CN108624061A - A kind of photo-curable silicone and its preparation method and application for 3D printing - Google Patents
A kind of photo-curable silicone and its preparation method and application for 3D printing Download PDFInfo
- Publication number
- CN108624061A CN108624061A CN201810272877.4A CN201810272877A CN108624061A CN 108624061 A CN108624061 A CN 108624061A CN 201810272877 A CN201810272877 A CN 201810272877A CN 108624061 A CN108624061 A CN 108624061A
- Authority
- CN
- China
- Prior art keywords
- printing
- parts
- photo
- curable silicone
- photoinitiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010146 3D printing Methods 0.000 title claims abstract description 73
- 229920001296 polysiloxane Polymers 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 37
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 28
- -1 polysiloxane Polymers 0.000 claims abstract description 27
- 150000003384 small molecules Chemical class 0.000 claims abstract description 19
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims abstract description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 24
- 239000002077 nanosphere Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 229920002554 vinyl polymer Polymers 0.000 claims description 14
- 239000003607 modifier Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 239000004005 microsphere Substances 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims 2
- 239000007983 Tris buffer Substances 0.000 claims 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical class OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 claims 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- 125000003342 alkenyl group Chemical group 0.000 claims 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical class OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims 1
- 238000005119 centrifugation Methods 0.000 claims 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 claims 1
- 229940070748 dimercaptosuccinate Drugs 0.000 claims 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical class CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 claims 1
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- ACTRVOBWPAIOHC-UHFFFAOYSA-N succimer Chemical compound OC(=O)C(S)C(S)C(O)=O ACTRVOBWPAIOHC-UHFFFAOYSA-N 0.000 claims 1
- CWERGRDVMFNCDR-UHFFFAOYSA-M thioglycolate(1-) Chemical compound [O-]C(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-M 0.000 claims 1
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical class OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 claims 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 46
- 238000001723 curing Methods 0.000 abstract description 21
- 238000007639 printing Methods 0.000 abstract description 13
- 125000003396 thiol group Chemical group [H]S* 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 8
- 238000011049 filling Methods 0.000 abstract description 6
- 238000000016 photochemical curing Methods 0.000 abstract description 4
- 229920002379 silicone rubber Polymers 0.000 description 19
- 239000004945 silicone rubber Substances 0.000 description 19
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical group C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 229920002545 silicone oil Polymers 0.000 description 8
- 244000028419 Styrax benzoin Species 0.000 description 7
- 235000000126 Styrax benzoin Nutrition 0.000 description 7
- 235000008411 Sumatra benzointree Nutrition 0.000 description 7
- 229960002130 benzoin Drugs 0.000 description 7
- 235000019382 gum benzoic Nutrition 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- HCZMHWVFVZAHCR-UHFFFAOYSA-N 2-[2-(2-sulfanylethoxy)ethoxy]ethanethiol Chemical compound SCCOCCOCCS HCZMHWVFVZAHCR-UHFFFAOYSA-N 0.000 description 4
- MBNRBJNIYVXSQV-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propane-1-thiol Chemical compound CCO[Si](C)(OCC)CCCS MBNRBJNIYVXSQV-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- ODMTYGIDMVZUER-UHFFFAOYSA-N undecane-1,11-dithiol Chemical compound SCCCCCCCCCCCS ODMTYGIDMVZUER-UHFFFAOYSA-N 0.000 description 4
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical group CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 3
- 229940127554 medical product Drugs 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000012567 medical material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SRZXCOWFGPICGA-UHFFFAOYSA-N 1,6-Hexanedithiol Chemical compound SCCCCCCS SRZXCOWFGPICGA-UHFFFAOYSA-N 0.000 description 1
- PGTWZHXOSWQKCY-UHFFFAOYSA-N 1,8-Octanedithiol Chemical compound SCCCCCCCCS PGTWZHXOSWQKCY-UHFFFAOYSA-N 0.000 description 1
- GJRCLMJHPWCJEI-UHFFFAOYSA-N 1,9-Nonanedithiol Chemical compound SCCCCCCCCCS GJRCLMJHPWCJEI-UHFFFAOYSA-N 0.000 description 1
- IMQFZQVZKBIPCQ-UHFFFAOYSA-N 2,2-bis(3-sulfanylpropanoyloxymethyl)butyl 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(CC)(COC(=O)CCS)COC(=O)CCS IMQFZQVZKBIPCQ-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- IPNDIMIIGZSERC-UHFFFAOYSA-N 4-(2-sulfanylacetyl)oxybutyl 2-sulfanylacetate Chemical compound SCC(=O)OCCCCOC(=O)CS IPNDIMIIGZSERC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- PWGOWIIEVDAYTC-UHFFFAOYSA-N ICR-170 Chemical compound Cl.Cl.C1=C(OC)C=C2C(NCCCN(CCCl)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 PWGOWIIEVDAYTC-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- JOBBTVPTPXRUBP-UHFFFAOYSA-N [3-(3-sulfanylpropanoyloxy)-2,2-bis(3-sulfanylpropanoyloxymethyl)propyl] 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(COC(=O)CCS)(COC(=O)CCS)COC(=O)CCS JOBBTVPTPXRUBP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- UOQACRNTVQWTFF-UHFFFAOYSA-N decane-1,10-dithiol Chemical compound SCCCCCCCCCCS UOQACRNTVQWTFF-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- NWLNWUSPPSNGFL-UHFFFAOYSA-N ethyl 2,2-bis(sulfanyl)acetate Chemical compound CCOC(=O)C(S)S NWLNWUSPPSNGFL-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012949 free radical photoinitiator Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/26—Silicon- containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
本发明公开了一种用于3D打印的光固化有机硅及其制备方法和应用。由包括以下质量份数的组分制备而成:侧链含有乙烯基的聚硅氧烷100份,含有两个或两个以上巯基的小分子交联剂2~20份,光引发剂0.5~5份,表面改性二氧化硅微球0.08~0.17份,溶剂45~68份。本发明采用侧链含有乙烯基的聚硅氧烷与巯基在紫外光照射下快速反应固化,常温下其固化时间达到3 s以内,固化后无难闻气味,材料性能好,打印过程不需要支撑材料,配制过程无溶剂或少量溶剂,体积收缩率小;另外,其制备方法简单,光固化后的产品具有较强的抗撕裂强度与合适的硬度,能够符合医用填充材料的要求的3D打印材料,应用前景广阔。The invention discloses a photocurable silicone for 3D printing, a preparation method and application thereof. It is prepared from the following components in parts by mass: 100 parts of polysiloxane with vinyl groups in the side chain, 2 to 20 parts of small molecule crosslinking agents containing two or more mercapto groups, and 0.5 to 20 parts of photoinitiators 5 parts, surface-modified silica microspheres 0.08-0.17 parts, solvent 45-68 parts. The invention adopts the polysiloxane with vinyl group in the side chain and the mercapto group to quickly react and cure under the irradiation of ultraviolet light, and the curing time can reach within 3 s at normal temperature, there is no unpleasant smell after curing, the material performance is good, and the printing process does not need support The material has no solvent or a small amount of solvent in the preparation process, and the volume shrinkage rate is small; in addition, its preparation method is simple, and the product after photocuring has strong tear resistance and suitable hardness, which can meet the requirements of medical filling materials for 3D printing material with broad application prospects.
Description
技术领域technical field
本发明属于3D打印技术领域。更具体地,涉及一种用于3D打印的光固化有机硅及其制备方法和应用。The invention belongs to the technical field of 3D printing. More specifically, it relates to a photocurable silicone for 3D printing and its preparation method and application.
背景技术Background technique
3D打印技术,又称增材制造技术,是一种用计算机建立物体的三维模型,并以此为依托直接成型的技术,是生物工程,材料成型加工,自动化控制,计算机建模等多个学科的交叉,与传统成型技术相比,它不需要传统刀具、夹具以及多道加工工序,可在一台设备上通过程序控制自动和精确的制造出任意复杂形状的零件,并大大减少了加工工序,显著缩短了新产品的研发周期,降低了研发成本。3D打印技术近年来发展迅速,在航空、制造、模具、教育、医疗、食品等方面发展出了越来越多的应用方向。3D打印实施过程中无需高温加热,降低了能耗,无需特殊溶剂,减小了环境污染,紫外固化迅速,大幅提高了生产效率。 3D打印材料的发展是3D打印技术的3大关键技术之一,材料瓶颈已经成为限制3D打印发展的首要问题。硅橡胶的主链结构为聚硅氧烷结构,其化学性能相对稳定,在临床中作为医用材料的使用效果,已经得到了医学界的广泛认可,目前有许多大公司都把开发硅橡胶的医学使用范围作为自己的战略目标。其具有较高的耐温性、耐氧化、疏水性、柔软性、透过性、耐老化透明度高、生理惰性、与人体组织和血液不粘连、生物适应性好、无毒、无味、不致癌等一系列优良特性。由于硅橡胶本身的这些特性,因此聚甲基硅氧烷就成为医用高分子材料中比较典型的有机硅高分子材料。3D printing technology, also known as additive manufacturing technology, is a technology that uses a computer to build a three-dimensional model of an object and uses it as a direct molding technology. Compared with the traditional forming technology, it does not require traditional tools, fixtures and multiple processing procedures, and can automatically and accurately manufacture parts of any complex shape through program control on one device, and greatly reduces the processing procedures. , Significantly shorten the development cycle of new products and reduce the cost of research and development. 3D printing technology has developed rapidly in recent years, and has developed more and more application directions in aviation, manufacturing, molds, education, medical care, food, etc. During the implementation of 3D printing, high temperature heating is not required, energy consumption is reduced, no special solvent is required, environmental pollution is reduced, UV curing is rapid, and production efficiency is greatly improved. The development of 3D printing materials is one of the three key technologies of 3D printing technology, and the material bottleneck has become the primary problem restricting the development of 3D printing. The main chain structure of silicone rubber is a polysiloxane structure, and its chemical properties are relatively stable. Its clinical use as a medical material has been widely recognized by the medical community. At present, many large companies have developed silicone rubber as a medical material. Use the scope as your own strategic goal. It has high temperature resistance, oxidation resistance, hydrophobicity, softness, permeability, aging resistance, high transparency, physiological inertia, non-adhesion with human tissue and blood, good biological adaptability, non-toxic, tasteless, and non-carcinogenic A series of excellent characteristics. Due to these characteristics of silicone rubber itself, polymethylsiloxane has become a typical silicone polymer material in medical polymer materials.
但是,硅橡胶的固化时间较长,其流动性使其不能保持打印的精确度,因此需要一个支持材料来完成复杂结构的3D打印;此外,硅橡胶的疏水性和较低的表面自由能,限制了其与其他材料有效的同时打印;而且,现有硅橡胶在打印过程中会释放出难闻的气味,故目前对于硅橡胶的3D打印仍有较大的问题,硅橡胶的3D打印比较难实现。目前,能够成功实现硅橡胶3D打印的技术,主要有以下几种:(1)Hinton等人发明了一种利用亲水疏水性的羧乙烯聚合物凝胶支持材料打印硅橡胶的方法,该方法中双组份的硅橡胶混合后,经3D打印机打印,在室温条件下固化,成功实现了硅橡胶的3D打印。但是其在打印过程中需要支持材料,且固化时间较长,而且固化完成后,需要进行适当处理将支持材料除去,过程较为繁琐。(2)中国发明专利《一种3D打印紫外光固化透明硅树脂复合材料的制备方法与应用》(专利号CN105331115A)公开了一种3D打印紫外光固化透明硅树脂复合材料,该种材料的制备过程是,首先,用带丙烯酰氧基的有机硅原料与烷氧基硅烷,在催化剂作用下,在溶剂中经凝胶溶胶法制备带丙烯酰氧基的有机硅树脂预聚物;其次,将带丙烯酰氧基的有机硅原料滴加到白碳黑中,获得丙烯酰氧基改性的补强填料;最后,将预聚物、填料、光引发剂混合后脱泡,得到可以3D打印紫外光固化透明硅树脂复合材料。该方法的缺点是,原料制备过程复杂,硬度过高,很容易发生碎裂。(3)另外,中国发明专利《3D打印用含硅纳米凝胶光固化树脂的制备方法及其应用》(专利号CN106146754A)介绍了一种3D打印用含硅纳米凝胶光固化树脂的制备方法及其应用,该种材料的制备过程是将改性有机硅油和丙烯酸酯类单体、链转移剂、自由基引发剂和有机溶剂加入反应釜中,反应后将产物提纯,得到含硅纳米凝胶光固化树脂。但是该方法的原料制备过程中需使用大量的有机溶剂,不符合医用填充材料的要求,而且产物需要提纯。However, the curing time of silicone rubber is long, and its fluidity makes it impossible to maintain the accuracy of printing, so a support material is needed to complete the 3D printing of complex structures; in addition, the hydrophobicity and low surface free energy of silicone rubber, It limits its effective simultaneous printing with other materials; moreover, the existing silicone rubber will release an unpleasant smell during the printing process, so there are still big problems in the 3D printing of silicone rubber. Compared with the 3D printing of silicone rubber Difficult to achieve. At present, the technologies that can successfully realize silicone rubber 3D printing mainly include the following: (1) Hinton et al. invented a method for printing silicone rubber using a hydrophilic and hydrophobic carboxyvinyl polymer gel support material. After the two-component silicone rubber is mixed, it is printed by a 3D printer and cured at room temperature, and the 3D printing of silicone rubber is successfully realized. However, it needs support materials during the printing process, and the curing time is long, and after curing, it needs to be properly processed to remove the support materials, and the process is relatively cumbersome. (2) Chinese invention patent "A Preparation Method and Application of 3D Printed UV-cured Transparent Silicone Resin Composite Material" (Patent No. CN105331115A) discloses a 3D printed UV-cured transparent silicone resin composite material, the preparation of which The process is, firstly, use the organosilicon raw material with acryloyloxy group and alkoxysilane, under the action of a catalyst, prepare the organosilicon resin prepolymer with acryloyloxy group by gel sol method in a solvent; secondly, The organic silicon raw material with acryloyloxy group is added dropwise to white carbon black to obtain the reinforcing filler modified by acryloxy group; finally, the prepolymer, filler and photoinitiator are mixed and degassed to obtain a 3D Print UV-curable transparent silicone composites. The disadvantage of this method is that the raw material preparation process is complicated, the hardness is too high, and it is easy to break. (3) In addition, the Chinese invention patent "Preparation Method and Application of Silicon-Containing Nanogel Photocurable Resin for 3D Printing" (Patent No. CN106146754A) introduces a preparation method of silicon-containing nanogel photocurable resin for 3D printing and its application, the preparation process of this kind of material is to add modified silicone oil and acrylate monomer, chain transfer agent, free radical initiator and organic solvent into the reaction kettle, and purify the product after reaction to obtain silicon-containing nano-condensate Glue light curing resin. However, a large amount of organic solvent needs to be used in the raw material preparation process of this method, which does not meet the requirements of medical filling materials, and the product needs to be purified.
为了促进3D打印技术的发展,需要开发出在常温下具有一定的流动性和较低的粘度、固化速度快、无难闻气味、3D打印出胶效果好、材料成型后体积收缩率小,打印过程不需要支撑材料,并且光固化后的产品具有较强的抗撕裂强度,有合适的硬度,能够符合医用填充材料的要求的3D打印材料。In order to promote the development of 3D printing technology, it is necessary to develop a certain fluidity and low viscosity at room temperature, fast curing speed, no unpleasant smell, good 3D printing glue effect, and small volume shrinkage after the material is formed. The process does not require support materials, and the product after photocuring has strong tear resistance, suitable hardness, and 3D printing materials that can meet the requirements of medical filling materials.
发明内容Contents of the invention
本发明要解决的技术问题是克服上述现有技术的不足,提供一种用于3D打印的光固化有机硅材料,其较低的粘度、固化速度快、无难闻气味、3D打印出胶效果好、材料成型后体积收缩率小,打印过程不需要支撑材料,并且光固化后的产品具有较强的抗撕裂强度与合适的硬度,能够符合医用填充材料的要求的 3D打印材料。The technical problem to be solved by the present invention is to overcome the deficiencies of the above-mentioned prior art, and provide a light-cured silicone material for 3D printing, which has low viscosity, fast curing speed, no unpleasant smell, and 3D printing glue-out effect. Good, the volume shrinkage rate of the material after molding is small, the printing process does not require support materials, and the product after photocuring has strong tear resistance and appropriate hardness, which can meet the requirements of medical filling materials. 3D printing materials.
本发明的目的是提供一种用于3D打印的光固化有机硅材料。The object of the present invention is to provide a photocurable silicone material for 3D printing.
本发明另一目的是提供上述光固化有机硅材料的制备方法。Another object of the present invention is to provide a method for preparing the above photocurable silicone material.
本发明的再一目的是提供上述光固化有机硅材料在作为或制备医用产品中的应用。Another object of the present invention is to provide the application of the above-mentioned photocurable silicone material as or in the preparation of medical products.
本发明上述目的通过以下技术方案实现:The above object of the present invention is achieved through the following technical solutions:
一种用于3D打印的光固化有机硅,由包括以下质量份数的组分制备而成:侧链含有乙烯基的聚硅氧烷100份,含有两个或两个以上巯基的小分子交联剂 2~20份,光引发剂0.5~5份,表面改性二氧化硅微球0.08~0.17份,溶剂45~ 68份。A light-curable silicone for 3D printing, prepared from the following components in parts by mass: 100 parts of polysiloxane with vinyl groups in the side chain, small molecule cross-linked molecules with two or more mercapto groups 2-20 parts of joint agent, 0.5-5 parts of photoinitiator, 0.08-0.17 parts of surface-modified silica microspheres, and 45-68 parts of solvent.
基于本发明配方,科学确定侧链含有乙烯基的聚硅氧烷、含有两个或两个以上巯基的小分子交联剂、光引发剂、表面改性二氧化硅微球和溶剂原料的配伍比例,显著提高了硅橡胶材料的固化速度,常温下其固化时间达到3s以内,极大的提高了3D打印设备的加工效率,而且固化后无难闻气味、毒性小、污染小、流动性高、韧性高、收缩率低,实现打印材料的尺寸精度可控性。Based on the formula of the present invention, scientifically determine the compatibility of polysiloxanes containing vinyl groups in side chains, small molecule crosslinking agents containing two or more mercapto groups, photoinitiators, surface-modified silica microspheres and solvent raw materials ratio, which significantly improves the curing speed of silicone rubber materials, and the curing time at room temperature is less than 3s, which greatly improves the processing efficiency of 3D printing equipment, and after curing, there is no unpleasant smell, low toxicity, low pollution, and high fluidity , high toughness, low shrinkage, and controllable dimensional accuracy of printed materials.
优选地,所述用于3D打印的光固化有机硅,由包括以下质量份数的组分制备而成:侧链含有乙烯基的聚硅氧烷100份,含有两个或两个以上巯基的小分子交联剂3~10份,光引发剂0.8~1.3份,表面改性二氧化硅微球0.1~0.15份,溶剂50~62.5份。Preferably, the photocurable silicone used for 3D printing is prepared from the following components in parts by mass: 100 parts of polysiloxanes containing vinyl groups in their side chains, 100 parts of polysiloxanes containing two or more mercapto groups 3-10 parts of small molecule cross-linking agent, 0.8-1.3 parts of photoinitiator, 0.1-0.15 parts of surface-modified silica microspheres, and 50-62.5 parts of solvent.
更优选地,所述用于3D打印的光固化有机硅,由包括以下质量份数的组分制备而成:侧链含有乙烯基的聚硅氧烷100份,含有两个或两个以上巯基的小分子交联剂3份,光引发剂1份,表面改性二氧化硅微球0.125份,溶剂62.5份。More preferably, the photocurable silicone used for 3D printing is prepared from the following components in parts by mass: 100 parts of polysiloxanes containing vinyl groups in their side chains, containing two or more mercapto groups 3 parts of small molecule cross-linking agent, 1 part of photoinitiator, 0.125 parts of surface-modified silica microspheres, and 62.5 parts of solvent.
优选地,所述侧链含有乙烯基的聚硅氧烷的粘度为500~50000cst;其乙烯基含量为0.6~1.5mmol/g。Preferably, the viscosity of the polysiloxane containing vinyl groups in the side chain is 500-50000 cst; the vinyl content is 0.6-1.5 mmol/g.
更优选地,所述侧链含有乙烯基的聚硅氧烷的粘度为500~10000cst;其乙烯基含量为0.8~1.2mmol/g。More preferably, the viscosity of the polysiloxane containing vinyl groups in the side chain is 500-10000 cst; its vinyl content is 0.8-1.2 mmol/g.
优选地,所述含有两个或两个以上巯基的小分子交联剂选自三羟甲基丙烷三 (2-巯基乙酸酯)、三羟甲基丙烷三(3-巯基丙酸酯)、1,4-丁二醇双(巯基乙酸酯)、1,6-己二硫醇、1,8-辛二硫醇、1,9-壬二硫醇、1,10-癸二硫醇、1,11-十一烷二硫醇、四(3-巯基丙酸)季戊四醇酯、2,2′-(1,2-乙二基双氧代)双乙硫醇或二巯基乙酸乙二醇酯中的一种或两种以上混合物;混合使用时,混合比例不做严格限定。Preferably, the small molecule crosslinking agent containing two or more mercapto groups is selected from trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate) , 1,4-butanediol bis(mercaptoacetate), 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 1,10-decanedithiol alcohol, 1,11-undecanedithiol, pentaerythritol tetrakis(3-mercaptopropionate), 2,2′-(1,2-ethylenedioxy)diethanethiol or ethyl dimercaptoacetate One or more mixtures of glycol esters; when used in combination, the mixing ratio is not strictly limited.
优选地,所述光引发剂为自由基型光引发剂。Preferably, the photoinitiator is a free radical photoinitiator.
更优选地,所述的光引发剂选自安息香双甲醚、安息香乙醚、安息香、异丙醚、安息香丁醚、二苯基乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮或α-胺烷基苯酮中的一种或两种以上混合物;混合使用时,混合比例不做严格限定。More preferably, the photoinitiator is selected from benzoin dimethyl ether, benzoin ethyl ether, benzoin, isopropyl ether, benzoin butyl ether, diphenyl ethyl ketone, α, α-diethoxyacetophenone, α- One or more mixtures of hydroxyalkyl phenones or α-aminoalkyl phenones; when used in combination, the mixing ratio is not strictly limited.
为了进一步提高固化速度快和去除难闻气体,更进一步优选地,所述的光引发剂为安息香双甲醚或二苯基乙酮。In order to further increase the curing speed and remove the unpleasant gas, it is further preferred that the photoinitiator is benzoin dimethyl ether or diphenyl ethyl ketone.
优选地,所述表面改性二氧化硅微球,由如下方法制备得到:将二氧化硅纳米微球与表面改性剂加入甲苯中,于60~110℃反应4~10h,冷却,离心分离,洗涤,真空烘干,得到表面改性二氧化硅微球;其中,二氧化硅纳米微球与表面改性剂的质量体积比为1:3~10。Preferably, the surface-modified silica microspheres are prepared by the following method: adding silica nano-microspheres and a surface modifier into toluene, reacting at 60-110°C for 4-10 hours, cooling, and centrifuging , washing, and vacuum drying to obtain surface-modified silica microspheres; wherein, the mass-volume ratio of silica nano-microspheres to the surface modifier is 1:3-10.
优选地,所述二氧化硅微球的粒径为15~100nm。Preferably, the particle size of the silica microspheres is 15-100 nm.
优选地,所述的表面改性剂为(3-巯基丙基)三乙氧基硅烷和/或(3-硫基丙基)甲基二乙氧基硅烷。Preferably, the surface modifier is (3-mercaptopropyl)triethoxysilane and/or (3-mercaptopropyl)methyldiethoxysilane.
优选地,先将二氧化硅纳米微球置于甲苯中超声分散30min。Preferably, the silicon dioxide nano-microspheres are ultrasonically dispersed in toluene for 30 minutes.
优选地,反应条件为:于80℃反应8h。Preferably, the reaction condition is: react at 80° C. for 8 hours.
优选地,所述洗涤的条件为:用乙醇和水洗涤3~5次。Preferably, the washing conditions are: washing with ethanol and water for 3-5 times.
本发明还提供了所述用于3D打印的光固化有机硅的制备方法,包括以下步骤:The present invention also provides the preparation method of the photocurable silicone for 3D printing, comprising the following steps:
S1.按照上述的方法制备表面改性二氧化硅微球;S1. Prepare surface-modified silica microspheres according to the above-mentioned method;
S2.向侧链含有乙烯基的聚硅氧烷中加入光引发剂,搅拌使其溶解,再按比例依次加入步骤S1的表面改性二氧化硅微球、含有两个或两个以上巯基的小分子交联剂和溶剂,混合均匀,抽真空除去气泡,得到所述用于3D打印的光固化有机硅。S2. Add a photoinitiator to the polysiloxane containing vinyl groups in the side chain, stir to dissolve it, and then add the surface-modified silica microspheres of step S1 and the polysiloxane containing two or more mercapto groups in proportion. The small molecule cross-linking agent and solvent are uniformly mixed, and the air bubbles are removed by vacuuming to obtain the photocurable silicone for 3D printing.
本发明对所用溶剂不做特别限定,优选为四氢呋喃、乙酸乙酯等。In the present invention, the solvent used is not particularly limited, preferably tetrahydrofuran, ethyl acetate and the like.
另外,所述用于3D打印的光固化有机硅在作为3D打印的原材料方面,尤其在作为或制备医用产品中的应用,也在保护范围之内。In addition, the application of the photocurable silicone used for 3D printing as a raw material for 3D printing, especially as or in the preparation of medical products, is also within the scope of protection.
所述医用产品是指医用填充材料,包括但不限心脏支架、人工血管等。The medical products refer to medical filling materials, including but not limited to heart stents, artificial blood vessels, etc.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明利用侧链含有乙烯基的聚硅氧烷与含有两个或两个以上巯基的小分子交联剂在紫外光照射下快速反应固化,常温下其固化时间达到3s以内,固化后无难闻气味,材料性能好,能够作为3D打印材料使用;而且这种光固化硅橡胶应用于3D打印技术,打印过程不需要支撑材料,材料配制过程无溶剂或少量溶剂,材料成型后体积收缩率小;另外,其制备方法简单,光固化后的产品具有较强的抗撕裂强度与合适的硬度,能够符合医用填充材料的要求的3D打印材料。这种综合性能优良的3D打印材料具有广阔的应用前景。The present invention utilizes the polysiloxane containing vinyl groups in the side chain and the small molecule cross-linking agent containing two or more mercapto groups to quickly react and cure under ultraviolet light irradiation. Smell, good material performance, can be used as a 3D printing material; and this light-cured silicone rubber is used in 3D printing technology, the printing process does not require support materials, the material preparation process has no solvent or a small amount of solvent, and the volume shrinkage rate of the material after molding is small ; In addition, the preparation method is simple, and the product after photocuring has strong tear resistance and appropriate hardness, and can meet the requirements of medical filling materials for 3D printing materials. This 3D printing material with excellent comprehensive properties has broad application prospects.
具体实施方式Detailed ways
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The present invention will be further described below in conjunction with specific examples, but the examples do not limit the present invention in any form. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
除非特别说明,以下实施例所用试剂和材料均为市购。Unless otherwise specified, the reagents and materials used in the following examples are commercially available.
实施例1Example 1
1、一种用于3D打印的光固化有机硅,由以下方法制备得到:1. A light-cured silicone for 3D printing, prepared by the following method:
(1)表面改性二氧化硅纳米微球制备(1) Preparation of surface-modified silica nanospheres
取气相法制备的15nm粒径的二氧化硅纳米微球2g,超声分散于装有150 mL甲苯的三口瓶中,超声分散30min;分散完成后,将装有冷凝装置、搅拌装置的三口瓶置于油浴中,加热至80℃;量取6mL表面改性剂(3-巯基丙基) 三乙氧基硅烷(MPES),放入恒压漏斗中,滴加入反应体系中,滴加时间约为 20min;滴加完成后,继续反应4h,反应完成后,冷却,离心,用乙醇和水洗涤3~5次,50℃真空烘干,得到表面改性二氧化硅纳米微球。Take 2 g of silica nanospheres with a particle size of 15 nm prepared by the gas phase method, ultrasonically disperse them in a three-necked flask containing 150 mL of toluene, and ultrasonically disperse for 30 min; In an oil bath, heat to 80°C; measure 6mL of surface modifier (3-mercaptopropyl)triethoxysilane (MPES), put it into a constant pressure funnel, and add it dropwise to the reaction system, and the dropping time is about After the addition is completed, the reaction is continued for 4 hours. After the reaction is completed, it is cooled, centrifuged, washed with ethanol and water for 3 to 5 times, and vacuum-dried at 50° C. to obtain surface-modified silica nanospheres.
(2)光固化硅橡胶配制(2) Preparation of light-cured silicone rubber
取侧链含有乙烯基的硅油(粘度为500cst,乙烯基含量为0.8mmol/g)100 质量份,加入光引发剂二苯基乙酮1质量份,搅拌使光引发剂溶解,加入上述表面改性二氧化硅纳米微球0.125质量份,再加入小分子交联剂2,2′-(1,2-乙二基双氧代)双乙硫醇3质量份和四氢呋喃62.5质量份,混合均匀,并抽真空除去气泡,得到用于3D打印的光固化有机硅。Take 100 parts by mass of silicone oil containing vinyl in the side chain (viscosity is 500cst, vinyl content is 0.8mmol/g), add 1 part by mass of photoinitiator diphenyl ethyl ketone, stir to dissolve the photoinitiator, add the above-mentioned surface modification 0.125 parts by mass of silica nanospheres, and then add 3 parts by mass of small molecule cross-linking agent 2,2'-(1,2-ethylenediyldioxo)diethanethiol and 62.5 parts by mass of tetrahydrofuran, and mix well , and evacuated to remove air bubbles to obtain photocurable silicone for 3D printing.
2、本实施例制得的光固化有机硅的粘度约为150cps。用于3D打印时,常温下1.5s可以固化,而且打印过程中及固化后无难闻气味产生。2. The viscosity of the photocurable silicone prepared in this embodiment is about 150 cps. When used for 3D printing, it can be cured in 1.5s at room temperature, and there is no unpleasant smell during printing and after curing.
实施例2Example 2
1、一种用于3D打印的光固化有机硅,由以下方法制备得到:1. A light-cured silicone for 3D printing, prepared by the following method:
(1)表面改性二氧化硅纳米微球制备(1) Preparation of surface-modified silica nanospheres
取气相法制备的15nm粒径的二氧化硅纳米微球2g,超声分散于装有150 mL甲苯的三口瓶中,超声分散30min;分散完成后,将装有冷凝装置、搅拌装置的三口瓶置于油浴中,加热至80℃;量取8mL表面改性剂(3-巯基丙基) 三乙氧基硅烷(MPES),放入恒压漏斗中,滴加入反应体系中,滴加时间约为 20min;滴加完成后,继续反应6h,反应完成后,冷却,离心,用乙醇和水洗涤3~5次,50℃真空烘干,得到表面改性二氧化硅纳米微球。Take 2 g of silica nanospheres with a particle size of 15 nm prepared by the gas phase method, ultrasonically disperse them in a three-necked flask containing 150 mL of toluene, and ultrasonically disperse for 30 min; In an oil bath, heat to 80°C; measure 8mL of surface modifier (3-mercaptopropyl)triethoxysilane (MPES), put it into a constant pressure funnel, and drop it into the reaction system for about After the dropwise addition is completed, continue to react for 6 hours. After the reaction is completed, cool, centrifuge, wash with ethanol and water for 3 to 5 times, and dry in vacuum at 50°C to obtain surface-modified silica nanospheres.
(2)光固化硅橡胶配制(2) Preparation of light-cured silicone rubber
取侧链含有乙烯基的硅油(粘度为1000cst,乙烯基含量为1.2mmol/g)100 质量份,加入光引发剂安息香双甲醚0.8质量份,搅拌使光引发剂溶解,加入上述表面改性二氧化硅纳米微球0.1质量份,再加入小分子交联剂2,2′-(1,2-乙二基双氧代)双乙硫醇3质量份和四氢呋喃50质量份,混合均匀,并抽真空除去气泡,得到用于3D打印的光固化有机硅。Take 100 parts by mass of silicone oil containing vinyl groups in the side chain (viscosity is 1000cst, vinyl content is 1.2mmol/g), add 0.8 parts by mass of photoinitiator benzoin dimethyl ether, stir to dissolve the photoinitiator, add the above surface modification 0.1 parts by mass of silica nanospheres, then add 3 parts by mass of small molecule cross-linking agent 2,2'-(1,2-ethylenedioxy) diethanethiol and 50 parts by mass of tetrahydrofuran, mix uniformly, And vacuumize to remove air bubbles to obtain photocurable silicone for 3D printing.
2、本实施例制得的光固化有机硅的粘度约为300cps。用于3D打印时,常温下2s可以固化,而且打印过程中及固化后无难闻气味产生。2. The viscosity of the photocurable silicone prepared in this embodiment is about 300 cps. When used for 3D printing, it can be cured in 2 seconds at room temperature, and there is no unpleasant smell during printing and after curing.
实施例3Example 3
1、一种用于3D打印的光固化有机硅,由以下方法制备得到:1. A light-cured silicone for 3D printing, prepared by the following method:
(1)表面改性二氧化硅纳米微球制备(1) Preparation of surface-modified silica nanospheres
取气相法制备的30nm粒径的二氧化硅纳米微球3g,超声分散于装有200 mL甲苯的三口瓶中,超声分散30min;分散完成后,将装有冷凝装置、搅拌装置的三口瓶置于油浴中,加热至80℃;量取10mL表面改性剂(3-巯基丙基) 甲基二乙氧基硅烷(MPES),放入恒压漏斗中,滴加入反应体系中,滴加时间约为30min;滴加完成后,继续反应6h,反应完成后,冷却,离心,用乙醇和水洗涤3~5次,50℃真空烘干,得到表面改性二氧化硅纳米微球。Take 3g of silica nanospheres with a particle size of 30nm prepared by the gas phase method, ultrasonically disperse them in a three-necked flask filled with 200 mL of toluene, and ultrasonically disperse for 30min; In an oil bath, heat to 80°C; Measure 10mL of surface modifier (3-mercaptopropyl) methyldiethoxysilane (MPES), put it into a constant pressure funnel, add it dropwise to the reaction system, add dropwise The time is about 30 minutes; after the dropwise addition is completed, the reaction is continued for 6 hours. After the reaction is completed, it is cooled, centrifuged, washed with ethanol and water for 3 to 5 times, and vacuum-dried at 50°C to obtain surface-modified silica nanospheres.
(2)光固化硅橡胶配制(2) Preparation of light-cured silicone rubber
取侧链含有乙烯基的硅油(粘度为5000cst,乙烯基含量为0.6mmol/g)100 质量份,加入光引发剂安息香双甲醚1.3质量份,搅拌使光引发剂溶解,加入上述表面改性二氧化硅纳米微球0.15质量份,再加入小分子交联剂1,11-十一烷二硫醇10质量份和四氢呋喃50质量份,混合均匀,并抽真空除去气泡,得到用于 3D打印的光固化有机硅。Take 100 parts by mass of silicone oil containing vinyl groups in the side chain (viscosity is 5000cst, vinyl content is 0.6mmol/g), add 1.3 parts by mass of photoinitiator benzoin dimethyl ether, stir to dissolve the photoinitiator, add the above surface modification 0.15 parts by mass of silica nanospheres, then add 10 parts by mass of small molecule crosslinking agent 1,11-undecanedithiol and 50 parts by mass of tetrahydrofuran, mix uniformly, and vacuumize to remove air bubbles to obtain 3D printing light-curing silicone.
2、本实施例制得的光固化有机硅的粘度约为2000cps。用于3D打印时,常温下2s可以固化,而且打印过程中及固化后无难闻气味产生。2. The viscosity of the photocurable silicone prepared in this embodiment is about 2000 cps. When used for 3D printing, it can be cured in 2 seconds at room temperature, and there is no unpleasant smell during printing and after curing.
实施例4Example 4
1、一种用于3D打印的光固化有机硅,由以下方法制备得到:1. A light-cured silicone for 3D printing, prepared by the following method:
(1)表面改性二氧化硅纳米微球制备(1) Preparation of surface-modified silica nanospheres
取气相法制备的70nm粒径的二氧化硅纳米微球3g,超声分散于装有200 mL甲苯的三口瓶中,超声分散30min;分散完成后,将装有冷凝装置、搅拌装置的三口瓶置于油浴中,加热至80℃;量取18mL表面改性剂(3-巯基丙基) 甲基二乙氧基硅烷(MPES),放入恒压漏斗中,滴加入反应体系中,滴加时间约为30min;滴加完成后,继续反应6h,反应完成后,冷却,离心,用乙醇和水洗涤3~5次,50℃真空烘干,得到表面改性二氧化硅纳米微球。Take 3 g of silica nanospheres with a particle size of 70 nm prepared by the gas phase method, ultrasonically disperse them in a three-necked flask containing 200 mL of toluene, and ultrasonically disperse for 30 min; In an oil bath, heat to 80°C; measure 18mL of surface modifier (3-mercaptopropyl) methyldiethoxysilane (MPES), put it into a constant pressure funnel, add dropwise to the reaction system, add dropwise The time is about 30 minutes; after the dropwise addition is completed, the reaction is continued for 6 hours. After the reaction is completed, it is cooled, centrifuged, washed with ethanol and water for 3 to 5 times, and vacuum-dried at 50°C to obtain surface-modified silica nanospheres.
(2)光固化硅橡胶配制(2) Preparation of light-cured silicone rubber
取侧链含有乙烯基的硅油(粘度为10000cst,乙烯基含量为1.0mmol/g)100 质量份,加入光引发剂安息香双甲醚0.5质量份,搅拌使光引发剂溶解,加入上述表面改性二氧化硅纳米微球0.08质量份,再加入小分子交联剂1,11-十一烷二硫醇2质量份和四氢呋喃45质量份,混合均匀,并抽真空除去气泡,得到用于 3D打印的光固化有机硅。Take 100 parts by mass of silicone oil containing vinyl in the side chain (viscosity is 10000cst, vinyl content is 1.0mmol/g), add 0.5 parts by mass of photoinitiator benzoin dimethyl ether, stir to dissolve the photoinitiator, add the above surface modification 0.08 parts by mass of silica nanospheres, then add 2 parts by mass of small molecule cross-linking agent 1,11-undecanedithiol and 45 parts by mass of tetrahydrofuran, mix well, and vacuumize to remove air bubbles to obtain 3D printing light-curing silicone.
2、本实施例制得的光固化有机硅的粘度约为4000cps。用于3D打印时,常温下2s可以固化,而且打印过程中及固化后无难闻气味产生。2. The viscosity of the photocurable silicone prepared in this embodiment is about 4000 cps. When used for 3D printing, it can be cured in 2 seconds at room temperature, and there is no unpleasant smell during printing and after curing.
实施例5Example 5
1、一种用于3D打印的光固化有机硅,由以下方法制备得到:1. A light-cured silicone for 3D printing, prepared by the following method:
(1)表面改性二氧化硅纳米微球制备(1) Preparation of surface-modified silica nanospheres
取气相法制备的100nm粒径的二氧化硅纳米微球3g,超声分散于装有200 mL甲苯的三口瓶中,超声分散30min;分散完成后,将装有冷凝装置、搅拌装置的三口瓶置于油浴中,加热至80℃;量取30mL表面改性剂(3-巯基丙基) 甲基二乙氧基硅烷(MPES),放入恒压漏斗中,滴加入反应体系中,滴加时间约为30min;滴加完成后,继续反应6h,反应完成后,冷却,离心,用乙醇和水洗涤3~5次,50℃真空烘干,得到表面改性二氧化硅纳米微球。Take 3 g of silica nanospheres with a particle size of 100 nm prepared by the gas phase method, ultrasonically disperse them in a three-necked flask containing 200 mL of toluene, and ultrasonically disperse for 30 min; In an oil bath, heat to 80°C; measure 30mL of surface modifier (3-mercaptopropyl) methyldiethoxysilane (MPES), put it into a constant pressure funnel, add dropwise to the reaction system, add dropwise The time is about 30 minutes; after the dropwise addition is completed, the reaction is continued for 6 hours. After the reaction is completed, it is cooled, centrifuged, washed with ethanol and water for 3 to 5 times, and vacuum-dried at 50°C to obtain surface-modified silica nanospheres.
(2)光固化硅橡胶配制(2) Preparation of light-cured silicone rubber
取侧链含有乙烯基的硅油(粘度为50000cst,乙烯基含量为1.0mmol/g)100 质量份,加入光引发剂安息香双甲醚5质量份,搅拌使光引发剂溶解,加入上述表面改性二氧化硅纳米微球0.17质量份,再加入小分子交联剂1,11-十一烷二硫醇20质量份和四氢呋喃68质量份,混合均匀,并抽真空除去气泡,得到用于 3D打印的光固化有机硅。Take 100 parts by mass of silicone oil containing vinyl in the side chain (viscosity is 50000cst, vinyl content is 1.0mmol/g), add 5 parts by mass of photoinitiator benzoin dimethyl ether, stir to dissolve the photoinitiator, add the above surface modification 0.17 parts by mass of silica nanospheres, then add 20 parts by mass of small molecule crosslinking agent 1,11-undecanedithiol and 68 parts by mass of tetrahydrofuran, mix evenly, and vacuumize to remove air bubbles to obtain 3D printing light-curing silicone.
2、本实施例制得的光固化有机硅的粘度约为10000cps。用于3D打印时,常温下1.5s可以固化,而且打印过程中及固化后无难闻气味产生。2. The viscosity of the photocurable silicone prepared in this embodiment is about 10000 cps. When used for 3D printing, it can be cured in 1.5s at room temperature, and there is no unpleasant smell during printing and after curing.
对比例1不加入表面改性二氧化硅微球Comparative example 1 does not add surface modified silica microspheres
本对比例与实施例1所用方法相同,区别仅在于在不进行制备步骤(1)的表面改性二氧化硅微球,步骤(2)中不加入表面改性二氧化硅微球。The method used in this comparative example is the same as that used in Example 1, except that the surface-modified silica microspheres in step (1) are not prepared, and the surface-modified silica microspheres are not added in step (2).
与实施例1制得的光固化有机硅3D打印材料相比,用本对比例制得的光固化有机硅3D打印材料打印得到的物体,其撕裂强度显著减小,不能满足使用的需要。Compared with the photocurable silicone 3D printing material prepared in Example 1, the tear strength of the object printed with the photocurable silicone 3D printing material prepared in this comparative example is significantly reduced, which cannot meet the needs of use.
对比例2加入未改性的二氧化硅微球Comparative example 2 adds unmodified silica microspheres
本对比例与实施例1所用方法相同,区别仅在于在不进行制备步骤(1)的表面改性二氧化硅微球,步骤(2)中直接加入未改性的二氧化硅微球(粒径15 nm)。This comparative example is the same as the method used in Example 1, the only difference being that the surface-modified silica microspheres of the preparation step (1) are not carried out, and the unmodified silica microspheres (particles) are directly added in the step (2). 15 nm in diameter).
与实施例1制得的光固化有机硅3D打印材料相比,用本对比例制得的光固化有机硅3D打印材料打印得到的物体,其撕裂强度虽然较未加入表面改性二氧化硅微球的物体有所提高,但提高程度较小,还是不能满足使用的需要。Compared with the photocurable silicone 3D printing material prepared in Example 1, the object printed with the photocurable silicone 3D printing material prepared in this comparative example has a lower tear strength than that without adding surface-modified silica The object of microsphere has been improved to some extent, but the degree of improvement is small, and it still cannot meet the needs of use.
对比例3改变物料配比Comparative Example 3 Change the ratio of materials
本对比例提供一种用于3D打印的光固化有机硅的制备方法,该用于3D打印的光固化有机硅,由包括以下质量份数的组分制备而成:侧链含有乙烯基的硅油100质量份,小分子交联剂2,2′-(1,2-乙二基双氧代)双乙硫醇40质量份,光引发剂1质量份,表面改性二氧化硅微球0.125质量份,溶剂99.5质量份;其余步骤与操作均与实施例1一致。This comparative example provides a method for preparing photocurable silicone for 3D printing. The photocurable silicone for 3D printing is prepared from the following components in parts by mass: silicone oil with vinyl groups in the side chain 100 parts by mass, 40 parts by mass of small molecule cross-linking agent 2,2'-(1,2-ethylenedioxy) diethanethiol, 1 part by mass of photoinitiator, surface-modified silica microspheres 0.125 parts by mass, solvent 99.5 parts by mass; all the other steps and operations are consistent with Example 1.
实验结果显示,固化样品表面有少量粘性物质,影响使用。The experimental results show that there is a small amount of sticky substance on the surface of the cured sample, which affects the use.
对比例4改变物料配比Comparative Example 4 Change the ratio of materials
本对比例提供一种用于3D打印的光固化有机硅的制备方法,该用于3D打印的光固化有机硅,由包括以下质量份数的组分制备而成:侧链含有乙烯基的硅油100质量份,小分子交联剂2,2′-(1,2-乙二基双氧代)双乙硫醇1质量份,光引发剂1质量份,表面改性二氧化硅微球0.125质量份,溶剂64.5质量份;其余步骤与操作均与实施例1一致。This comparative example provides a method for preparing photocurable silicone for 3D printing. The photocurable silicone for 3D printing is prepared from the following components in parts by mass: silicone oil with vinyl groups in the side chain 100 parts by mass, 1 part by mass of small molecule cross-linking agent 2,2'-(1,2-ethylenedioxy) diethanethiol, 1 part by mass of photoinitiator, surface-modified silica microspheres 0.125 parts by mass, 64.5 parts by mass of solvent; all the other steps and operations are consistent with Example 1.
实验结果显示,样品固化不完全,有大量含乙烯基聚硅氧烷未参与反应,样品尺寸未达到要求。The experimental results showed that the sample was not fully cured, a large amount of vinyl polysiloxane did not participate in the reaction, and the size of the sample did not meet the requirements.
实验例3D打印材料产品性能测试结果Experimental example 3D printing material product performance test results
表1本发明的光固化有机硅的性能数据Table 1 Performance data of photocurable silicone of the present invention
注:对比例4得到的样品固化程度太小,无法进行机械性能测试。Note: The degree of curing of the sample obtained in Comparative Example 4 is too small to be tested for mechanical properties.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810272877.4A CN108624061A (en) | 2018-03-29 | 2018-03-29 | A kind of photo-curable silicone and its preparation method and application for 3D printing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810272877.4A CN108624061A (en) | 2018-03-29 | 2018-03-29 | A kind of photo-curable silicone and its preparation method and application for 3D printing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108624061A true CN108624061A (en) | 2018-10-09 |
Family
ID=63696545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810272877.4A Pending CN108624061A (en) | 2018-03-29 | 2018-03-29 | A kind of photo-curable silicone and its preparation method and application for 3D printing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108624061A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109810516A (en) * | 2018-12-29 | 2019-05-28 | 山东大学 | A kind of ultraviolet light curing silicone rubber for DIW 3D printing and preparation method thereof |
CN111117480A (en) * | 2019-12-30 | 2020-05-08 | 江苏微上新材料科技有限公司 | A kind of photocurable silicone liquid coating material and preparation method and application thereof |
CN113637329A (en) * | 2021-07-22 | 2021-11-12 | 广东工业大学 | A highly biocompatible photosensitive organosilicon material, its preparation method and its application in photocuring 3D printing |
CN113817324A (en) * | 2021-10-28 | 2021-12-21 | 中国科学院兰州化学物理研究所 | Photocuring 3D printing silicone rubber ink and preparation method thereof |
CN113891917A (en) * | 2019-03-20 | 2022-01-04 | 斯派克塑胶股份公司 | Siloxane additive manufacturing composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69031902D1 (en) * | 1989-12-01 | 1998-02-12 | Dow Corning | Radiation-curable organosiloxane gel compositions |
CN102869727A (en) * | 2010-04-26 | 2013-01-09 | 三键株式会社 | Photocurable silicone gel composition and application thereof |
CN105315675A (en) * | 2014-06-20 | 2016-02-10 | 上海交通大学 | Ultraviolet light-curing composition |
CN106164206A (en) * | 2014-03-27 | 2016-11-23 | 3M创新有限公司 | The compositions comprising polydiorganosiloxanepolyurea filled and using method thereof |
CN106317898A (en) * | 2016-08-17 | 2017-01-11 | 广东工业大学 | Photocured organosilicone elastomer and preparation method and application thereof |
CN106804110A (en) * | 2014-09-17 | 2017-06-06 | 美国道康宁公司 | Use the 3D printing processes of photo curable silicon composition |
CN107641200A (en) * | 2017-09-20 | 2018-01-30 | 杭州乐新材料科技有限公司 | A kind of thiol-ene light-cured resin for 3D printing and preparation method thereof |
-
2018
- 2018-03-29 CN CN201810272877.4A patent/CN108624061A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69031902D1 (en) * | 1989-12-01 | 1998-02-12 | Dow Corning | Radiation-curable organosiloxane gel compositions |
CN102869727A (en) * | 2010-04-26 | 2013-01-09 | 三键株式会社 | Photocurable silicone gel composition and application thereof |
CN106164206A (en) * | 2014-03-27 | 2016-11-23 | 3M创新有限公司 | The compositions comprising polydiorganosiloxanepolyurea filled and using method thereof |
CN105315675A (en) * | 2014-06-20 | 2016-02-10 | 上海交通大学 | Ultraviolet light-curing composition |
CN106804110A (en) * | 2014-09-17 | 2017-06-06 | 美国道康宁公司 | Use the 3D printing processes of photo curable silicon composition |
CN106317898A (en) * | 2016-08-17 | 2017-01-11 | 广东工业大学 | Photocured organosilicone elastomer and preparation method and application thereof |
CN107641200A (en) * | 2017-09-20 | 2018-01-30 | 杭州乐新材料科技有限公司 | A kind of thiol-ene light-cured resin for 3D printing and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
XUE, L ET AL: "Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction", 《MATERIALS LETTERS》 * |
颉俊宝: "纳米SiO2杂化材料的制备及其UV固化性能研究", 《热固性树脂》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109810516A (en) * | 2018-12-29 | 2019-05-28 | 山东大学 | A kind of ultraviolet light curing silicone rubber for DIW 3D printing and preparation method thereof |
CN113891917A (en) * | 2019-03-20 | 2022-01-04 | 斯派克塑胶股份公司 | Siloxane additive manufacturing composition |
CN113891917B (en) * | 2019-03-20 | 2023-07-28 | 斯派克塑胶股份公司 | Silicone additive manufacturing composition |
CN111117480A (en) * | 2019-12-30 | 2020-05-08 | 江苏微上新材料科技有限公司 | A kind of photocurable silicone liquid coating material and preparation method and application thereof |
CN113637329A (en) * | 2021-07-22 | 2021-11-12 | 广东工业大学 | A highly biocompatible photosensitive organosilicon material, its preparation method and its application in photocuring 3D printing |
CN113637329B (en) * | 2021-07-22 | 2022-06-14 | 广东工业大学 | High-biocompatibility photosensitive organic silicon material, preparation method thereof and application thereof in photocuring 3D printing |
CN113817324A (en) * | 2021-10-28 | 2021-12-21 | 中国科学院兰州化学物理研究所 | Photocuring 3D printing silicone rubber ink and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108624061A (en) | A kind of photo-curable silicone and its preparation method and application for 3D printing | |
CN108641369A (en) | A kind of 3D printing light cure silicone rubber and its preparation method and application | |
CN106317898A (en) | Photocured organosilicone elastomer and preparation method and application thereof | |
Han et al. | High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions | |
US6838490B2 (en) | Silicone rubber in the form of a finely divided powder, method for the production and the use of the same | |
CN108659471A (en) | A kind of light-cured resin and preparation method thereof that polyfunctionality POSS is modified | |
CN104213465B (en) | Refreshing UV paper gloss oil of release effect, superslide and preparation method thereof is had after a kind of UV ultraviolet light polymerization | |
CN106074180B (en) | Low-shrinkage dental composite resin containing organic-inorganic functional monomer and preparation method thereof | |
CN115124756B (en) | A preparation method of UV-assisted 3D printing polymer crosslinked silica airgel | |
CN105601928A (en) | Hydrophilic sulfydryl modified silicone rubber and preparation method thereof | |
CN101787171A (en) | Silicon oxide (SiOX)/polymethyl methacrylate (PMMA) nano composite resin and preparation and application thereof | |
CN106317412A (en) | Mercaptopropyl polysiloxane with photoreaction activity and preparation method thereof | |
CN104193995A (en) | Organic silicon packaging material for 3D printing devices and preparation method thereof | |
CN102731789A (en) | Preparation method of surface hydrophilic silicon rubber | |
CN109810514B (en) | Photocuring-assisted direct-writing 3D printing silicone rubber ink, preparation method thereof and three-dimensional structure silicone rubber | |
CN113201221A (en) | Addition type organic silicon rubber and preparation method thereof | |
CN106749689A (en) | Whisker modified difunctional light trigger of nano-cellulose and preparation method thereof | |
CN101954119B (en) | Method for preparing light-cured bone repair material from double bond-containing siloxane coated and modified hydroxyapatite | |
CN108943526A (en) | A kind of complete denture 3D printing model release agent and preparation method thereof | |
CN101966349B (en) | Method for preparing photo-curable bone repairing material from epoxy group-containing siloxane-clad modified hydroxyapatite | |
CN106074181B (en) | Low-shrinkage dental composite resin containing octacyclohexane alkylene oxide cage type silsesquioxane and preparation method thereof | |
CN106554467B (en) | Epoxy radicals crosslinked microsphere and its preparation method and application | |
CN105566635B (en) | Improved 3D printing light-sensitive emulsion resin and preparation method thereof | |
CN111072823B (en) | A kind of polymeric microsphere of disaccharide base and preparation method thereof | |
CN113637329B (en) | High-biocompatibility photosensitive organic silicon material, preparation method thereof and application thereof in photocuring 3D printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181009 |