Co、5.1-26.3重量%的Fe和49.0-81.9重量%的Ni。
6.根据权利要求5所述的物质组合物,其中所述物质组合物包含5.4-16.5重量%的Co、5.1-15.7重量%的Fe和63.8-81.9重量%的Ni。
7.根据权利要求1所述的物质组合物,其中所述物质组合物包含7.5-10.4重量%的Al、5.5-11.3重量%的Co、5.3-15.7重量%的Fe和71.2-78.7重量%的Ni。
8.一种合金主体,其包含根据权利要求1-7所述的任何物质组合物。
9.根据权利要求8所述的合金主体,其中所述合金主体以航空航天或汽车部件的形式。
10.根据权利要求9所述的航空航天部件,其中所述航空航天或汽车部件是涡轮机。
11.根据权利要求8所述的合金主体,其中所述合金主体包括密度、延展性、强度、断裂韧性、抗氧化性、抗疲劳性、抗蠕变性和耐高温性中的至少两种的改进组合。
12.根据权利要求8所述的合金主体,其中所述合金主体为铸锭的形式。
13.根据权利要求8所述的合金主体,其中所述合金主体为轧制产物的形式。
14.根据权利要求8所述的合金主体,其中所述合金主体为挤出物的形式。
15.根据权利要求8所述的合金主体,其中所述合金主体为锻件的形式。
16.根据权利要求8所述的合金主体,其中所述合金主体为成形铸件的形式。
17.根据权利要求8所述的合金主体,其中所述合金主体为增材制造产物的形式。
18.一种方法,其包括:
(a)在增材制造仪器中使用原料,其中所述原料包含:
4.4-11.4重量%的Al;
4.9-42.2重量%的Co;
4.6-28.9重量%的Fe;和
44.1-86.1重量%的Ni;
(b)使用所述原料在所述增材制造仪器中生产金属产物。
19.根据权利要求18所述的方法,其中所述原料包含粉末原料,其中所述方法包括:
(a)将所述粉末原料的金属粉末分散在床中和/或将所述粉末原料的金属粉末朝向基材或在基材上喷射;
(b)将所述金属粉末的一部分选择性加热到高于其液相线温度,从而形成熔池;
(c)冷却所述熔池,从而形成所述金属产物的一部分,其中所述冷却包括以至少100℃/秒的冷却速率冷却;和
(d)重复步骤(a)-(c)直至所述金属产物完成,其中所述金属产物包含金属基质,其中所述Al、Co、Fe和Ni构成所述基质。
20.根据权利要求19所述的方法,其中所述加热包括用辐射源加热,并且其中所述冷却速率为至少1000℃/秒。
21.根据权利要求18所述的方法,其中所述原料包括线材,其中所述方法包括:
(a)使用辐射源将所述线材原料加热到高于其液相线点,从而形成熔池,其中所述熔池包含Al、Co、Fe和Ni;
(b)以至少1000℃/秒的冷却速度冷却所述熔池;和
(c)重复步骤(a)-(b)直至所述金属产物完成,其中所述金属产物包含金属基质,其中所述Al、Co、Fe和Ni构成所述基质。
22.根据权利要求19-21中任一项所述的方法,其包括:
其中所述冷却速率足以形成至少一个沉淀相。
23.根据权利要求22所述的方法,其中所述至少一个沉淀相包含L12和B2中的至少一种。
24.根据权利要求22-23中任一项所述的方法,其中所述金属产物包含至少0.5体积%的所述沉淀相。
25.根据权利要求18所述的方法,其中所述增材制造仪器包括粘结剂喷射仪器。
26.根据权利要求18所述的方法,其中所述增材制造仪器是定向能量沉积仪器。
27.根据权利要求26所述的方法,其中所述定向能量沉积仪器包括电子束仪器或等离子体电弧仪器。
28.根据权利要求18所述的方法,其包括:
加工所述金属产物。
29.根据权利要求28所述的方法,其中所述金属产物是最终增材制造主体,并且其中所述加工是所述最终增材制造主体的加工。
30.根据权利要求28所述的方法,其中所述生产步骤包括:
首先使用所述原料生产所述金属产物的一部分;
其次使用所述原料生产所述金属产物的另一部分;
其中所述加工至少在所述第一生产步骤或第二生产步骤之后发生。
31.根据权利要求30所述的方法,其中所述加工在所述第一生产步骤和所述第二生产步骤之间发生。
32.根据权利要求28-31中任一项所述的方法,其中所述加工包括热等静压。
33.根据权利要求28-31中任一项所述的方法,其中所述加工包括轧制、锻造和挤出中的一种或多种。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662325048P | 2016-04-20 | 2016-04-20 | |
US62/325,048 | 2016-04-20 | ||
PCT/US2017/028427 WO2017184771A1 (en) | 2016-04-20 | 2017-04-19 | Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109072347A true CN109072347A (zh) | 2018-12-21 |
Family
ID=60089970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780023230.1A Pending CN109072347A (zh) | 2016-04-20 | 2017-04-19 | 铝、钴、铁和镍的fcc材料及由其制成的产物 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10202673B2 (zh) |
EP (1) | EP3445881A4 (zh) |
JP (1) | JP2019516011A (zh) |
KR (1) | KR20180115344A (zh) |
CN (1) | CN109072347A (zh) |
CA (1) | CA3016761A1 (zh) |
WO (1) | WO2017184771A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111044443A (zh) * | 2019-12-14 | 2020-04-21 | 上海交通大学 | 基于相场法的瞬态双相不锈钢微电偶腐蚀过程模拟方法 |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015175892A1 (en) | 2014-05-16 | 2015-11-19 | Divergent Microfactories, Inc. | Modular formed nodes for vehicle chassis and their methods of use |
AU2015284265A1 (en) | 2014-07-02 | 2017-02-16 | Divergent Technologies, Inc. | Systems and methods for fabricating joint members |
CN109311070A (zh) | 2016-06-09 | 2019-02-05 | 戴弗根特技术有限公司 | 用于弧形件和节点的设计和制造的系统及方法 |
US10759090B2 (en) | 2017-02-10 | 2020-09-01 | Divergent Technologies, Inc. | Methods for producing panels using 3D-printed tooling shells |
US11155005B2 (en) | 2017-02-10 | 2021-10-26 | Divergent Technologies, Inc. | 3D-printed tooling and methods for producing same |
US10898968B2 (en) | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
US10703419B2 (en) | 2017-05-19 | 2020-07-07 | Divergent Technologies, Inc. | Apparatus and methods for joining panels |
US11358337B2 (en) | 2017-05-24 | 2022-06-14 | Divergent Technologies, Inc. | Robotic assembly of transport structures using on-site additive manufacturing |
US11123973B2 (en) | 2017-06-07 | 2021-09-21 | Divergent Technologies, Inc. | Interconnected deflectable panel and node |
US10919230B2 (en) | 2017-06-09 | 2021-02-16 | Divergent Technologies, Inc. | Node with co-printed interconnect and methods for producing same |
US10781846B2 (en) | 2017-06-19 | 2020-09-22 | Divergent Technologies, Inc. | 3-D-printed components including fasteners and methods for producing same |
US10994876B2 (en) | 2017-06-30 | 2021-05-04 | Divergent Technologies, Inc. | Automated wrapping of components in transport structures |
US11022375B2 (en) | 2017-07-06 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing microtube heat exchangers |
US10895315B2 (en) | 2017-07-07 | 2021-01-19 | Divergent Technologies, Inc. | Systems and methods for implementing node to node connections in mechanized assemblies |
US10940609B2 (en) | 2017-07-25 | 2021-03-09 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured endoskeleton-based transport structures |
US10751800B2 (en) | 2017-07-25 | 2020-08-25 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured exoskeleton-based transport structures |
US10605285B2 (en) | 2017-08-08 | 2020-03-31 | Divergent Technologies, Inc. | Systems and methods for joining node and tube structures |
US10357959B2 (en) | 2017-08-15 | 2019-07-23 | Divergent Technologies, Inc. | Methods and apparatus for additively manufactured identification features |
US11306751B2 (en) | 2017-08-31 | 2022-04-19 | Divergent Technologies, Inc. | Apparatus and methods for connecting tubes in transport structures |
US10960611B2 (en) | 2017-09-06 | 2021-03-30 | Divergent Technologies, Inc. | Methods and apparatuses for universal interface between parts in transport structures |
US11292058B2 (en) | 2017-09-12 | 2022-04-05 | Divergent Technologies, Inc. | Apparatus and methods for optimization of powder removal features in additively manufactured components |
US10814564B2 (en) | 2017-10-11 | 2020-10-27 | Divergent Technologies, Inc. | Composite material inlay in additively manufactured structures |
US10668816B2 (en) | 2017-10-11 | 2020-06-02 | Divergent Technologies, Inc. | Solar extended range electric vehicle with panel deployment and emitter tracking |
WO2019089736A1 (en) | 2017-10-31 | 2019-05-09 | Arconic Inc. | Improved aluminum alloys, and methods for producing the same |
US11786971B2 (en) | 2017-11-10 | 2023-10-17 | Divergent Technologies, Inc. | Structures and methods for high volume production of complex structures using interface nodes |
US10926599B2 (en) | 2017-12-01 | 2021-02-23 | Divergent Technologies, Inc. | Suspension systems using hydraulic dampers |
US11110514B2 (en) | 2017-12-14 | 2021-09-07 | Divergent Technologies, Inc. | Apparatus and methods for connecting nodes to tubes in transport structures |
US11085473B2 (en) | 2017-12-22 | 2021-08-10 | Divergent Technologies, Inc. | Methods and apparatus for forming node to panel joints |
US11534828B2 (en) | 2017-12-27 | 2022-12-27 | Divergent Technologies, Inc. | Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits |
US11420262B2 (en) | 2018-01-31 | 2022-08-23 | Divergent Technologies, Inc. | Systems and methods for co-casting of additively manufactured interface nodes |
US10751934B2 (en) | 2018-02-01 | 2020-08-25 | Divergent Technologies, Inc. | Apparatus and methods for additive manufacturing with variable extruder profiles |
US11224943B2 (en) | 2018-03-07 | 2022-01-18 | Divergent Technologies, Inc. | Variable beam geometry laser-based powder bed fusion |
US11267236B2 (en) | 2018-03-16 | 2022-03-08 | Divergent Technologies, Inc. | Single shear joint for node-to-node connections |
US11872689B2 (en) | 2018-03-19 | 2024-01-16 | Divergent Technologies, Inc. | End effector features for additively manufactured components |
US11254381B2 (en) | 2018-03-19 | 2022-02-22 | Divergent Technologies, Inc. | Manufacturing cell based vehicle manufacturing system and method |
US11408216B2 (en) | 2018-03-20 | 2022-08-09 | Divergent Technologies, Inc. | Systems and methods for co-printed or concurrently assembled hinge structures |
US11613078B2 (en) | 2018-04-20 | 2023-03-28 | Divergent Technologies, Inc. | Apparatus and methods for additively manufacturing adhesive inlet and outlet ports |
US11214317B2 (en) | 2018-04-24 | 2022-01-04 | Divergent Technologies, Inc. | Systems and methods for joining nodes and other structures |
US11020800B2 (en) | 2018-05-01 | 2021-06-01 | Divergent Technologies, Inc. | Apparatus and methods for sealing powder holes in additively manufactured parts |
US10682821B2 (en) | 2018-05-01 | 2020-06-16 | Divergent Technologies, Inc. | Flexible tooling system and method for manufacturing of composite structures |
US11389816B2 (en) | 2018-05-09 | 2022-07-19 | Divergent Technologies, Inc. | Multi-circuit single port design in additively manufactured node |
US10691104B2 (en) | 2018-05-16 | 2020-06-23 | Divergent Technologies, Inc. | Additively manufacturing structures for increased spray forming resolution or increased fatigue life |
US11590727B2 (en) | 2018-05-21 | 2023-02-28 | Divergent Technologies, Inc. | Custom additively manufactured core structures |
US11441586B2 (en) | 2018-05-25 | 2022-09-13 | Divergent Technologies, Inc. | Apparatus for injecting fluids in node based connections |
US11035511B2 (en) | 2018-06-05 | 2021-06-15 | Divergent Technologies, Inc. | Quick-change end effector |
US11292056B2 (en) | 2018-07-06 | 2022-04-05 | Divergent Technologies, Inc. | Cold-spray nozzle |
US11269311B2 (en) | 2018-07-26 | 2022-03-08 | Divergent Technologies, Inc. | Spray forming structural joints |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US10836120B2 (en) | 2018-08-27 | 2020-11-17 | Divergent Technologies, Inc . | Hybrid composite structures with integrated 3-D printed elements |
US11433557B2 (en) | 2018-08-28 | 2022-09-06 | Divergent Technologies, Inc. | Buffer block apparatuses and supporting apparatuses |
US11826953B2 (en) | 2018-09-12 | 2023-11-28 | Divergent Technologies, Inc. | Surrogate supports in additive manufacturing |
US11072371B2 (en) | 2018-10-05 | 2021-07-27 | Divergent Technologies, Inc. | Apparatus and methods for additively manufactured structures with augmented energy absorption properties |
US11260582B2 (en) | 2018-10-16 | 2022-03-01 | Divergent Technologies, Inc. | Methods and apparatus for manufacturing optimized panels and other composite structures |
US12115583B2 (en) | 2018-11-08 | 2024-10-15 | Divergent Technologies, Inc. | Systems and methods for adhesive-based part retention features in additively manufactured structures |
US11504912B2 (en) | 2018-11-20 | 2022-11-22 | Divergent Technologies, Inc. | Selective end effector modular attachment device |
USD911222S1 (en) | 2018-11-21 | 2021-02-23 | Divergent Technologies, Inc. | Vehicle and/or replica |
US10663110B1 (en) | 2018-12-17 | 2020-05-26 | Divergent Technologies, Inc. | Metrology apparatus to facilitate capture of metrology data |
US11529741B2 (en) | 2018-12-17 | 2022-12-20 | Divergent Technologies, Inc. | System and method for positioning one or more robotic apparatuses |
US11449021B2 (en) | 2018-12-17 | 2022-09-20 | Divergent Technologies, Inc. | Systems and methods for high accuracy fixtureless assembly |
US11885000B2 (en) | 2018-12-21 | 2024-01-30 | Divergent Technologies, Inc. | In situ thermal treatment for PBF systems |
EP3927860A4 (en) | 2019-02-20 | 2022-11-23 | Howmet Aerospace Inc. | ENHANCED ALUMINUM-MAGNESIUM-ZINC ALLOYS |
US11203240B2 (en) | 2019-04-19 | 2021-12-21 | Divergent Technologies, Inc. | Wishbone style control arm assemblies and methods for producing same |
US11912339B2 (en) | 2020-01-10 | 2024-02-27 | Divergent Technologies, Inc. | 3-D printed chassis structure with self-supporting ribs |
US11590703B2 (en) | 2020-01-24 | 2023-02-28 | Divergent Technologies, Inc. | Infrared radiation sensing and beam control in electron beam additive manufacturing |
US11884025B2 (en) | 2020-02-14 | 2024-01-30 | Divergent Technologies, Inc. | Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations |
US11479015B2 (en) | 2020-02-14 | 2022-10-25 | Divergent Technologies, Inc. | Custom formed panels for transport structures and methods for assembling same |
US11535322B2 (en) | 2020-02-25 | 2022-12-27 | Divergent Technologies, Inc. | Omni-positional adhesion device |
US11421577B2 (en) | 2020-02-25 | 2022-08-23 | Divergent Technologies, Inc. | Exhaust headers with integrated heat shielding and thermal syphoning |
US11413686B2 (en) | 2020-03-06 | 2022-08-16 | Divergent Technologies, Inc. | Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components |
WO2021252686A1 (en) | 2020-06-10 | 2021-12-16 | Divergent Technologies, Inc. | Adaptive production system |
US11850804B2 (en) | 2020-07-28 | 2023-12-26 | Divergent Technologies, Inc. | Radiation-enabled retention features for fixtureless assembly of node-based structures |
US11806941B2 (en) | 2020-08-21 | 2023-11-07 | Divergent Technologies, Inc. | Mechanical part retention features for additively manufactured structures |
CN116669885A (zh) | 2020-09-22 | 2023-08-29 | 戴弗根特技术有限公司 | 用于球磨以生产用于增材制造的粉末的方法和设备 |
US12083596B2 (en) | 2020-12-21 | 2024-09-10 | Divergent Technologies, Inc. | Thermal elements for disassembly of node-based adhesively bonded structures |
US11872626B2 (en) | 2020-12-24 | 2024-01-16 | Divergent Technologies, Inc. | Systems and methods for floating pin joint design |
US11947335B2 (en) | 2020-12-30 | 2024-04-02 | Divergent Technologies, Inc. | Multi-component structure optimization for combining 3-D printed and commercially available parts |
US11928966B2 (en) | 2021-01-13 | 2024-03-12 | Divergent Technologies, Inc. | Virtual railroad |
US20220288850A1 (en) | 2021-03-09 | 2022-09-15 | Divergent Technologies, Inc. | Rotational additive manufacturing systems and methods |
WO2022226411A1 (en) | 2021-04-23 | 2022-10-27 | Divergent Technologies, Inc. | Removal of supports, and other materials from surface, and within hollow 3d printed parts |
US11865617B2 (en) | 2021-08-25 | 2024-01-09 | Divergent Technologies, Inc. | Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities |
CN116103540B (zh) * | 2022-11-18 | 2024-04-26 | 西北工业大学 | 一种具有特殊多相结构的AlCoFeNi共晶高熵合金及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1053094A (zh) * | 1989-12-15 | 1991-07-17 | 英科合金国际有限公司 | 抗氧化的低膨胀高温合金 |
RU2034085C1 (ru) * | 1991-04-17 | 1995-04-30 | Всероссийский научно-исследовательский институт авиационных материалов | ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al |
JPH09148049A (ja) * | 1995-11-17 | 1997-06-06 | Hitachi Electron Eng Co Ltd | プラズマcvd装置用加熱ヒータ |
JP2003201544A (ja) * | 2002-01-08 | 2003-07-18 | Hitachi Metals Ltd | 快削性低熱膨張材料 |
JP2010248603A (ja) * | 2009-04-20 | 2010-11-04 | Hitachi Metals Ltd | Fe−Co−Ni系合金スパッタリングターゲット材の製造方法 |
CN102234732A (zh) * | 2010-04-29 | 2011-11-09 | 通用电气公司 | 钴镍超合金及相关制品 |
CN103510996A (zh) * | 2012-06-22 | 2014-01-15 | 株式会社日立制作所 | 涡轮转子及其制造方法和使用其的蒸汽涡轮发动机 |
CN103624257A (zh) * | 2012-08-21 | 2014-03-12 | 阿尔斯通技术有限公司 | 制造三维制品的方法 |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63266036A (ja) * | 1987-04-24 | 1988-11-02 | Mitsubishi Heavy Ind Ltd | Ni基合金 |
US6555252B2 (en) | 2000-03-18 | 2003-04-29 | Board Of Regents Of The University Of Nebraska | Extremely high density magnetic recording media, with production methodology controlled longitudinal/perpendicular orientation, grain size and coercivity |
US6372181B1 (en) | 2000-08-24 | 2002-04-16 | Inco Alloys International, Inc. | Low cost, corrosion and heat resistant alloy for diesel engine valves |
US20020159914A1 (en) | 2000-11-07 | 2002-10-31 | Jien-Wei Yeh | High-entropy multielement alloys |
US20030010411A1 (en) | 2001-04-30 | 2003-01-16 | David Mitlin | Al-Cu-Si-Ge alloys |
BR0117169B1 (pt) | 2001-11-13 | 2009-05-05 | método de fabricar produto por meio de metalurgia lìquida, método para fabricar peças fundidas e produtos metálicos. | |
US20030108721A1 (en) | 2001-12-11 | 2003-06-12 | Fullerton Eric E. | Thermally - assisted magnetic recording disk with recording layer exchange- coupled to antiferromagnetic-to-ferromagnetic switching layer |
US6838190B2 (en) | 2001-12-20 | 2005-01-04 | General Electric Company | Article with intermediate layer and protective layer, and its fabrication |
US6921510B2 (en) | 2003-01-22 | 2005-07-26 | General Electric Company | Method for preparing an article having a dispersoid distributed in a metallic matrix |
WO2004044249A2 (en) | 2002-11-13 | 2004-05-27 | Iowa State University Research Foundation, Inc. | Intermetallic articles of manufacture having high room temperature ductility |
US7413620B2 (en) | 2002-11-20 | 2008-08-19 | General Electric Company | Electron beam welding to join gamma titanium aluminide articles |
US7510680B2 (en) | 2002-12-13 | 2009-03-31 | General Electric Company | Method for producing a metallic alloy by dissolution, oxidation and chemical reduction |
US7001443B2 (en) | 2002-12-23 | 2006-02-21 | General Electric Company | Method for producing a metallic alloy by the oxidation and chemical reduction of gaseous non-oxide precursor compounds |
US6968990B2 (en) | 2003-01-23 | 2005-11-29 | General Electric Company | Fabrication and utilization of metallic powder prepared without melting |
AU2003902785A0 (en) | 2003-06-04 | 2003-06-19 | Microtechnology Centre Management Limited | Magnetic nanoparticles |
US7282278B1 (en) | 2003-07-02 | 2007-10-16 | Seagate Technology Llc | Tilted recording media with L10 magnetic layer |
US7433162B2 (en) | 2004-03-02 | 2008-10-07 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive sensor with antiferromagnetic exchange-coupled structure formed by use of chemical-ordering enhancement layer |
US7339769B2 (en) | 2004-03-02 | 2008-03-04 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive sensor with antiferromagnetic exchange-coupled structure having underlayer for enhancing chemical-ordering in the antiferromagnetic layer |
US7199984B2 (en) | 2004-03-16 | 2007-04-03 | Hitachi Global Storage Technologies Netherlands B.V. | Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling |
WO2005113175A2 (en) | 2004-05-21 | 2005-12-01 | Colorado School Of Mines | Functionally graded alumina-based thin film systems |
US7405011B2 (en) | 2004-06-30 | 2008-07-29 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic recording media for tilted recording |
US20060172142A1 (en) | 2004-07-30 | 2006-08-03 | Olson Gregory B | Oxidation resistant niobium based alloys |
JP4500916B2 (ja) | 2004-09-28 | 2010-07-14 | 国立大学法人 熊本大学 | マグネシウム合金及びその製造方法 |
US7298597B2 (en) | 2005-03-29 | 2007-11-20 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive sensor based on spin accumulation effect with free layer stabilized by in-stack orthogonal magnetic coupling |
FR2894986B1 (fr) | 2005-12-16 | 2008-05-02 | Centre Nat Rech Scient | Preparation d'un materiau comprenant un melange de nanoparticules de metal noble et de nanoparticules d'oxyde de terres rare |
JP2007280828A (ja) | 2006-04-10 | 2007-10-25 | Hitachi Ltd | 燃料電池用カーボン担体、燃料電池用電極材、それを用いた膜電極接合体、燃料電池、燃料電池電源システム及び電子機器 |
DE102006021940A1 (de) | 2006-05-11 | 2007-11-22 | Forschungszentrum Karlsruhe Gmbh | Element, Verfahren zu seiner Herstellung und seine Verwendung |
US7924182B2 (en) * | 2006-07-21 | 2011-04-12 | Cap Epsilon, Inc. | Typeless representation of alphanumeric symbols |
TWI315345B (en) | 2006-07-28 | 2009-10-01 | Nat Univ Tsing Hua | High-temperature resistant alloys |
FR2905707B1 (fr) | 2006-09-08 | 2009-01-23 | Centre Nat Rech Scient | Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince. |
US8529710B2 (en) * | 2006-10-11 | 2013-09-10 | Japan Science And Technology Agency | High-strength co-based alloy with enhanced workability and process for producing the same |
US20080100964A1 (en) | 2006-10-26 | 2008-05-01 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic recording system with medium having antiferromagnetic-to- ferromagnetic transition layer exchange-coupled to recording layer |
US7905965B2 (en) | 2006-11-28 | 2011-03-15 | General Electric Company | Method for making soft magnetic material having fine grain structure |
TWI317954B (en) | 2006-12-22 | 2009-12-01 | Ind Tech Res Inst | Soft magnetism thin film inductor and magnetic multi-element alloy film |
US8152711B2 (en) | 2007-03-21 | 2012-04-10 | Yossi Gross | Implantable peristaltic pump to treat erectile dysfunction |
US7766953B2 (en) | 2007-05-16 | 2010-08-03 | Med Institute, Inc. | Deployment system for an expandable stent |
US20090081074A1 (en) | 2007-06-07 | 2009-03-26 | Celso Antonio Barbosa | Wear resistant alloy for high temprature applications |
US20090081073A1 (en) | 2007-06-07 | 2009-03-26 | Celso Antonio Barbosa | Alloys with high corrosion resistance for engine valve applications |
TWI347978B (en) | 2007-09-19 | 2011-09-01 | Ind Tech Res Inst | Ultra-hard composite material and method for manufacturing the same |
TW200917240A (en) | 2007-10-05 | 2009-04-16 | Sheng-Chi Chen | Perpendicular magnetic recording film and method of fabricating the same |
TWM334129U (en) | 2007-12-13 | 2008-06-11 | Nat Univ Chin Yi Technology | Target structure of high-entropy alloys |
US20100009050A1 (en) * | 2008-07-14 | 2010-01-14 | George Kashou | Omelet in a pita pocket bread |
US8220563B2 (en) | 2008-08-20 | 2012-07-17 | Exxonmobil Research And Engineering Company | Ultra-low friction coatings for drill stem assemblies |
US8602113B2 (en) | 2008-08-20 | 2013-12-10 | Exxonmobil Research And Engineering Company | Coated oil and gas well production devices |
US8261841B2 (en) | 2009-02-17 | 2012-09-11 | Exxonmobil Research And Engineering Company | Coated oil and gas well production devices |
US8286715B2 (en) | 2008-08-20 | 2012-10-16 | Exxonmobil Research And Engineering Company | Coated sleeved oil and gas well production devices |
JP5394036B2 (ja) * | 2008-10-15 | 2014-01-22 | デルタ工業株式会社 | 車両用シート |
US20100132408A1 (en) | 2008-12-01 | 2010-06-03 | Saint-Gobain Coating Solution | Coating for a device for forming glass products |
US8337584B2 (en) | 2008-12-01 | 2012-12-25 | Saint-Gobain Coating Solution | Coating for a device for forming glass products |
US8561707B2 (en) | 2009-08-18 | 2013-10-22 | Exxonmobil Research And Engineering Company | Ultra-low friction coatings for drill stem assemblies |
US20110162751A1 (en) | 2009-12-23 | 2011-07-07 | Exxonmobil Research And Engineering Company | Protective Coatings for Petrochemical and Chemical Industry Equipment and Devices |
US8590627B2 (en) | 2010-02-22 | 2013-11-26 | Exxonmobil Research And Engineering Company | Coated sleeved oil and gas well production devices |
EP2575675A4 (en) | 2010-05-25 | 2015-07-29 | Univ California | FLUX REFRIGERATOR WITH ULTRAGERING BREAKING RANGE COVERAGE FOR THE TREATMENT OF ANEURYSMS AND VASCULAR DISEASES |
WO2011156825A2 (en) | 2010-06-08 | 2011-12-15 | Yale University | Bulk metallic glass nanowires for use in energy conversion and storage devices |
US9045335B2 (en) | 2010-08-18 | 2015-06-02 | The Governors Of The University Of Alberta | Kinetic stabilization of magnesium hydride |
TWI402357B (zh) | 2010-09-16 | 2013-07-21 | Nat Univ Tsing Hua | 儲氫合金 |
US20120147718A1 (en) | 2010-12-09 | 2012-06-14 | Olav Hellwig | PATTERNED PERPENDICULAR MAGNETIC RECORDING MEDIUM WITH EXCHANGE-COUPLED COMPOSITE RECORDING STRUCTURE OF A FePt LAYER AND A Co/X MULTILAYER |
US8789254B2 (en) | 2011-01-17 | 2014-07-29 | Ati Properties, Inc. | Modifying hot workability of metal alloys via surface coating |
JP5346348B2 (ja) | 2011-02-23 | 2013-11-20 | 株式会社日立製作所 | 磁気記録媒体、磁気記録装置 |
US9126292B2 (en) | 2011-03-28 | 2015-09-08 | General Electric Company | Method and device for coating turbine components |
US20120251842A1 (en) | 2011-03-31 | 2012-10-04 | Wd Media, Inc. | Low roughness heatsink design for heat assisted magnetic recording media |
EP2527480B1 (de) | 2011-05-27 | 2017-05-03 | H.C. Starck GmbH | NiFe-Binder mit universeller Einsetzbarkeit |
US9724494B2 (en) | 2011-06-29 | 2017-08-08 | Abbott Cardiovascular Systems, Inc. | Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor |
WO2013010173A1 (en) | 2011-07-14 | 2013-01-17 | Northeastern University | Rare earth-free permanent magnetic material |
US8399051B1 (en) | 2011-09-29 | 2013-03-19 | HGST Netherlands B.V. | Method for making a patterned perpendicular magnetic recording disk having a FePt or CoPt chemically ordered recording layer |
FR2981803B1 (fr) | 2011-10-20 | 2016-01-08 | Alcatel Lucent | Structure optique integree comportant un isolateur optique |
US9150945B2 (en) | 2011-10-27 | 2015-10-06 | Ut-Battelle, Llc | Multi-component solid solution alloys having high mixing entropy |
WO2013087997A1 (fr) | 2011-12-16 | 2013-06-20 | Aperam | Procédé de fabrication d'une bande mince en alliage magnétique doux et bande obtenue |
DE112011105969T5 (de) | 2011-12-19 | 2014-09-25 | Toyota Jidosha Kabushiki Kaisha | Lithiumsekundärbatterie |
CA2778865A1 (en) | 2012-05-25 | 2013-11-25 | Hydro-Quebec | Alloys of the type fe3aita(ru) and use thereof as electrode material for the synthesis of sodium chlorate |
US9169538B2 (en) | 2012-05-31 | 2015-10-27 | National Tsing Hua University | Alloy material with constant electrical resistivity, applications and method for producing the same |
WO2014055609A1 (en) | 2012-10-03 | 2014-04-10 | The University Of Toledo | Minimally invasive thrombectomy invention |
US9636485B2 (en) | 2013-01-17 | 2017-05-02 | Abbott Cardiovascular Systems, Inc. | Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials |
CN103173674B (zh) | 2013-02-26 | 2015-02-18 | 中山大学 | 一种具有一级磁相变的六元高熵合金及其制备方法 |
EP2772329A1 (en) * | 2013-02-28 | 2014-09-03 | Alstom Technology Ltd | Method for manufacturing a hybrid component |
US9027374B2 (en) | 2013-03-15 | 2015-05-12 | Ati Properties, Inc. | Methods to improve hot workability of metal alloys |
US9539636B2 (en) | 2013-03-15 | 2017-01-10 | Ati Properties Llc | Articles, systems, and methods for forging alloys |
US20140292152A1 (en) | 2013-04-01 | 2014-10-02 | Cymatics Laboratories Corp. | Temperature compensating electrodes |
CN103602872B (zh) | 2013-10-31 | 2015-09-23 | 北京科技大学 | 一种TiZrNbVMox高熵合金及其制备方法 |
US20150362473A1 (en) | 2014-06-12 | 2015-12-17 | Intermolecular Inc. | Low-E Panels Utilizing High-Entropy Alloys and Combinatorial Methods and Systems for Developing the Same |
CN104946912B (zh) | 2015-07-14 | 2017-04-26 | 太原理工大学 | 密排六方结构的稀土高熵合金 |
JP6499546B2 (ja) * | 2015-08-12 | 2019-04-10 | 山陽特殊製鋼株式会社 | 積層造形用Ni基超合金粉末 |
-
2017
- 2017-04-19 EP EP17786581.3A patent/EP3445881A4/en not_active Withdrawn
- 2017-04-19 CN CN201780023230.1A patent/CN109072347A/zh active Pending
- 2017-04-19 JP JP2018551849A patent/JP2019516011A/ja active Pending
- 2017-04-19 CA CA3016761A patent/CA3016761A1/en not_active Abandoned
- 2017-04-19 KR KR1020187029296A patent/KR20180115344A/ko active Search and Examination
- 2017-04-19 WO PCT/US2017/028427 patent/WO2017184771A1/en active Application Filing
- 2017-04-20 US US15/493,012 patent/US10202673B2/en not_active Expired - Fee Related
-
2019
- 2019-02-05 US US16/268,350 patent/US10480051B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1053094A (zh) * | 1989-12-15 | 1991-07-17 | 英科合金国际有限公司 | 抗氧化的低膨胀高温合金 |
RU2034085C1 (ru) * | 1991-04-17 | 1995-04-30 | Всероссийский научно-исследовательский институт авиационных материалов | ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al |
JPH09148049A (ja) * | 1995-11-17 | 1997-06-06 | Hitachi Electron Eng Co Ltd | プラズマcvd装置用加熱ヒータ |
JP2003201544A (ja) * | 2002-01-08 | 2003-07-18 | Hitachi Metals Ltd | 快削性低熱膨張材料 |
JP2010248603A (ja) * | 2009-04-20 | 2010-11-04 | Hitachi Metals Ltd | Fe−Co−Ni系合金スパッタリングターゲット材の製造方法 |
CN102234732A (zh) * | 2010-04-29 | 2011-11-09 | 通用电气公司 | 钴镍超合金及相关制品 |
CN103510996A (zh) * | 2012-06-22 | 2014-01-15 | 株式会社日立制作所 | 涡轮转子及其制造方法和使用其的蒸汽涡轮发动机 |
CN103624257A (zh) * | 2012-08-21 | 2014-03-12 | 阿尔斯通技术有限公司 | 制造三维制品的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111044443A (zh) * | 2019-12-14 | 2020-04-21 | 上海交通大学 | 基于相场法的瞬态双相不锈钢微电偶腐蚀过程模拟方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3445881A1 (en) | 2019-02-27 |
US20190169718A1 (en) | 2019-06-06 |
CA3016761A1 (en) | 2017-10-26 |
JP2019516011A (ja) | 2019-06-13 |
KR20180115344A (ko) | 2018-10-22 |
EP3445881A4 (en) | 2019-09-04 |
US10480051B2 (en) | 2019-11-19 |
WO2017184771A1 (en) | 2017-10-26 |
US10202673B2 (en) | 2019-02-12 |
US20170306458A1 (en) | 2017-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109072347A (zh) | 铝、钴、铁和镍的fcc材料及由其制成的产物 | |
US10161021B2 (en) | FCC materials of aluminum, cobalt and nickel, and products made therefrom | |
CN109072344B (zh) | 钛、铝、钒和铁的bcc材料及由其制成的产品 | |
CN108884518A (zh) | 铝、钛和锆的hcp材料及由其制成的产物 | |
CN109072346A (zh) | 铝、钴、铬、和镍的fcc材料及由其制成的产物 | |
KR102251066B1 (ko) | 티타늄, 알루미늄, 니오븀, 바나듐 및 몰리브덴의 bcc 재료, 및 그로부터 제조된 제품 | |
CN109072345A (zh) | 具有铝和钼的α-β钛合金及由其制成的产品 | |
CN109072348A (zh) | 铝、钴、镍和钛的fcc材料以及由其制成的产品 | |
WO2019099719A1 (en) | Cobalt-chromium-aluminum alloys, and methods for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181221 |