Nothing Special   »   [go: up one dir, main page]

CN108809707A - A kind of TSN dispatching methods towards real-time application demand - Google Patents

A kind of TSN dispatching methods towards real-time application demand Download PDF

Info

Publication number
CN108809707A
CN108809707A CN201810541014.2A CN201810541014A CN108809707A CN 108809707 A CN108809707 A CN 108809707A CN 201810541014 A CN201810541014 A CN 201810541014A CN 108809707 A CN108809707 A CN 108809707A
Authority
CN
China
Prior art keywords
time
network
ilp
formula
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810541014.2A
Other languages
Chinese (zh)
Inventor
徐伟强
彭轻羽
吴呈瑜
王成群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201810541014.2A priority Critical patent/CN108809707A/en
Publication of CN108809707A publication Critical patent/CN108809707A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种面向实时应用需求的TSN调度方法,属于工业无线网络资源分配技术领域。本发明在软件定义网络SDN的基础之上,提出了一种时间敏感的软件定义网络TSSDN,对所有时间触发流和网络拓扑进行全局观察,在TSSDN中引入了调度问题,并提出了一种整数线性规划(ILP)公式,将时隙分配给时间触发的流,并将它们路由,以避免网络队列,同时最大化网络中分配时隙的能量利用率,并计算它们的路由和传输时间表。本发明解决了计算传输时间表的约束优化问题。

The invention discloses a TSN scheduling method oriented to real-time application requirements, and belongs to the technical field of industrial wireless network resource allocation. On the basis of software-defined network SDN, the present invention proposes a time-sensitive software-defined network TSSDN, which conducts global observation of all time-triggered flows and network topologies, introduces a scheduling problem into TSSDN, and proposes an integer A linear programming (ILP) formulation that assigns slots to time-triggered flows and routes them to avoid network queues while maximizing the energy utilization of the assigned slots in the network and computes their routing and transmission schedules. The present invention solves the constrained optimization problem of computing transmission schedules.

Description

一种面向实时应用需求的TSN调度方法A TSN Scheduling Method Oriented to Real-time Application Requirements

技术领域technical field

本发明涉及工业无线网络资源分配技术领域,具体为一种面向实时应用需求的TSN调度方法。The invention relates to the technical field of industrial wireless network resource allocation, in particular to a TSN scheduling method oriented to real-time application requirements.

背景技术Background technique

工业4.0的一个中心特征是联网的网络物理系统,其中物理过程由计算机控制。由于许多物理过程如一组协作机器人的运动控制是高度时间敏感的,所以需要实时通信网络来控制这些系统。为了保证物理系统在控制下的确定性行为,需要具有确定性有界网络延迟和延迟变化(抖动)的实时网络。传统上,现场总线已被应用于此,后来随着以太网技术的发展,为此提供了确定性的实时属性,但是在同一介质上传输实时和非实时流量的可能性彼此不兼容,这就需要对网络进行资源调度,资源调度是对网络中数据包的传输进行确定性的规划。虽然IEEE 802.1qbv定义了基本的调度机制,但是如何配置调度以实现有界端到端的网络延迟已经超出了标准的范围。A central feature of Industry 4.0 is networked cyber-physical systems, where physical processes are controlled by computers. Since many physical processes such as the motion control of a group of collaborative robots are highly time-sensitive, real-time communication networks are required to control these systems. To guarantee deterministic behavior of physical systems under control, real-time networks with deterministic bounded network delays and delay variations (jitter) are required. Traditionally fieldbuses have been used for this, and later with the development of Ethernet technology, which provides deterministic real-time properties for this, but the possibility of transmitting real-time and non-real-time traffic on the same medium is incompatible with each other, which is Resource scheduling needs to be performed on the network, and resource scheduling is a deterministic planning for the transmission of data packets in the network. Although IEEE 802.1qbv defines the basic scheduling mechanism, how to configure the scheduling to achieve bounded end-to-end network delay is beyond the scope of the standard.

发明内容Contents of the invention

本发明的目的在于根据现有网络技术难以提供实时保证的不足,在软件定义网络(SDN)基础之上提出了时间敏感的软件定义网络架构TSSDN,它为网络物理系统中的时间触发的流提供实时保证。在TSSDN中引入了调度问题,并提出了一种整数线性规划(ILP)公式,将时隙分配给时间触发的流,并将它们路由,以避免网络队列,同时最大化网络中分配时隙的能量利用率,解决其计算传输时间表的约束优化问题。The purpose of the present invention is to present the time-sensitive software-defined network architecture TSSDN on the basis of the software-defined network (SDN) based on the fact that the existing network technology is difficult to provide real-time guarantee, which provides time-triggered flow in the network physical system. Real-time guarantee. The scheduling problem is introduced in TSSDN and an Integer Linear Programming (ILP) formulation is proposed to allocate slots to time-triggered flows and route them to avoid network queues while maximizing the efficiency of the allocated slots in the network. Energy utilization, which solves a constrained optimization problem for computing transmission schedules.

本发明的目的是通过以下的技术方案来实现的:一种面向实时应用需求的TSN调度方法,该方法包括以下步骤:The purpose of the present invention is achieved through the following technical solutions: a TSN scheduling method oriented to real-time application requirements, the method comprising the following steps:

步骤1)设置网络环境参数:在软件定义网络SDN的基础之上,建立一种时间敏感型软件定义网络TSSDN的逻辑集中式体系结构,对基准网络拓扑和时间触发流进行建模,将基准网络拓扑表示为一个有向图G≡(V,E),其中V是节点集合,V≡(S∪H),S和H分别是交换机和主机的集合,E≡{(i,j)|i,j∈V且i,j通过网络链路连接}代表一组网络链接的元组;将时间触发流表示为一个元组tsi≡(si,di),其中si,di∈H,si和di分别是流的源和目的地;可用于支出的时隙集合表示为T≡{0,1,...,tmax},tmax由网络控制器的基本周期和时隙长度确定;Step 1) Set network environment parameters: On the basis of software-defined network SDN, establish a logical centralized architecture of time-sensitive software-defined network TSSDN, model the baseline network topology and time-triggered flow, and Topology is represented as a directed graph G≡(V,E), where V is a set of nodes, V≡(S∪H), S and H are sets of switches and hosts, respectively, E≡{(i,j)|i ,j∈V and i,j are connected by network links} represents a set of tuples of network links; express the time-triggered flow as a tuple ts i ≡(s i ,d i ), where s i ,d i ∈ H, s i and d i are the source and destination of the flow respectively; the set of time slots available for spending is denoted as T≡{0,1,...,t max }, where t max is determined by the basic period of the network controller and The length of the time slot is determined;

步骤2)设置ILP公式的输入:被调度的时间触发流的集合TS,TS≡{tsi};流到网络链路的映射SL,SL≡{fi,j},如果流i通过链路j传输,fi,j=1,否则为0;流到时隙的映射ST,ST≡{ti,k},如果流i被分配了时隙k,ti,k=1,否则为0,假设每分配一个时隙消耗一个单位的能量;设置ILP公式的辅助变量:辅助变量W,表示整个网络架构所能达到的最大能源上限;辅助变量SLT,SLT≡{mi,j,k},如果流i通过链路j传输且被分配了时隙k,则mi,j,k=1,否则为0;辅助变量C=(|TS|×|E|)+1;Step 2) Set the input of the ILP formula: the set TS of scheduled time-triggered flows, TS≡{ts i }; the mapping SL from flows to network links, SL≡{f i,j }, If flow i is transmitted through link j, f i,j = 1, otherwise 0; the mapping ST of flow to time slot, ST≡{t i,k }, If flow i is assigned time slot k, t i,k = 1, otherwise it is 0, assuming that each allocated time slot consumes one unit of energy; set the auxiliary variable of the ILP formula: auxiliary variable W, which represents the energy that the entire network architecture can Maximum energy upper limit reached; auxiliary variable SLT, SLT≡{m i,j,k }, If flow i is transmitted through link j and is allocated time slot k, then mi,j , k = 1, otherwise 0; auxiliary variable C = (|TS|×|E|)+1;

步骤3)制定ILP公式目标函数:Step 3) Formulate the ILP formula objective function:

MaximizeMaximize

步骤4)根据ILP公式制定约束:Step 4) Formulate constraints according to the ILP formula:

每个流最多只能分配一个时隙;Each stream can be assigned at most one slot;

其中,in(src(i))、out(src(i))分别表示源主机的输入和输出,in(dst(i))、out(dst(i))分别表示目的主机的输入和输出;Among them, in(src(i)), out(src(i)) represent the input and output of the source host respectively, and in(dst(i)) and out(dst(i)) represent the input and output of the destination host respectively;

给定流i的路径从其源主机开始并在其目的地主机处结束;The path of a given flow i starts at its source host and ends at its destination host;

在任何时隙期间,多个流不能同时通过给定的链路进行路由;Multiple flows cannot be routed over a given link simultaneously during any slot;

确保ILP公式为变量提供一致的值,即对于流i、边j和时隙k,只有当变量fi,j和ti,k都是1时,变量mi,j,k才可以是1;Make sure that the ILP formula provides consistent values for the variables, i.e. for flow i, edge j and slot k, the variable m i,j , k can be 1 only if the variables f i,j and t i,k are both 1 ;

步骤5)求解ILP公式,将时隙分配给时间触发的流,并将这些流路由,以避免网络队列,同时最大化网络架构中分配时隙消耗能量的能量利用率。Step 5) Solving the ILP formula, assigning slots to time-triggered flows, and routing these flows to avoid network queues while maximizing the energy utilization in the network architecture where assigned slots consume energy.

进一步地,所述步骤1)中,使用NetworkX创建Erdo″sR'enyi(ER)模型、随机正则图(RRG)、Baraba'si-Albert(BA)模型和Waxman模型,能够更有效地评估ILP公式。Further, in the step 1), use NetworkX to create Erdo "sR'enyi (ER) model, random regular graph (RRG), Baraba'si-Albert (BA) model and Waxman model, which can evaluate the ILP formula more effectively .

进一步地,所述步骤3)中,目标函数保证淘汰了路径上的循环路径,保持最小的路径长度,最大限度地分配了时隙的数量,这确保了ILP公式同时最大化网络架构中分配时隙的能量利用率。Further, in the step 3), the objective function ensures that the cyclic path on the path is eliminated, the minimum path length is kept, and the number of time slots is allocated to the maximum, which ensures that the ILP formula maximizes the allocation time in the network architecture at the same time Gap energy utilization.

进一步地,所述步骤4)中,各种约束充分保证了最佳的调度,如果所有流量传输周期等于基准周期,则从给定的一组流中调度最大数量的时间触发的流。Further, in the step 4), various constraints fully guarantee the optimal scheduling, and if the transmission period of all flows is equal to the reference period, then the maximum number of time-triggered flows are scheduled from a given set of flows.

进一步地,所述步骤5)中,使用来自IBM的商业求解器CPLEX来解决ILP公式。Further, in the step 5), use the commercial solver CPLEX from IBM to solve the ILP formula.

本发明的有益效果是:本发明提出了一种整数线性规划(ILP)公式,将时隙分配给时间触发的流,并将它们路由,以避免网络队列,同时最大化网络架构中分配时隙消耗能量的能量利用率,解决了计算传输时间表的约束优化问题。The beneficial effects of the present invention are: the present invention proposes an Integer Linear Programming (ILP) formula to allocate time slots to time-triggered flows and route them to avoid network queues while maximizing the allocation of time slots in the network architecture Energy utilization of consumed energy, which solves the constrained optimization problem for computing transmission schedules.

附图说明Description of drawings

图1TSSDN网络架构图;Figure 1 TSSDN network architecture diagram;

图2实施例中被调度流运行时间效果图。Figure 2 is an effect diagram of the running time of the scheduled flow in the embodiment.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步说明,本发明的目的和效果将更加明显。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, and the purpose and effect of the present invention will be more obvious.

首先,在软件定义网络SDN的基础之上,建立一种时间敏感型软件定义网络TSSDN的逻辑集中式体系结构,如图1所示;对基准网络拓扑和时间触发流进行建模,我们将基准网络拓扑表示为一个有向图G≡(V,E),其中V是节点集合,V≡(S∪H),其中S和H分别是交换机和主机的集合,E≡{(i,j)|i,j∈V且i,j通过网络链路连接}是一组代表网络链接的元组;将时间触发流被表示为一个元组tsi≡(si,di),其中si,di∈H,si和di分别是流的源和目的地;可用于支出的时隙集合表示为T≡{0,1,...,tmax},tmax由网络控制器的基本周期和时隙长度确定;First, on the basis of software-defined network SDN, a logical centralized architecture of time-sensitive software-defined network TSSDN is established, as shown in Figure 1; to model the baseline network topology and time-triggered flow, we will base The network topology is expressed as a directed graph G≡(V,E), where V is a set of nodes, V≡(S∪H), where S and H are sets of switches and hosts, E≡{(i,j) |i,j∈V and i,j are connected by network links} is a set of tuples representing network links; the time-triggered stream is expressed as a tuple ts i ≡(s i ,d i ), where s i , d i ∈ H, s i and d i are the source and destination of the flow respectively; the set of time slots available for spending is denoted as T≡{0,1,...,t max }, t max is determined by the network controller The basic cycle and time slot length of the time are determined;

我们将ILP公式的输入及变量设置如下:网络拓扑G≡(V,E),被调度的时间触发流的集合TS,TS≡{tsi};流到网络链路的映射SL,SL≡{fi,j},如果流i通过链路j传输,fi,j=1,否则为0;流到时隙的映射ST,ST≡{ti,k},如果流i被分配了时隙k,ti,k=1,否则为0,假设每分配一个时隙消耗一个单位的能量;设置ILP公式的辅助变量W,表示整个网络架构所能达到的最大能源上限;辅助变量SLT,SLT≡{mi,j,k},如果流i通过链路j传输且被分配了时隙k,则mi,j,k=1,否则为0;辅助变量C=(|TS|×|E|)+1;We set the input and variables of the ILP formula as follows: the network topology G≡(V,E), the set of scheduled time-triggered flows TS, TS≡{ts i }; the mapping of flows to network links SL, SL≡{ f i,j }, If flow i is transmitted through link j, f i,j = 1, otherwise 0; the mapping ST of flow to time slot, ST≡{t i,k }, If stream i is assigned time slot k, t i,k = 1, otherwise it is 0, assuming that each assigned time slot consumes one unit of energy; set the auxiliary variable W of the ILP formula to represent the maximum that the entire network architecture can achieve Energy upper limit; auxiliary variable SLT, SLT≡{m i,j,k }, If stream i is transmitted through link j and is allocated time slot k, mi,j,k = 1, otherwise 0; auxiliary variable C = (|TS|×|E|)+1;

目标函数的制定主要是最大化网络架构中分配时隙消耗能量的能量利用率,那么ILP公式目标函数制定如下:The formulation of the objective function is mainly to maximize the energy utilization rate of the energy consumed in the allocated time slots in the network architecture, then the objective function of the ILP formula is formulated as follows:

MaximizeMaximize

相对应地,我们制定ILP公式的约束条件如下:Correspondingly, we formulate the constraints of the ILP formula as follows:

每个流最多只能分配一个时隙,因为它们在相应的时间内只携带一个MTU大小的数据包。Each flow can only be allocated at most one slot, since they only carry one MTU-sized packet at a corresponding time.

其中,in(src(i))、out(src(i))分别表示源主机的输入和输出,in(dst(i))、out(dst(i))分别表示目的主机的输入和输出;Among them, in(src(i)), out(src(i)) represent the input and output of the source host respectively, and in(dst(i)) and out(dst(i)) represent the input and output of the destination host respectively;

给定流i的路径从其源主机开始并在其目的地主机处结束(即源主机仅具有一个输出链路而不具有输入链路,而目的地主机具有一个不具有输出链路的输入链路),对于所有其他网络节点而言,进入链路的数量等于出站链路的数量。The path for a given flow i starts at its source host and ends at its destination host (i.e., the source host has only one output link and no input link, and the destination host has an input link with no output link roads), for all other network nodes, the number of inbound links is equal to the number of outbound links.

在任何时隙期间,多个流不能同时通过给定的链路进行路由,这个约束确保了每个流的整个路径仅在其分配的时隙期间被保留给流。During any time slot, multiple flows cannot be routed through a given link at the same time, this constraint ensures that each flow's entire path is reserved for flows only during its assigned time slot.

最后,我们需要额外的约束来确保ILP求解器为变量提供一致的值,即对于流i、边j和时隙k,只有当变量fi,j和ti,k都是1时,变量mi,j,k才可以是1。Finally, we need additional constraints to ensure that the ILP solver provides consistent values for the variables, i.e., for flow i, edge j , and slot k , the variable m Only i, j, k can be 1.

求解ILP公式,将时隙分配给时间触发的流,并将它们路由,以避免网络队列,同时最大化网络架构中分配时隙消耗能量的能量利用率,并计算它们的路由和传输时间表。Solve the ILP formulation to assign slots to time-triggered flows and route them to avoid network queues while maximizing the energy utilization of the energy consumed by assigned slots in the network architecture and calculate their routing and transmission schedules.

以下通过相应的实验数据进一步证明本发明的有益效果:Further prove the beneficial effect of the present invention by corresponding experimental data below:

我们使用来自IBM的商业ILP求解器CPLEX来解决我们提出的ILP公式,我们使用8种不同的拓扑计算了160个评估场景中的传输时间表。每个场景由20-110个流程组成,其中随机的源和目标主机在网络中被调度为具有3-5个可用的时隙,我们故意选择了少量的插槽来为我们的ILP公式创建具有挑战性的场景,即使对于较少的流量也是如此。通过图2结果显示,该公式计算100个时间触发流的时间表大约平均只需要8秒。We use the commercial ILP solver CPLEX from IBM to solve our proposed ILP formulation, and we compute the transport schedules in 160 evaluation scenarios using 8 different topologies. Each scenario consists of 20-110 processes, where random source and destination hosts are scheduled in the network with 3-5 available slots, we deliberately chose a small number of slots to create a Challenging scenarios, even for less traffic. The results shown in Figure 2 show that the calculation of the time table of 100 time-triggered flows by this formula takes only about 8 seconds on average.

本发明不仅局限于上述具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其它多种具体实施方案实施本发明。因此,凡是采用本发明的设计结构和思路,做一些简单的变化或更改的设计,都落入本发明保护范围。The present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can adopt various other specific embodiments to implement the present invention according to the content disclosed in the present invention. Therefore, any design that adopts the design structure and ideas of the present invention and makes some simple changes or changes falls within the scope of protection of the present invention.

Claims (5)

1.一种面向实时应用需求的TSN调度方法,其特征在于,该方法包含以下步骤:1. A TSN scheduling method facing real-time application requirements, characterized in that the method comprises the following steps: 步骤1)设置网络环境参数:在软件定义网络SDN的基础之上,建立一种时间敏感型软件定义网络TSSDN的逻辑集中式体系结构,对基准网络拓扑和时间触发流进行建模,将基准网络拓扑表示为一个有向图G≡(V,E),其中V是节点集合,V≡(S∪H),S和H分别是交换机和主机的集合,E≡{(i,j)|i,j∈V且i,j通过网络链路连接}代表一组网络链接的元组;将时间触发流表示为一个元组tsi≡(si,di),其中si,di∈H,si和di分别是流的源和目的地;可用于支出的时隙集合表示为T≡{0,1,...,tmax},tmax由网络控制器的基本周期和时隙长度确定;Step 1) Set network environment parameters: On the basis of software-defined network SDN, establish a logical centralized architecture of time-sensitive software-defined network TSSDN, model the baseline network topology and time-triggered flow, and Topology is represented as a directed graph G≡(V,E), where V is a set of nodes, V≡(S∪H), S and H are sets of switches and hosts, respectively, E≡{(i,j)|i ,j∈V and i,j are connected by network links} represents a set of tuples of network links; express the time-triggered flow as a tuple ts i ≡(s i ,d i ), where s i ,d i ∈ H, s i and d i are the source and destination of the flow respectively; the set of time slots available for spending is denoted as T≡{0,1,...,t max }, where t max is determined by the basic period of the network controller and The length of the time slot is determined; 步骤2)设置ILP公式的输入:被调度的时间触发流的集合TS,TS≡{tsi};流到网络链路的映射SL,SL≡{fi,j},如果流i通过链路j传输,fi,j=1,否则为0;流到时隙的映射ST,ST≡{ti,k},如果流i被分配了时隙k,ti,k=1,否则为0,假设每分配一个时隙消耗一个单位的能量;设置ILP公式的辅助变量:辅助变量W,表示整个网络架构所能达到的最大能源上限;辅助变量SLT,SLT≡{mi,j,k},如果流i通过链路j传输且被分配了时隙k,则mi,j,k=1,否则为0;辅助变量C=(|TS|×|E|)+1;Step 2) Set the input of the ILP formula: the set TS of scheduled time-triggered flows, TS≡{ts i }; the mapping SL from flows to network links, SL≡{f i,j }, If flow i is transmitted through link j, f i,j = 1, otherwise 0; the mapping ST of flow to time slot, ST≡{t i,k }, If flow i is assigned time slot k, t i,k = 1, otherwise it is 0, assuming that each allocated time slot consumes one unit of energy; set the auxiliary variable of the ILP formula: auxiliary variable W, which represents the energy that the entire network architecture can Maximum energy upper limit reached; auxiliary variable SLT, SLT≡{m i,j,k }, If stream i is transmitted through link j and is allocated time slot k, mi,j,k = 1, otherwise 0; auxiliary variable C = (|TS|×|E|)+1; 步骤3)制定ILP公式目标函数:Step 3) Formulate the ILP formula objective function: MaximizeMaximize 步骤4)根据ILP公式制定约束:Step 4) Formulate constraints according to the ILP formula: 每个流最多只能分配一个时隙;Each stream can be assigned at most one slot; 其中,in(src(i))、out(src(i))分别表示源主机的输入和输出,in(dst(i))、out(dst(i))分别表示目的主机的输入和输出;Among them, in(src(i)), out(src(i)) represent the input and output of the source host respectively, and in(dst(i)) and out(dst(i)) represent the input and output of the destination host respectively; 给定流i的路径从其源主机开始并在其目的地主机处结束;The path of a given flow i starts at its source host and ends at its destination host; 在任何时隙期间,多个流不能同时通过给定的链路进行路由;Multiple flows cannot be routed over a given link simultaneously during any slot; 确保ILP公式为变量提供一致的值,即对于流i、边j和时隙k,只有当变量fi,j和ti,k都是1时,变量mi,j,k才可以是1;Make sure that the ILP formula provides consistent values for the variables, i.e. for flow i, edge j and slot k, the variable m i,j,k can be 1 only if the variables f i,j and t i,k are both 1 ; 步骤5)求解ILP公式,将时隙分配给时间触发的流,并将这些流路由,以避免网络队列,同时最大化网络架构中分配时隙消耗能量的能量利用率。Step 5) Solving the ILP formula, assigning slots to time-triggered flows, and routing these flows to avoid network queues while maximizing the energy utilization in the network architecture where assigned slots consume energy. 2.根据权利要求1所述的一种面向实时应用需求的TSN调度方法,其特征在于,所述步骤1)中,使用NetworkX创建Erdo″sR'enyi(ER)模型、随机正则图(RRG)、Baraba'si-Albert(BA)模型和Waxman模型,能够更有效地评估ILP公式。2. A kind of TSN scheduling method facing real-time application requirements according to claim 1, characterized in that, in said step 1), use NetworkX to create Erdo "sR'enyi (ER) model, random regular graph (RRG) , Baraba'si-Albert (BA) model and Waxman model can evaluate the ILP formula more effectively. 3.根据权利要求1所述的一种面向实时应用需求的TSN调度方法,其特征在于,所述步骤3)中,目标函数保证淘汰了路径上的循环路径,保持最小的路径长度,最大限度地分配了时隙的数量,这确保了ILP公式同时最大化网络架构中分配时隙的能量利用率。3. A kind of TSN scheduling method facing real-time application requirements according to claim 1, characterized in that, in the step 3), the objective function guarantees that the cyclic path on the path is eliminated, keeps the minimum path length, and maximizes The number of slots is allocated appropriately, which ensures the ILP formulation while maximizing the energy utilization of the allocated slots in the network architecture. 4.根据权利要求1所述的一种面向实时应用需求的TSN调度方法,其特征在于,所述步骤4)中,各种约束充分保证了最佳的调度,如果所有流量传输周期等于基准周期,则从给定的一组流中调度最大数量的时间触发的流。4. A TSN scheduling method oriented to real-time application requirements according to claim 1, characterized in that, in the step 4), various constraints fully guarantee the best scheduling, if all traffic transmission periods are equal to the reference period , then schedule the maximum number of time-triggered streams from the given set of streams. 5.根据权利要求1所述的一种面向实时应用需求的TSN调度方法,其特征在于,所述步骤5)中,使用来自IBM的商业求解器CPLEX来解决ILP公式。5. A kind of TSN scheduling method oriented to real-time application requirements according to claim 1, characterized in that, in said step 5), use commercial solver CPLEX from IBM to solve the ILP formula.
CN201810541014.2A 2018-05-30 2018-05-30 A kind of TSN dispatching methods towards real-time application demand Pending CN108809707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810541014.2A CN108809707A (en) 2018-05-30 2018-05-30 A kind of TSN dispatching methods towards real-time application demand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810541014.2A CN108809707A (en) 2018-05-30 2018-05-30 A kind of TSN dispatching methods towards real-time application demand

Publications (1)

Publication Number Publication Date
CN108809707A true CN108809707A (en) 2018-11-13

Family

ID=64089384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810541014.2A Pending CN108809707A (en) 2018-05-30 2018-05-30 A kind of TSN dispatching methods towards real-time application demand

Country Status (1)

Country Link
CN (1) CN108809707A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474908A (en) * 2018-12-04 2019-03-15 中国航空无线电电子研究所 A kind of aeronautical Ad hoc networks method of task based access control driving
CN110191032A (en) * 2019-05-15 2019-08-30 山东易码智能科技股份有限公司 A method of by non-standard real-time ethernet turn-on time sensitive network
CN111328109A (en) * 2020-02-10 2020-06-23 浙江理工大学 Distributed synchronization-free transmission scheduling method and system of multi-hop wireless network
CN111600754A (en) * 2020-05-11 2020-08-28 重庆邮电大学 Industrial heterogeneous network scheduling method for interconnection of TSN (transmission time network) and non-TSN (non-Transmission time network)
CN111654413A (en) * 2020-05-18 2020-09-11 长沙理工大学 A method, device and storage medium for selecting an effective measurement point for network traffic
CN112054968A (en) * 2020-09-03 2020-12-08 北京邮电大学 Scheduling method, device and electronic device for large-scale time-sensitive network
CN112532427A (en) * 2020-11-05 2021-03-19 中国航空工业集团公司西安航空计算技术研究所 Planning and scheduling method of time-triggered communication network
CN113424500A (en) * 2019-02-12 2021-09-21 赫思曼自动化控制有限公司 Method for routing in time-sensitive networks
CN113475041A (en) * 2019-03-06 2021-10-01 罗伯特·博世有限公司 Method and device for operating a TSN communication system
CN113726657A (en) * 2020-05-25 2021-11-30 中兴通讯股份有限公司 Message forwarding method, device, system, equipment and storage medium
CN114553697A (en) * 2022-02-14 2022-05-27 重庆邮电大学 A Network Scheduling Method for the Convergence of Industrial Wireless and TSN
CN115604200A (en) * 2022-10-08 2023-01-13 燕山大学(Cn) Rolling production line heterogeneous equipment real-time cooperation oriented deterministic resource scheduling method
WO2023015644A1 (en) * 2021-08-10 2023-02-16 北京交通大学 Planning method and system architecture for scheduling of chained service flow

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553846A (en) * 2016-02-22 2016-05-04 南京大学 Method for distributing resources in software defined network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553846A (en) * 2016-02-22 2016-05-04 南京大学 Method for distributing resources in software defined network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NARESH GANESH NAYAK等: "Time-sensitive Software-defined Network (TSSDN) for Real-time Applications", 《RTNS"16,BREST,FRANCE》 *
彭轻羽: "面向实时应用需求的TSN调度算法研究", 《电工技术》 *
彭轻羽: "面向工业物联网的TSN调度算法研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474908A (en) * 2018-12-04 2019-03-15 中国航空无线电电子研究所 A kind of aeronautical Ad hoc networks method of task based access control driving
CN113424500B (en) * 2019-02-12 2023-10-24 赫思曼自动化控制有限公司 Method for routing in a time-sensitive network
CN113424500A (en) * 2019-02-12 2021-09-21 赫思曼自动化控制有限公司 Method for routing in time-sensitive networks
CN113475041B (en) * 2019-03-06 2024-04-05 罗伯特·博世有限公司 Method and device for operating a TSN communication system
US11916737B2 (en) 2019-03-06 2024-02-27 Robert Bosch Gmbh Method and unit for operating a TSN communication system
CN113475041A (en) * 2019-03-06 2021-10-01 罗伯特·博世有限公司 Method and device for operating a TSN communication system
CN110191032A (en) * 2019-05-15 2019-08-30 山东易码智能科技股份有限公司 A method of by non-standard real-time ethernet turn-on time sensitive network
CN111328109A (en) * 2020-02-10 2020-06-23 浙江理工大学 Distributed synchronization-free transmission scheduling method and system of multi-hop wireless network
CN111328109B (en) * 2020-02-10 2023-04-18 浙江理工大学 Distributed synchronization-free transmission scheduling method and system for multi-hop wireless network
US11736408B2 (en) 2020-05-11 2023-08-22 Chongqing University Of Posts And Telecommunications Scheduling method applied in industrial heterogeneous network in which TSN and non-TSN are interconnected
CN111600754A (en) * 2020-05-11 2020-08-28 重庆邮电大学 Industrial heterogeneous network scheduling method for interconnection of TSN (transmission time network) and non-TSN (non-Transmission time network)
WO2021227245A1 (en) * 2020-05-11 2021-11-18 重庆邮电大学 Scheduling method for tsn and non-tsn interconnected industrial heterogeneous network
CN111600754B (en) * 2020-05-11 2022-02-25 重庆邮电大学 Industrial heterogeneous network scheduling method for interconnection of TSN (transmission time network) and non-TSN (non-Transmission time network)
CN111654413B (en) * 2020-05-18 2022-07-26 长沙理工大学 Method, equipment and storage medium for selecting effective measurement points of network flow
CN111654413A (en) * 2020-05-18 2020-09-11 长沙理工大学 A method, device and storage medium for selecting an effective measurement point for network traffic
CN113726657A (en) * 2020-05-25 2021-11-30 中兴通讯股份有限公司 Message forwarding method, device, system, equipment and storage medium
CN112054968A (en) * 2020-09-03 2020-12-08 北京邮电大学 Scheduling method, device and electronic device for large-scale time-sensitive network
CN112532427A (en) * 2020-11-05 2021-03-19 中国航空工业集团公司西安航空计算技术研究所 Planning and scheduling method of time-triggered communication network
CN112532427B (en) * 2020-11-05 2023-03-14 中国航空工业集团公司西安航空计算技术研究所 Planning and scheduling method of time-triggered communication network
WO2023015644A1 (en) * 2021-08-10 2023-02-16 北京交通大学 Planning method and system architecture for scheduling of chained service flow
CN114553697B (en) * 2022-02-14 2023-09-15 重庆邮电大学 Industrial wireless and TSN fusion-oriented network scheduling method
CN114553697A (en) * 2022-02-14 2022-05-27 重庆邮电大学 A Network Scheduling Method for the Convergence of Industrial Wireless and TSN
CN115604200A (en) * 2022-10-08 2023-01-13 燕山大学(Cn) Rolling production line heterogeneous equipment real-time cooperation oriented deterministic resource scheduling method
CN115604200B (en) * 2022-10-08 2024-03-26 燕山大学 Deterministic resource scheduling method for real-time collaboration of heterogeneous equipment in rolling production lines

Similar Documents

Publication Publication Date Title
CN108809707A (en) A kind of TSN dispatching methods towards real-time application demand
CN110431769A (en) The method and apparatus of data transmission for the time control in TSN
CN104994033A (en) Method for guaranteeing QoS (quality of service) of SDN (software defined network) by means of dynamic resource management
CN114051715B (en) Control device, switching device and method
Hua et al. Scheduling design and analysis for end-to-end heterogeneous flows in an avionics network
CN114448894A (en) Multi-level service scheduling engine facing time sensitive network and implementation method
Lin et al. Jointly optimized QoS-aware virtualization and routing in software defined networks
Yu et al. Deep reinforcement learning-based deterministic routing and scheduling for mixed-criticality flows
Metaal et al. Integrated industrial Ethernet networks: Time-sensitive networking over SDN infrastructure for mixed applications
Fan et al. Guaranteed real-time communication in packet-switched networks with FCFS queuing
Guo et al. Ieee sa industry connections-ieee 802 nendica report: Intelligent lossless data center networks
CN117424921A (en) Distributed control system and control method oriented to large-scale deterministic network
Li et al. A SDN-based traffic bandwidth allocation method for time sensitive networking in avionics
Feng et al. Smt-based task-and network-level static schedule for time sensitive network
Tawk et al. Optimal scheduling and delay analysis for AFDX end-systems
Sedaghat et al. FRT-SDN: an effective firm real time routing for SDN by early removal of late packets
Sedaghat et al. R2T-DSDN: reliable real-time distributed controller-based SDN
Gushchin et al. Optimization-based network flow deadline scheduling
Siddiqui et al. Minimum delay routing protocol with enhanced multimedia transmission over heterogeneous MANETs
Greff et al. A dynamic flow allocation method for the design of a software-defined real-time mesh network
Li et al. Towards minimal tardiness of data-intensive applications in heterogeneous networks
Kong et al. Run-time per-class routing of AVB flows in in-vehicle TSN via composable delay analysis
Leung et al. A resequencing model for high-speed packet-switching networks
Paschos et al. Multirate multicast: Optimal algorithms and implementation
CN104065707A (en) Time-triggered scheduling system based on computing and communication co-design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181113

WD01 Invention patent application deemed withdrawn after publication