CN108635357A - 一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 - Google Patents
一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 Download PDFInfo
- Publication number
- CN108635357A CN108635357A CN201810510444.8A CN201810510444A CN108635357A CN 108635357 A CN108635357 A CN 108635357A CN 201810510444 A CN201810510444 A CN 201810510444A CN 108635357 A CN108635357 A CN 108635357A
- Authority
- CN
- China
- Prior art keywords
- iridium
- complex
- mitochondria
- application
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/555—Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
本发明公开了一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用。所述的铱配合物结构式为:[Ir(ppy)2(HPIP)]Cl,其中ppy代表的配体为2‑苯基吡啶,HPIP代表的配体为3‑(1H‑咪唑[4,5‑f][1,10]邻菲罗啉‑2‑yl)苯酚。本发明所述铱配合物对人肿瘤细胞HeLa、HepG2、A‑549、及顺铂耐药株CP/R‑A549均有强的抑制作用,能够蓄积在肿瘤细胞的线粒体并诱导肿瘤细胞发生凋亡,可作为新的以肿瘤细胞线粒体为靶点的抗肿瘤药物。
Description
技术领域
本发明属于抗肿瘤药物技术领域,具体涉及一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用。
背景技术
全世界每年约有760万人死于癌症,占总死亡人数的13%,每年全球被确诊癌症患者达1270万,我国每年约有150万死于癌症,且呈每年逐步上升趋势。肿瘤治疗主要包括手术治疗、放射治疗、化学治疗三个方面。化学治疗,即用化学合成药物治疗疾病的方法。传统的化疗药物由于具有卓越的细胞毒性,使化疗成为目前临床治疗肿瘤疾病的重要手段,但是由于其对于正常细胞和肿瘤细胞的差异识别能力不强,造成在临床应用中对肿瘤患者产生严重的毒副作用,这是导致中断治疗和治疗失败的主要原因。所以,研发靶向性强、毒副作用低的抗肿瘤药物显得愈发迫切。金属铱配合物和其他金属抗癌药物相比,具有更高的细胞毒性和更小的毒副作用,呈现出广阔的发展前景,已成为国内外的研究热点。
肿瘤细胞与正常细胞的线粒体无论在结构上还是功能上都存在较大差异,主要表现在线粒体能量代谢、膜电位及通透性、线粒体内ROS水平等几方面,肿瘤细胞由于发生较为广泛的变异而更容易受线粒体损伤的影响,许多研究巧妙利用这些特点使线粒体靶向药物成为近年抗肿瘤药物的新的设计方向(Nature Reviews Drug Discovery,2010,9:447-464.)。正常细胞一般利用氧化磷酸化方式生成ATP,而肿瘤细胞由于快速增殖而倾向于发生糖酵解来提供更多的能量。与正常细胞相比,某些癌细胞中的线粒体膜电位异常升高,氯尼达明(Lonidamine),奥利默森(Oblimersen),白藜芦醇(Resveratrol)等药物可以通过直接使线粒体的膜电位消散,或者通过调节bcl-2及Bax等与线粒体膜通透性密切相关的凋亡蛋白家族,最终导致线粒体基质的渗透性膨胀而诱导肿瘤细胞凋亡。另外肿瘤细胞特别是肿瘤干细胞线粒体ROS水平明显偏低,甲萘醌(menadione),钆莫特沙芬(motexafingadolinium),拉帕醌(lapachone),等药物皆是通过在线粒体中产生过量的ROS或者抑制SOD的活性来诱导肿瘤细胞凋亡(Trends in Cell Biology,2008,18(4):165-173.)。
综上所述,直接作用在线粒体的抗肿瘤药物有避开传统化学治疗抵抗机制的潜力,可以用于耐药肿瘤的治疗;而利用肿瘤细胞和正常细胞线粒体的差异也使得线粒体靶向药物的毒副作用明显降低,从而达到增效减毒的抗肿瘤药物的临床应用需求。
发明内容
本发明的发明目的在于提供一种铱配合物的制备及在抗肿瘤药物中的应用。
本发明的上述目的通过如下技术方案予以实现:
一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用,其中,所述铱配合物的阳离子结构式为阴离子为Cl-。
所述铱配合物合成方法参考:Dalton Trans.,2014,43,17463–17474。所述的铱配合物结构式为:所述的铱配合物结构式为:[Ir(ppy)2(HPIP)]Cl,其中ppy代表的配体为2-苯基吡啶,HPIP代表的配体为3-(1H-咪唑[4,5-f][1,10]邻菲罗啉-2-yl)苯酚。本发明所述铱配合物对人(卵巢肿瘤、乳腺肿瘤、肝肿瘤或肺肿瘤)的肿瘤细胞HeLa、A-549、HepG2、MCF-7及顺铂耐药株CP/R-A549均有强的抑制作用,而且对人正常肝细胞L02毒性很小。所述铱配合物具有绿色荧光,进入细胞后通过细胞器共定位研究发现该配合物能特异靶向蓄积在肿瘤细胞线粒体。能够诱导肿瘤细胞发生凋亡。可作为新的以肿瘤细胞线粒体为靶点的抗肿瘤药物。
附图说明
图1为铱配合物在HeLa细胞中的细胞器共定位实验结果图;
图2为铱配合物诱导HeLa细胞发生凋亡的流式细胞术结果图;
具体实施方式
下面结合具体实施例对本发明作进一步的解释说明,但具体实施例并不对本发明作任何限定。除非特别说明,实施例中所涉及的试剂、方法均为本领域常用的试剂和方法。
所述铱配合物合成方法参考:Dalton Trans.,2014,43,17463–17474。所述的铱配合物结构式为:[Ir(ppy)2(HPIP)]Cl,其中ppy代表的配体为2-苯基吡啶,HPIP代表的配体为3-(1H-咪唑[4,5-f][1,10]邻菲罗啉-2-yl)苯酚。
实施例1铱配合物体外抗肿瘤活性测定
筛选的细胞株有:肿瘤细胞HeLa、A-549、HepG2、MCF-7、及顺铂耐药株CP/R-A549,对照细胞采用正常人胚肝细胞L02。阳性对照药物采用顺铂。测定采用溴化四氮唑蓝(MTT)法,其原理为:溴化四氮唑蓝[MTT,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide]是一种能接受氢原子的染料,活细胞线粒体中与NADP相关的脱氢酶在细胞内可将黄色的MTT转化成不溶性的蓝紫色的甲臢,而死细胞则无此功能。用二甲基亚砜(DMSO)溶解甲臢后,在一定的波长下用酶标仪测定光密度值,即可定量测出细胞的存活率。实验步骤:取对数生长期的肿瘤细胞,接种于96孔培养板中,200μL/孔。实验各样品均为5个浓度,每个浓度设6个复孔。加入药物后,将细胞置于37℃,5%C02培养箱内继续培养48小时,然后加MTT,再继续培养4小时,吸去上清液,每孔加150μL DMSO,用酶标仪在49Onm波长测各孔吸光度,按下列公式计算细胞增殖抑制率。相关的细胞增殖的抑制率及细胞数量的死亡率用下面的公式进行计算:抑制率(%)=(对照组平均OD值-给药组平均OD值)/对照组平均OD值×100%;根据中国药科大学新药筛选中心提供的半数抑制率(IC50)计算软件求出IC50值,实验结果见表1。
表1铱配合物对各种细胞的半数抑制浓度
aIC50的单位用μM表示,数据以均数±标准差表示,bCP/R:为顺铂耐药株,cL02:为正常人肝细胞。
实验结果表明,铱配合物对多种肿瘤细胞的半数抑制率明显低于经典化疗药物顺铂,但是对于顺铂耐药株有显著的抑制作用,而且对人正常肝细胞的毒性明显小于顺铂。这说明本发明所指的铱配合物可以用作抗癌药物应用。
实施例2线粒体靶向定位
取对数生长期的HeLa细胞,调整浓度为1×104/mL,接种到35mm细胞培养皿,待细胞生长到60%汇合度,加入铱配合物及线粒体特异性荧光探针Mito-Tracker,孵育30分钟,用激光共聚焦显微镜(Zeiss Axio Observer D1)检测铱配合物在细胞内定位,实验结果如图1所示(A为铱配合物(绿色荧光),B为线粒体特异性荧光探针(红色荧光),C为细胞核染料DAPI图像(蓝色荧光),D为图A、B与C的叠加)。实验表明,图1-D显示出由铱配合物发出的绿色荧光及线粒体特异性荧光探针发出的红色荧光叠加后呈现橘黄色荧光,证明所指铱配合物可以靶向定位在细胞的线粒体中。
实施例3铱配合物诱导肿瘤细胞发生凋亡
测定采用流式细胞术Annexin-V染色法,其原理为:磷脂酰丝氨酸(Phosphatidylserine,PS)正常位于细胞膜的内侧,但在细胞凋亡的早期,PS可从细胞膜的内侧翻转到细胞膜的表面,暴露在细胞外环境中。Annexin-V是一种Ca2+依赖性磷脂结合蛋白,能与PS高亲和力特异性结合。将Annexin-V进行荧光素(FITC)标记,以标记了的Annexin-V作为荧光探针,利用流式细胞仪可检测细胞凋亡的发生。实验步骤:处于对数生长期的HeLa细胞以5x 104个/mL的细胞密度接种于6孔板,每孔2mL,置于37℃、5%CO2的饱和湿度培养箱中培养24小时后,然后加入不同浓度的铱配合物,对照组加入等体积的PBS。培养24小时,3000r/min收集细胞,PBS洗三次,每次5min。重新悬浮在100μL binding buffer(10mM HEPES,140mM,2.5mM CaCl2,pH 7.4)再加入5μL Annexin V-FITC(Invitrogen,USA,CA),在室温避光15分钟。然后加入400μL结合缓冲液,用FACSCanto II(BD Biosciences,USA)流式细胞仪进行分析,结果示于图2。
实验结果表明,加入铱配合物24小时后,大量细胞发生凋亡,且凋亡率随铱配合物剂量的增加而增高,说明铱配合物能够有效诱导肿瘤细胞发生凋亡。
Claims (4)
1.一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用,其特征在于,所述铱配合物的阳离子结构为阴离子为Cl-。
2.根据权利要求1所述的铱配合物在制备抗肿瘤药物中的应用,其特征在于,所述肿瘤为卵巢肿瘤、乳腺肿瘤、肝肿瘤或肺肿瘤。
3.根据权利要求2所述的铱配合物在制备抗肿瘤药物中的应用,其特征在于,所述肿瘤的细胞株为HeLa、MCF-7、HepG2、A-549。
4.根据权利要求1所述的铱配合物在制备抗肿瘤药物中的应用,其特征在于,所述抗肿瘤机理为诱导肿瘤细胞发生凋亡。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810510444.8A CN108635357A (zh) | 2018-05-24 | 2018-05-24 | 一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810510444.8A CN108635357A (zh) | 2018-05-24 | 2018-05-24 | 一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108635357A true CN108635357A (zh) | 2018-10-12 |
Family
ID=63757966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810510444.8A Pending CN108635357A (zh) | 2018-05-24 | 2018-05-24 | 一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108635357A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423260A (zh) * | 2019-07-12 | 2019-11-08 | 中山大学 | 一种葡萄糖修饰的环金属化铱光敏剂及其制备方法和应用 |
CN113583057A (zh) * | 2021-09-07 | 2021-11-02 | 中山大学 | 一种高效金属铱配合物及其制备方法和应用 |
CN114057777A (zh) * | 2021-11-18 | 2022-02-18 | 南方海洋科学与工程广东省实验室(湛江) | 一种β-咔啉衍生物及其制备方法与应用 |
CN116063372A (zh) * | 2023-01-17 | 2023-05-05 | 齐齐哈尔医学院 | 一类线粒体靶向的抗肿瘤化合物及其制备方法和应用 |
CN116425804A (zh) * | 2023-04-04 | 2023-07-14 | 东莞市人民医院 | 一种具有抗炎和抗肿瘤活性的环金属铱配合物及其制备方法和应用 |
-
2018
- 2018-05-24 CN CN201810510444.8A patent/CN108635357A/zh active Pending
Non-Patent Citations (3)
Title |
---|
JIN-QUANWANG等: "A cyclometalated iridium(III) complex that induces apoptosis in cisplatin-resistant cancer cells", 《INORGANIC CHEMISTRY COMMUNICATIONS》 * |
QIANG ZHAO等: "Tuning Photophysical and Electrochemical Properties of Cationic Iridium(III) Complex Salts with Imidazolyl Substituents by Proton and Anions", 《ORGANOMETALLICS》 * |
SOUMIK MANDAL等: "Development of a cyclometalated iridium complex with specific intramolecular hydrogen-bonding that acts as a fluorescent marker for the endoplasmic reticulum and causes photoinduced cell death", 《DALTON TRANSACTIONS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423260A (zh) * | 2019-07-12 | 2019-11-08 | 中山大学 | 一种葡萄糖修饰的环金属化铱光敏剂及其制备方法和应用 |
CN110423260B (zh) * | 2019-07-12 | 2022-08-02 | 中山大学 | 一种葡萄糖修饰的环金属化铱光敏剂及其制备方法和应用 |
CN113583057A (zh) * | 2021-09-07 | 2021-11-02 | 中山大学 | 一种高效金属铱配合物及其制备方法和应用 |
CN113583057B (zh) * | 2021-09-07 | 2023-04-14 | 中山大学 | 一种高效金属铱配合物及其制备方法和应用 |
CN114057777A (zh) * | 2021-11-18 | 2022-02-18 | 南方海洋科学与工程广东省实验室(湛江) | 一种β-咔啉衍生物及其制备方法与应用 |
CN116063372A (zh) * | 2023-01-17 | 2023-05-05 | 齐齐哈尔医学院 | 一类线粒体靶向的抗肿瘤化合物及其制备方法和应用 |
CN116425804A (zh) * | 2023-04-04 | 2023-07-14 | 东莞市人民医院 | 一种具有抗炎和抗肿瘤活性的环金属铱配合物及其制备方法和应用 |
CN116425804B (zh) * | 2023-04-04 | 2023-09-29 | 东莞市人民医院 | 一种具有抗炎和抗肿瘤活性的环金属铱配合物及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108635357A (zh) | 一种铱配合物在制备线粒体靶向抗肿瘤药物中的应用 | |
Seo et al. | Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells | |
Salimi et al. | Selective anticancer activity of acacetin against chronic lymphocytic leukemia using both in vivo and in vitro methods: key role of oxidative stress and cancerous mitochondria | |
Chen et al. | The induction of autophagy against mitochondria-mediated apoptosis in lung cancer cells by a ruthenium (II) imidazole complex | |
Li et al. | Polypyridyl Ruthenium (II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer | |
Akl et al. | Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling | |
Aboul-Soud et al. | Antioxidant, anti-proliferative activity and chemical fingerprinting of centaurea calcitrapa against breast cancer cells and molecular docking of caspase-3 | |
Bonsignore et al. | Endoplasmic reticulum stress and cancer: could unfolded protein response be a druggable target for cancer therapy? | |
Ferretti et al. | An overview of vanadium and cell signaling in potential cancer treatments | |
Chen et al. | In vitro and in vivo antitumour activities of puerarin 6 ″-O-xyloside on human lung carcinoma A549 cell line via the induction of the mitochondria-mediated apoptosis pathway | |
Yang et al. | Silibinin restores the sensitivity of cisplatin and taxol in A2780-resistant cell and reduces drug-induced hepatotoxicity | |
Yu et al. | Autophagy modulation in human thyroid cancer cells following aloperine treatment | |
Zhang et al. | Sanguinarine exhibits potent efficacy against cervical cancer cells through inhibiting the STAT3 pathway in vitro and in vivo | |
Silihe et al. | Ficus umbellata vahl.(Moraceae) stem bark extracts exert antitumor activities in vitro and in vivo | |
Gao et al. | 4-Hydroxyderricin promotes apoptosis and cell cycle arrest through regulating PI3K/AKT/mTOR pathway in hepatocellular cells | |
Mathieu et al. | Cyclic versus hemi-bastadins. Pleiotropic anti-cancer effects: From apoptosis to anti-angiogenic and anti-migratory effects | |
Predarska et al. | Mesoporous silica nanoparticles enhance the anticancer efficacy of platinum (IV)-phenolate conjugates in breast cancer cell lines | |
Yu et al. | Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo | |
Wang et al. | 2-(4-methoxyphenylthio)-5, 8-dimethoxy-1, 4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells | |
Li et al. | Chinese herbal formulas Miao‐Yi‐Ai‐Tang inhibits the proliferation and migration of lung cancer cells through targeting β‐catenin/AXIN and presents synergistic effect with cisplatin suppressing lung cancer | |
He et al. | Camellia nitidissima chi extract potentiates the sensitivity of gastric cancer cells to paclitaxel via the induction of autophagy and apoptosis | |
Zhang et al. | Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo | |
Yu et al. | Mulberry leaf polyphenol extract and rutin induces autophagy regulated by p53 in human hepatoma HepG2 cells | |
Safdar et al. | Cyanidin as potential anticancer agent targeting various proliferative pathways | |
Ma et al. | A Mulberry Diels-Alder-type Adduct, Kuwanon M, triggers Apoptosis and Paraptosis of lung cancer cells through inducing endoplasmic Reticulum Stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181012 |
|
RJ01 | Rejection of invention patent application after publication |