CN108912338B - Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body - Google Patents
Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body Download PDFInfo
- Publication number
- CN108912338B CN108912338B CN201810637744.2A CN201810637744A CN108912338B CN 108912338 B CN108912338 B CN 108912338B CN 201810637744 A CN201810637744 A CN 201810637744A CN 108912338 B CN108912338 B CN 108912338B
- Authority
- CN
- China
- Prior art keywords
- sofs
- pollutants
- organic framework
- supramolecular
- supramolecular organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013384 organic framework Substances 0.000 title claims abstract description 41
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 38
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims description 7
- 238000001179 sorption measurement Methods 0.000 title abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 22
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 10
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 239000000356 contaminant Substances 0.000 claims abstract 3
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 claims description 15
- 229940012189 methyl orange Drugs 0.000 claims description 15
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims description 10
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 claims description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims description 7
- 229940043267 rhodamine b Drugs 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- BDFZFGDTHFGWRQ-UHFFFAOYSA-N basic brown 1 Chemical compound NC1=CC(N)=CC=C1N=NC1=CC=CC(N=NC=2C(=CC(N)=CC=2)N)=C1 BDFZFGDTHFGWRQ-UHFFFAOYSA-N 0.000 claims description 5
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical group [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 claims description 5
- 229960000907 methylthioninium chloride Drugs 0.000 claims description 5
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical group C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 claims description 3
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims description 3
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 claims description 2
- 230000000274 adsorptive effect Effects 0.000 claims 6
- SRJCJJKWVSSELL-UHFFFAOYSA-N 2-methylnaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(C)=CC=C21 SRJCJJKWVSSELL-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000010186 staining Methods 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 9
- 238000004064 recycling Methods 0.000 abstract description 5
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000000862 absorption spectrum Methods 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000007306 functionalization reaction Methods 0.000 abstract 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- -1 golden orange Chemical compound 0.000 description 8
- JBTHDAVBDKKSRW-UHFFFAOYSA-N chembl1552233 Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 JBTHDAVBDKKSRW-UHFFFAOYSA-N 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 229940073450 sudan red Drugs 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000000033 nuclear magnetic resonance titration Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- GTQHJCOHNAFHRE-UHFFFAOYSA-N 1,10-dibromodecane Chemical compound BrCCCCCCCCCCBr GTQHJCOHNAFHRE-UHFFFAOYSA-N 0.000 description 1
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- 101000843236 Homo sapiens Testis-specific H1 histone Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102100031010 Testis-specific H1 histone Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- YSYKRGRSMLTJNL-URARBOGNSA-N dTDP-alpha-D-glucose Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](O)C1 YSYKRGRSMLTJNL-URARBOGNSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920002677 supramolecular polymer Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本发明设计合成了一种基于萘酰亚胺功能化的柱[5]芳烃超分子有机框架材料SOFs‑P5G,是在环己醇中,主体萘酰亚胺功能化的柱[5]芳烃与客体双4,4联吡啶盐以等摩尔比自组装而成。将超分子有机框架SOFs‑P5G对水体中的各种有机污染物表现出非常好的吸附去除效果。通过用紫外吸收光谱监测,计算得到SOFs‑P5G对各种污染物的去除率均大于50%,其中对高锰酸钾的去除率最高达到99%。将吸附有污染物的超分子有机框架材料SOFs‑P5G粉末加入到无水乙醇中,在35~40℃水浴中搅拌15分钟后,被吸附的污染物被释放出来,再进行过滤,干燥,使超分子有机框架材料SOFs‑P5G达到回收再循环使用的目的。The present invention designs and synthesizes a pillar[5]arene supramolecular organic framework material SOFs-P5G based on naphthalimide functionalization. The guest bis-4,4-bipyridyl salts self-assemble in equimolar ratios. The supramolecular organic framework SOFs-P5G showed a very good adsorption and removal effect on various organic pollutants in water. By monitoring with UV absorption spectrum, it was calculated that the removal rate of SOFs-P5G for various pollutants was greater than 50%, and the removal rate of potassium permanganate was up to 99%. The contaminant-adsorbed supramolecular organic framework material SOFs‑P5G powder was added to absolute ethanol, and after stirring in a water bath at 35-40 °C for 15 minutes, the adsorbed contaminants were released, and then filtered and dried to make the The supramolecular organic framework material SOFs‑P5G achieves the purpose of recycling.
Description
技术领域technical field
本发明涉及一种以萘酰亚胺功能化的柱[5]芳烃(P5N)为主体,双4,4联吡啶盐(G)为客体自组装而成的超分子有机框架SOFs-P5G,主要用于对水体中污染物的分离去除,属于水处理技术领域。The invention relates to a supramolecular organic framework SOFs-P5G self-assembled with naphthalimide-functionalized pillar[5]arene (P5N) as the main body and bis-4,4 bipyridine salt (G) as the guest. The invention is used for the separation and removal of pollutants in water bodies, and belongs to the technical field of water treatment.
背景技术Background technique
在过去的几十年里,由纺织,皮革,造纸和印刷行业产生的大量染料废水排放已经导致严重的环境问题,因为大多数商业染料都是高度有毒的,甚至通过浓缩生物体而致癌。许多传统的物理化学方法已被用于处理染料污染。目前,在含染料废水的各种处理工艺中,吸附过程已成为最有用的技术之一。各种吸附剂如二氧化硅,粘土,活性炭和介孔二氧化硅已用于此类处理。吸附材料(例如活性炭)使用吸附废水中的有机污染物是一种绿色环保的方法,但由于其处理时间长,回收成本高,因此这对于工业中的实际应用来说效率低,花费代价太高,而且不利于方便快捷的实际应用。因此,快速高效的去除污染物成为一个极具挑战的课题。Over the past few decades, the large amount of dye wastewater discharges generated by the textile, leather, paper and printing industries have caused serious environmental problems, as most commercial dyes are highly toxic and even cause cancer by concentrating organisms. Many traditional physicochemical methods have been used to deal with dye contamination. At present, the adsorption process has become one of the most useful technologies in various treatment processes of dye-containing wastewater. Various adsorbents such as silica, clay, activated carbon and mesoporous silica have been used for this type of treatment. The use of adsorption materials (such as activated carbon) to adsorb organic pollutants in wastewater is a green and environmentally friendly method, but due to its long treatment time and high recovery cost, it is inefficient and costly for practical applications in industry. , and it is not conducive to convenient and fast practical application. Therefore, the rapid and efficient removal of pollutants has become a very challenging topic.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种超分子有机框架的制备方法;The purpose of this invention is to provide a kind of preparation method of supramolecular organic framework;
本发明的另一目的是提供上述超分子有机框架作为吸附剂在吸附去除有机污染物中的应用。Another object of the present invention is to provide the application of the above supramolecular organic framework as an adsorbent in the adsorption and removal of organic pollutants.
一、超分子有机框架材料的制备1. Preparation of supramolecular organic framework materials
本发明超分子有机框架材料的制备,是在环己醇中,主体萘酰亚胺功能化的柱[5]芳烃(P5N)与客体双4,4联吡啶盐(G)以等摩尔比组装而成,标记为SOFs-P5G。The preparation of the supramolecular organic framework material of the present invention is that in cyclohexanol, the pillar[5]arene (P5N) functionalized with the host naphthalimide and the guest bis-4,4-bipyridine salt (G) are assembled in an equimolar ratio , labeled as SOFs-P5G.
其中,主体萘酰亚胺功能化的柱[5]芳烃(P5N)的结构式为:Among them, the structural formula of the main naphthalimide-functionalized pillar[5]arene (P5N) is:
n=1、2、3、4;n=1, 2, 3, 4;
客体双4,4联吡啶盐(G)的结构是如下:The structure of the guest bis-4,4-bipyridyl salt (G) is as follows:
主客体的组装模式如下:The assembly mode of host and object is as follows:
下面通过核磁图、核磁滴定氢谱图对超分子聚合物凝胶TDPG形成的机理分析。图1为P5N的部分浓度核磁图。图1中,从(b)~(g)P5N的浓度逐渐增大,可以发现H1-7均向高场移动,说明P5N的柱芳烃集团和萘酰亚胺集团与另一分子P5N之间存在π-π作用。图2为P5N和G的核磁滴定氢谱图。其中(a)P5N;(b)~(h)含有不同当量的G。从图2中可以看到,客体G上的氢质子Ha,Hb,Hc,Hd和He均向低场位移,同时主体P5N柱芳烃集团上的氢质子H6和H7向高场位移,说明客体G吡啶盐部分进入柱芳烃的空腔。由以上这些现象可以说明主体P5N和客体G通过主客识别作用和π-π作用进行了组装,从而得到超分子有机框架材料SOFs-P5G。The mechanism of the formation of supramolecular polymer gel TDPG is analyzed below by NMR and NMR spectroscopy. Figure 1 is a partial concentration NMR image of P5N. In Figure 1, from (b) to (g) the concentration of P5N gradually increases, it can be found that H1-7 all move to the high field, indicating that there is a relationship between the pillar arene group and naphthalimide group of P5N and another molecule of P5N. π-π effect. Figure 2 shows the NMR titration spectra of P5N and G. Among them (a) P5N; (b)~(h) contain G with different equivalents. It can be seen from Fig. 2 that the hydrogen protons Ha, Hb, Hc, Hd and He on the guest G are all shifted to the low field, while the hydrogen protons H6 and H7 on the host P5N pillar aromatic group are shifted to the high field, indicating that the guest G The pyridinium salt moiety enters the cavity of the pillar arene. The above phenomena can indicate that the host P5N and the guest G are assembled through the host-guest recognition and π-π interactions, thereby obtaining the supramolecular organic framework material SOFs-P5G.
二、超分子有机框架SOFs-P5G对各类污染物的吸附2. Adsorption of various pollutants by supramolecular organic framework SOFs-P5G
取12支洁净的50mL容量瓶,分别称取所要进行吸附的污染物化合物(如:亚甲基蓝,金橙,俾斯麦棕Y,吉氏染色剂,甲基橙,罗丹明B,苏丹红1,苏丹红2,苦味酸,甲萘酚,高锰酸钾,重铬酸钾)于烧杯中,再加入10mL蒸馏水使固体完全溶解,再分别移液至准备好的比色管中,然后用蒸馏水稀释至25mL刻度,配置浓度为1×10-3mol·L−1的水溶液,待用。Take 12 clean 50mL volumetric flasks, respectively weigh the pollutant compounds to be adsorbed (such as: methylene blue, golden orange, Bismarck brown Y, Gibbs stain, methyl orange, rhodamine B, Sudan red 1, Sudan red 2. Picric acid, naphthol, potassium permanganate, potassium dichromate) in a beaker, then add 10 mL of distilled water to completely dissolve the solid, then pipette into the prepared colorimetric tubes, and then dilute with distilled water to 25mL scale, prepared with an aqueous solution with a concentration of 1×10 -3 mol·L -1 , ready for use.
分别移取50uL上述配置好的的各类污染物水溶液(1.0×10-3mol/L)于5mL试剂瓶中,然后加入蒸馏水稀释定容至5mL刻度,摇匀,形成浓度为1.0×10-5mol/L的各类污染物稀溶液,静置,待用。Pipette 50uL of the above-prepared aqueous solutions of various pollutants (1.0×10 -3 mol/L) into a 5mL reagent bottle, then add distilled water to dilute to the 5mL mark, and shake well to form a concentration of 1.0×10 - 5 mol/L dilute solutions of various pollutants, let stand, and wait for use.
称取12份上述制备好的超分子有机框架SOFs-P5G粉末,每份为2毫克,分别加入到上述配置好的浓度为1.0×10-5mol/L的各类污染物稀溶液中,在室温下搅拌40分钟后,静置。发现,各类污染物稀溶液的颜色褪去。图3为SOFs-P5G对12种污染物吸附去除效率条形图(从左向右:亚甲基蓝,金橙,俾斯麦棕Y,吉氏染色剂,甲基橙,罗丹明B,苏丹红1,苏丹红2,苦味酸,甲萘酚,高锰酸钾,重铬酸钾)。由图3可以看出,本发明制备的超分子有机框架SOFs-P5G粉末对于污染物亚甲基蓝,金橙,俾斯麦棕Y,吉氏染色剂,甲基橙,罗丹明B,苏丹红1,苏丹红2,苦味酸,甲萘酚,高锰酸钾,重铬酸钾均具有很好的吸附去除效果。通过用紫外吸收光谱监测,计算得到其对各种污染物的去除率。结果是,其对于所有污染物的去除率都大于50 %,其中高锰酸钾的去除率最高达到99 %。Weigh 12 parts of the supramolecular organic framework SOFs-P5G powder prepared above, each 2 mg, and add them to the above prepared dilute solutions of various pollutants with a concentration of 1.0 × 10 -5 mol/L, respectively. After stirring at room temperature for 40 minutes, it was left to stand. It was found that the color of the dilute solution of various pollutants faded. Figure 3 is a bar graph of the adsorption and removal efficiency of SOFs-P5G for 12 pollutants (from left to right: methylene blue, golden orange, Bismarck brown Y, Gibbs stain, methyl orange, rhodamine B, Sudan red 1, Sudan Red 2, picric acid, cresol, potassium permanganate, potassium dichromate). It can be seen from Fig. 3 that the supramolecular organic framework SOFs-P5G powder prepared by the present invention is not effective for the pollutants methylene blue, golden orange, Bismarck brown Y, Gibbs stain, methyl orange, rhodamine B, Sudan red 1, Sudan red 2. Picric acid, cresol, potassium permanganate and potassium dichromate all have good adsorption and removal effects. By monitoring with ultraviolet absorption spectrum, the removal rate of various pollutants was calculated. As a result, the removal rate of all pollutants is greater than 50%, and the removal rate of potassium permanganate is up to 99%.
三、超分子有机框架SOFs-P5G解吸附3. Desorption of supramolecular organic framework SOFs-P5G
将上述吸附有污染物的超分子有机框架材料SOFs-P5G粉末加入到无水乙醇中,在35~40℃的水浴中搅拌15分钟后,被吸附的污染物被释放出来;进行过滤,干燥,使超分子有机框架材料SOFs-P5G达到回收再循环使用的目的。图4为超分子有机框架材料SOFs-P5G对甲基橙(a),罗丹明B(b),苦味酸(c),高锰酸钾(d)多次循环使用去除效率条形图。由图4可知,超分子有机框架材料SOFs-P5G解吸附后用于吸附水体中的污染物,仍然具有很高的去除率。The above-mentioned supramolecular organic framework material SOFs-P5G powder adsorbed with pollutants was added to absolute ethanol, and after stirring for 15 minutes in a water bath of 35~40 °C, the adsorbed pollutants were released; filter, dry, So that the supramolecular organic framework material SOFs-P5G can achieve the purpose of recycling. Figure 4 is a bar graph of the removal efficiency of supramolecular organic framework SOFs-P5G for methyl orange (a), rhodamine B (b), picric acid (c), and potassium permanganate (d) after multiple cycles. It can be seen from Figure 4 that the supramolecular organic framework material SOFs-P5G is used to adsorb pollutants in water after desorption, and still has a high removal rate.
四、SOFs-P5G对各类污染物的吸附去除基理4. The adsorption and removal of various pollutants by SOFs-P5G
通过以甲基橙吸附为例,我们进行了吸附机理的讨论。首先我们进行了甲基橙对SOFs-P5G的核磁滴定实验(见图5)。从图5中我们可以看到,吡啶盐上的氢质子Ha,Hb,Hc和Hd峰都向高场位移,甲基橙上的氢质子H1,H2,H3和H4向低场进行位移,说明甲基橙与SOFs-P5G中的吡啶盐之间存在通过阴阳离子的静电作用(见图3)。同时,由二维核磁也进行了论证,如图6所示,A,B,C和D四个相关点分别是柱芳烃上氢质子H6,H7和H11与甲基橙上的氢质子H1,H2,H3和H4的相关点,说明甲基橙与柱芳烃之间有C-H-π和π-π作用。通过这些现象可以推测,在去除各类污染物过程中,存在多种相互作用力(如:C-H-π作用,π-π作用,阴阳离子的静电作用等),因此,SOFs-P5G可用于对水溶液中各类污染物有高效分离与去除。而且这种吸附作用是通过与各类化合物弱相互作用力而形成,但是这些弱相互作用力很容易被破坏,因此可以进行解吸附作用分离各类污染物,达到吸附材料的回收循环使用,这种吸附分离性能在分子去除领域具有重要的应用价值。By taking methyl orange adsorption as an example, we discussed the adsorption mechanism. First, we carried out the NMR titration experiment of SOFs-P5G with methyl orange (see Figure 5). From Fig. 5, we can see that the peaks of hydrogen protons Ha, Hb, Hc and Hd on the pyridinium salt are all shifted to the high field, and the hydrogen protons H1, H2, H3 and H4 on the methyl orange are shifted to the low field, indicating that There are electrostatic interactions between methyl orange and the pyridinium salt in SOFs-P5G through anion and cation (see Figure 3). At the same time, it is also demonstrated by 2D NMR. As shown in Figure 6, the four relevant points A, B, C and D are the hydrogen protons H6, H7 and H11 on the pillar arene and the hydrogen proton H1 on the methyl orange, respectively. The correlation points of H2, H3 and H4 indicate that there are C-H-π and π-π interactions between methyl orange and pillar aromatics. From these phenomena, it can be speculated that in the process of removing various pollutants, there are various interaction forces (such as: C-H-π interaction, π-π interaction, electrostatic interaction of anions and cations, etc.). Therefore, SOFs-P5G can be used for Various pollutants in the aqueous solution can be efficiently separated and removed. Moreover, this adsorption is formed by weak interactions with various compounds, but these weak interactions are easily destroyed, so desorption can be carried out to separate various pollutants, and the recovery and recycling of adsorbent materials can be achieved. This adsorption and separation performance has important application value in the field of molecular removal.
附图说明Description of drawings
图1为P5N的浓度核磁氢谱图。Figure 1 is the concentration of P5N hydrogen NMR spectrum.
图2为P5N和G的核磁滴定氢谱图。Figure 2 shows the NMR titration spectra of P5N and G.
图3为SOFs-P5G对12种污染物吸附去除效率条形图。Figure 3 is a bar graph of the adsorption and removal efficiency of SOFs-P5G for 12 pollutants.
图4为超分子有机框架材料SOFs-P5G对(a)甲基橙,(b)罗丹明B,(c)苦味酸,(d)高锰酸钾多次循环使用去除效率条形图。Figure 4 is a bar graph of the removal efficiency of supramolecular organic framework SOFs-P5G for (a) methyl orange, (b) rhodamine B, (c) picric acid, and (d) potassium permanganate for multiple cycles.
图5为甲基橙对SOFs-P5G的核磁滴定氢谱图。Figure 5 is the hydrogen NMR titration spectrum of methyl orange on SOFs-P5G.
图6为甲基橙和SOFs-P5G的二维核磁氢谱图。Figure 6 shows the two-dimensional hydrogen NMR spectra of methyl orange and SOFs-P5G.
具体实施方式Detailed ways
下面通过具体实施例对本发明超分子有机框架材料SOFs-P5G的制备和吸附废水中有机污染物的性能做进一步说明。The preparation of the supramolecular organic framework material SOFs-P5G of the present invention and the performance of adsorbing organic pollutants in wastewater will be further described below through specific examples.
实施例1、超分子有机框架材料SOFs-P5G的制备Example 1. Preparation of supramolecular organic framework material SOFs-P5G
(1)主体P5N的合成:在50ml乙腈中,加入0.58g(5×10-3mol)溴代的柱[5]芳烃P5,0.43g(1.5×10-3mol)萘二甲酰亚胺衍生物,在80℃反应48h;待反应结束后冷却至室温,旋蒸除掉溶剂,拌样上柱,以石油醚:乙酸乙酯=10:1~10:5(v/v)洗脱,得黄色固体产物即为凝胶因子P5N;产率为75.6%。(1) Synthesis of host P5N: In 50ml of acetonitrile, add 0.58g (5×10 -3 mol) brominated column[5]arene P5, 0.43g (1.5×10 -3 mol) naphthalimide Derivatives were reacted at 80°C for 48h; after the reaction was completed, cooled to room temperature, the solvent was removed by rotary evaporation, the sample was mixed and loaded onto the column, and eluted with petroleum ether:ethyl acetate=10:1~10:5 (v/v) , the yellow solid product was gel factor P5N; the yield was 75.6%.
(2)客体G的合成:在100ml乙腈中加入1.9801g(1.89 g,6.3 mmol)1,10-二溴癸烷和4,4'-联吡啶(5.56g,35.7 mmol),在90~100℃下搅拌回流18小时;冷却至室温,用布氏漏斗进行过滤,用乙腈和乙醇洗涤3~5次,得到3.3g淡黄绿色粉末状产物即为客体化合物G。产率为86%。(2) Synthesis of guest G: 1.9801 g (1.89 g, 6.3 mmol) of 1,10-dibromodecane and 4,4'-bipyridine (5.56 g, 35.7 mmol) were added to 100 ml of acetonitrile. The mixture was stirred and refluxed for 18 hours at ℃; cooled to room temperature, filtered with a Buchner funnel, washed with acetonitrile and ethanol for 3 to 5 times, and obtained 3.3 g of a light yellow-green powdery product, which was the guest compound G. The yield was 86%.
(3)超分子有机框架材料SOFs-P5G的合成:在0.2ml环己醇中,加入主体P5N(0.0050g,4.5×10-6mol),客体G(0.0047g,4.5×10-6mol),加热使其完全溶解,然后冷却至室温,烘干,得到稳定的超分子有机框架材料SOFs-P5G。(3) Synthesis of supramolecular organic framework material SOFs-P5G: In 0.2ml cyclohexanol, host P5N (0.0050g, 4.5× 10-6 mol), guest G (0.0047g, 4.5× 10-6 mol) were added , heated to dissolve it completely, then cooled to room temperature and dried to obtain a stable supramolecular organic framework material SOFs-P5G.
实施例2、超分子有机框架SOFs-P5G对污染物的高效分离与去除Example 2. Efficient separation and removal of pollutants by supramolecular organic framework SOFs-P5G
配置浓度为5mL 1×10-5M的各类污染物(亚甲基蓝,金橙,俾斯麦棕Y,吉氏染色剂,甲基橙,罗丹明B,苏丹红1,苏丹红2,苦味酸,甲萘酚,高锰酸钾,重铬酸钾)水溶液;称取超分子有机框架材料SOFs-P5G粉末称取12份,每份为2毫克,分别加入到上述各类污染物稀溶液中,摇动40分钟后,静置,取残留上清液做进行紫外分光光度测试,记录其吸光度。然后根据朗伯比尔定律算出其残留溶液的浓度,从而计算出吸附去除率。超分子有机框架SOFs-P5G对于各种污染物去除率见表1:Various pollutants (methylene blue, golden orange, Bismarck brown Y, Gibbs stain, methyl orange, rhodamine B, Sudan red 1, Sudan red 2, picric acid, methyl alcohol) were prepared at a concentration of 5 mL of 1×10 -5 M. Naphthol, potassium permanganate, potassium dichromate) aqueous solution; Weigh supramolecular organic framework material SOFs-P5G powder, weigh 12 parts, each part is 2 mg, add them to the dilute solutions of the above various pollutants, shake After 40 minutes, let stand, take the residual supernatant for UV spectrophotometric test, and record its absorbance. Then, the concentration of the residual solution was calculated according to Lambert Beer's law to calculate the adsorption removal rate. The removal rates of supramolecular organic framework SOFs-P5G for various pollutants are shown in Table 1:
实施例3、超分子有机框架SOFs-P5G回收循环使用Example 3. Supramolecular organic framework SOFs-P5G recycling and recycling
将吸附了各类污染物的有机框架材料SOFs-P5G粉末的水溶液进行过滤,烘干处理。然后将干粉末分别移至12支5毫升试剂瓶中,加入4毫升无水乙醇,在温度为35摄氏度的水浴中震荡15分钟,发现水溶液颜色变为吸附前各类污染物的颜色,说明有机框架材料SOFs-P5G将吸附的各类污染物释放出来。然后在进行一次过滤,用乙醇洗涤3~5次,烘干,得到原始的有机框架材料SOFs-P5G粉末。同时回收的有机框架材料SOFs-P5G粉末还可以进行多次的回收循环使用。The aqueous solution of organic framework material SOFs-P5G powder adsorbed with various pollutants was filtered and dried. Then move the dry powder to 12 5 ml reagent bottles, add 4 ml of absolute ethanol, shake for 15 minutes in a water bath with a temperature of 35 degrees Celsius, and find that the color of the aqueous solution changes to the color of various pollutants before adsorption, indicating that the organic The frame material SOFs-P5G releases all kinds of adsorbed pollutants. Then, it is filtered once, washed with ethanol for 3-5 times, and dried to obtain the original organic framework material SOFs-P5G powder. At the same time, the recovered organic framework material SOFs-P5G powder can also be recycled for multiple times.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810637744.2A CN108912338B (en) | 2018-06-20 | 2018-06-20 | Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810637744.2A CN108912338B (en) | 2018-06-20 | 2018-06-20 | Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108912338A CN108912338A (en) | 2018-11-30 |
CN108912338B true CN108912338B (en) | 2020-10-16 |
Family
ID=64420193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810637744.2A Expired - Fee Related CN108912338B (en) | 2018-06-20 | 2018-06-20 | Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108912338B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109701659B (en) * | 2019-01-29 | 2020-08-25 | 盐城工学院 | Cumulative two-photon Z-type photocatalyst, preparation method and application thereof |
CN110938214B (en) * | 2019-12-20 | 2021-10-26 | 西北师范大学 | Supramolecular polymer based on tripodal column [5] arene and preparation and application thereof |
CN112242577B (en) * | 2020-10-16 | 2022-03-11 | 苏州大学 | A kind of recycling method of positive electrode material of lithium ion battery |
CN113097644B (en) * | 2021-04-01 | 2023-03-31 | 河南锂动电源有限公司 | Preparation method of SOFs-P5G/PVDF lithium ion battery diaphragm |
CN116376046B (en) * | 2023-05-10 | 2024-08-09 | 五邑大学 | Method for preparing metal-organic polymer based on cage-shaped supermolecular monomer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3276354A1 (en) * | 2016-07-29 | 2018-01-31 | Klinikum rechts der Isar der Technischen Universität München | Molecular sensor for nmr/mri based on analyte-dependent spectral changes of temporarily encapsulated hyperpolarized 129xe |
CN106974897B (en) * | 2017-02-20 | 2020-08-11 | 西北农林科技大学 | A targeted stimuli-responsive multifunctional ceria nano-drug delivery system |
CN107043461B (en) * | 2017-05-14 | 2020-07-10 | 西北师范大学 | Preparation and application of supramolecular sensors based on pillar[5]arene and pyridine-functionalized naphthalene dicarboxylic acid derivatives |
CN107536803A (en) * | 2017-07-25 | 2018-01-05 | 西北农林科技大学 | One kind targeting pH GSH double responsiveness multifunctional nano vesica medicine-carried systems |
CN107935926B (en) * | 2017-11-06 | 2020-08-07 | 西北师范大学 | Gel factor capable of identifying aromatic acid isomer and preparation and application of supramolecular polymer gel thereof |
CN108070092B (en) * | 2017-11-20 | 2020-10-23 | 西北师范大学 | A Supramolecular Gel Based on Functionalized Column[5]Arene and Its Application in Recognition of Iron and L-Cys |
CN107936262B (en) * | 2017-12-07 | 2020-07-28 | 西北师范大学 | Preparation and application of a supramolecular polymer framework material |
-
2018
- 2018-06-20 CN CN201810637744.2A patent/CN108912338B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108912338A (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108912338B (en) | Preparation of supramolecular organic framework and application of supramolecular organic framework in adsorption removal of pollutants in water body | |
Amiripour et al. | Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal–organic framework for selective detection of chloramphenicol residues in milk and honey | |
Xu et al. | Lanthanide-based metal–organic frameworks as luminescent probes | |
Wu et al. | A selective fluorescent sensor for Hg2+ based on covalently immobilized naphthalimide derivative | |
de Pena et al. | Preconcentration of copper traces on C60-C70 fullerenes by formation of Ion pairs and chelates | |
Wu et al. | A reusable bifunctional fluorescent sensor for the detection and removal of silver ions in aqueous solutions | |
CN108586776B (en) | Preparation of a supramolecular polymer gel and its metal complexes and its application in ion detection | |
CN103111271B (en) | Preparation method of chitosan-grafted beta-cyclodextrin bonded silica gel absorbent | |
Li et al. | A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg (II) ion in aqueous solution | |
CN109364880B (en) | Supramolecular organic framework material with cyclic analysis function and application of supramolecular organic framework material in removal of organic dye in water body | |
Varnaseri et al. | Pore wall functionalized ultrasonically synthesized cooperative MOF for luminescence sensing of 2, 4, 6-trinitrophenol | |
CN107837796B (en) | A bonded chromatographic column stationary phase | |
Niu et al. | Preparation of magnetic carbonized polyaniline nanotube and its adsorption behaviors of xanthene colorants in beverage and fish samples | |
Zhang et al. | Synthesis of β-cyclodextrin-calix [4] arene coupling product and its adsorption of basic fuchsin and methylene blue from water | |
Zhou et al. | Two bisligand-coordinated luminescent Zn (II)-coordination polymers for sensing of ions and pesticides in aqueous solutions | |
Ouyang et al. | Hollow tube covalent organic framework for syringe filter-based extraction of ultraviolet stabilizer in food contact materials | |
Li et al. | Fabrication and evaluation of tetraazahexaphenylmacrocycle-bonded stationary phase with multiple retention mechanisms | |
CN105859734B (en) | Compound, its preparation method and application based on rhodamine B and aminoethyl thioether | |
CN102101043B (en) | Method for preparing polyvinyl imidazole type silica gel filler | |
Kang et al. | Polymer-supported calix [4] arenes for sensing and conversion of NO2/N2O4 | |
Yavuz et al. | A new highly Selective, sensitive and NIR spectrophotometric probe based on A2B2-Type of unsymmetrical phthalocyanine for hazardous Be2+ recognition | |
Li et al. | Tuning the planarity of molecularly imprinted covalent organic frameworks for selective extraction of ochratoxin A in alcohol samples | |
CN113173883B (en) | A 8-hydroxyquinoline functionalized column[5]arene and its synthesis and application in detection and adsorption of ethylenediamine | |
CN108144326A (en) | A kind of method that organic dyestuff is efficiently separated based on anionic metal-organic framework materials | |
CN102861559B (en) | Production method of polyacrylonitrile chelating resin metal adsorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201016 Termination date: 20210620 |
|
CF01 | Termination of patent right due to non-payment of annual fee |