CN108535113B - A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass - Google Patents
A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass Download PDFInfo
- Publication number
- CN108535113B CN108535113B CN201810248871.3A CN201810248871A CN108535113B CN 108535113 B CN108535113 B CN 108535113B CN 201810248871 A CN201810248871 A CN 201810248871A CN 108535113 B CN108535113 B CN 108535113B
- Authority
- CN
- China
- Prior art keywords
- test
- pressure
- rock mass
- deformation
- bearing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011435 rock Substances 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000012360 testing method Methods 0.000 claims abstract description 269
- 238000010276 construction Methods 0.000 claims abstract description 8
- 238000011835 investigation Methods 0.000 claims abstract 2
- 229910000831 Steel Inorganic materials 0.000 claims description 45
- 239000010959 steel Substances 0.000 claims description 45
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000012669 compression test Methods 0.000 claims description 24
- 238000004088 simulation Methods 0.000 claims description 13
- 238000013461 design Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 238000012423 maintenance Methods 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000011083 cement mortar Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0048—Hydraulic means
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种水平成层岩体变形参数综合确定方法,属于岩体变形参数测试技术领域。所述方法在施工现场的试验洞内进行,包括以下步骤,1)、准备测试部件,在试验洞内选定测试位置,为现场试验做准备;2)、在试验洞内进行层状岩样的单轴压缩试验,确定水平层状岩体的竖向弹性模量及泊松比;3)、在试验洞内进行竖向承压板试验和水平承压板试验并进行数据的记录和压力~变形曲线的绘制;4)、根据层状岩体单轴试验结果和竖向承压板试验和水平承压板试验的压力~变形曲线,利用商业有限元计算程序进行数值反分析,最终确定反应水平层状岩体横观各向同性的5个变形指标;5)、结合现场岩体结构调查结果和经验公式确定层状岩体弹性模量,以印证前面确定的岩体变形指标。本发明是一种水平层状岩体变形参数综合确定方法。
The invention relates to a method for comprehensively determining deformation parameters of a horizontally layered rock mass, and belongs to the technical field of rock mass deformation parameter testing. The method is carried out in a test hole at the construction site, and includes the following steps: 1), preparing test components, selecting a test position in the test hole, and preparing for the field test; 2), carrying out layered rock samples in the test hole 3) Carry out the vertical bearing plate test and the horizontal bearing plate test in the test hole and record the data and pressure ~Drawing the deformation curve; 4) According to the uniaxial test results of the layered rock mass and the pressure-deformation curve of the vertical bearing plate test and the horizontal bearing plate test, use the commercial finite element calculation program to carry out numerical inverse analysis, and finally determine Five deformation indexes that reflect the transverse isotropy of the horizontal layered rock mass; 5), determine the elastic modulus of the layered rock mass in combination with the field rock structure investigation results and empirical formulas to verify the rock mass deformation index determined earlier. The invention is a comprehensive determination method of deformation parameters of horizontal layered rock mass.
Description
技术领域technical field
本发明涉及一种水平成层岩体变形参数综合确定方法,属于岩体变形参数测试技术领域。The invention relates to a method for comprehensively determining deformation parameters of a horizontally layered rock mass, and belongs to the technical field of rock mass deformation parameter testing.
背景技术Background technique
在隧道或者巷道施工中经常会遇到层状岩体,有别于均质岩体,层状岩体力学性质各向异性特征显著,岩体变形参数独立变量多、且难以测量。目前并没有能准确测量层状岩体变形参数的方法,给层状岩体工程设计与施工提供可靠的基础资料。Layered rock mass is often encountered in tunnel or roadway construction. Different from homogeneous rock mass, the mechanical properties of layered rock mass are significantly anisotropic, and there are many independent variables of rock mass deformation parameters, which are difficult to measure. At present, there is no method that can accurately measure the deformation parameters of layered rock mass, which can provide reliable basic data for the engineering design and construction of layered rock mass.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于岩体单轴压缩试验、现场刚性承压板试验和数值反演相结合的水平层状岩体变形参数综合确定方法,The purpose of the present invention is to provide a comprehensive method for determining the deformation parameters of horizontal layered rock mass based on the combination of rock mass uniaxial compression test, field rigid bearing plate test and numerical inversion,
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种水平成层岩体变形参数综合确定方法,所述方法在施工现场的试验洞内进行,包括以下步骤,A method for comprehensively determining deformation parameters of a horizontally layered rock mass, the method is carried out in a test cave at a construction site, and includes the following steps:
1)、准备测试部件,在试验洞内选定测试位置,为现场试验做准备;1) Prepare the test components, select the test position in the test hole, and prepare for the field test;
2)、在试验洞内进行层状岩样的单轴压缩试验,记录轴向压力~变形曲线、轴向变形~侧向变形曲线,确定水平层状岩体的竖向弹性模量及泊松比;2) Carry out the uniaxial compression test of the layered rock samples in the test cave, record the axial pressure-deformation curve, the axial deformation-lateral deformation curve, and determine the vertical elastic modulus and Poisson of the horizontal layered rock mass. Compare;
3)、在试验洞内竖向承压板试验和水平承压板试验并进行数据的记录和压力-变形曲线的绘制;3), in the test hole vertical bearing plate test and horizontal bearing plate test and record the data and draw the pressure-deformation curve;
4)、根据层状岩体单轴试验结果和竖向承压板试验和水平承压板试验的压力~变形曲线,利用有限元计算程序进行数值反分析,最终综合确定反应水平层状岩体横观各向同性的5个变形指标;4) According to the uniaxial test results of the layered rock mass and the pressure-deformation curve of the vertical bearing plate test and the horizontal bearing plate test, use the finite element calculation program to carry out numerical inverse analysis, and finally comprehensively determine the reaction of the horizontal layered
5)、结合现场岩体结构调查结果和经验公式确定层状岩体弹性模量,以印证前面确定的岩体变形指标。5) Determine the elastic modulus of the layered rock mass in combination with the survey results of the rock mass structure on site and the empirical formula to verify the rock mass deformation index determined earlier.
本发明技术方案的进一步改进在于:岩体单轴压缩试验与承压板试验使用的测试系统包括加系统、传力系统和量测系统3个部分;加压系统包括高压油泵、液压稳压器、液压千斤顶、电动或手摇式油泵、高压油管及高压快速接头若干和量程为10~50Mpa的压力表;传力系统包括承压板、传力柱及钢垫板;量测系统包括测表支架、磁性表架或万能表架和千分表、岩体侧向变形测线。The further improvement of the technical scheme of the present invention is: the test system used in the rock mass uniaxial compression test and the pressure-bearing plate test includes three parts: the adding system, the force transmission system and the measuring system; the pressurizing system includes a high-pressure oil pump, a hydraulic pressure regulator , hydraulic jacks, electric or hand-operated oil pumps, high-pressure oil pipes and high-pressure quick connectors, and pressure gauges with a range of 10-50Mpa; the force transmission system includes a pressure bearing plate, a force transmission column and a steel backing plate; the measurement system includes a gauge Brackets, magnetic watch stands or universal watch stands and dial indicators, rock mass lateral deformation measuring lines.
本发明技术方案的进一步改进在于:液压千斤顶为2~3台,电动或手摇式油泵为2~3台,压力表为2~3个;测表支架2~4根,磁性表架或万能表架5~7个,千分表5~7只;承压板的厚度为3cm~4cm,钢垫板的厚度为2cm~3cm。The further improvement of the technical scheme of the present invention is: 2-3 hydraulic jacks, 2-3 electric or hand-operated oil pumps, 2-3 pressure gauges; 2-4 measuring gauge brackets, magnetic watch frame or universal There are 5 to 7 watch frames and 5 to 7 dial indicators; the thickness of the bearing plate is 3 cm to 4 cm, and the thickness of the steel backing plate is 2 cm to 3 cm.
本发明技术方案的进一步改进在于:步骤2中岩体单轴压缩试验的具体操作为,在加工好的立方体岩样上部由下到上依次叠放承压板、千斤顶、钢垫板、传力柱及钢垫板,最上方的钢垫板使用锚杆锚固在试验洞的顶壁;然后在承压板两侧分别设置用于安放测表支架的支座并且在支座上固定设置用于安放千分表的测表支架,千分表通过磁性表架或万能表架固定在测表支架上,在承压板四角布设4个千分表用于测量试件表面的竖向变形;利用环向测线测试岩样在轴向压缩下侧向变形。The further improvement of the technical solution of the present invention is that: in
本发明技术方案的进一步改进在于:步骤4中竖向承压板试验的具体操作为,选定测试位置后再在测试位置处由下到上依次叠放承压板、千斤顶、钢垫板、传力柱及钢垫板,最上方的钢垫板使用锚杆锚固在试验洞的顶壁;然后在承压板两侧分别设置用于安放测表支架的支座并且在支座上固定设置用于安放千分表的测表支架,千分表通过磁性表架或万能表架固定在测表支架上,在承压板四角布设4个千分表用于测量试件表面的竖向变形;测试系统安装调试并经一定时间的养护后进行测试试验及数据处理。A further improvement of the technical solution of the present invention is that: in
本发明技术方案的进一步改进在于:步骤4中水平承压板试验的具体操作为,在试验洞内制作水平承载平台并选定测试位置,在测试位置处水平方向依次依次设置与测试位置的岩壁相接触的承压板、千斤顶、钢垫板、传力柱及与另一侧的岩壁接触的钢垫板;然后在承压板两侧各竖直安放两端分别固定于试验洞的顶部和底部的测表支架,在两根竖向的测表支架之间焊接2根水平的测表支架;在承压板四角布设4个千分表,测试试验过程中试件表面水平变形;测试系统安装调试并经一定时间的养护后进行测试试验。The further improvement of the technical solution of the present invention is: the specific operation of the horizontal bearing plate test in
本发明技术方案的进一步改进在于:测试系统安装调试并经一定时间的养护后进行测试试验的具体步骤为,The further improvement of the technical solution of the present invention is that: the specific steps of installing and debugging the testing system and carrying out the testing test after a certain period of maintenance are as follows:
(1)、准备工作(1), preparation work
按设计压力的1.2倍确定最大试验压力;测读各测表的初始读数,加压前每10min读数一次,连续三次读数不变,即可开始加压;Determine the maximum test pressure according to 1.2 times the design pressure; measure and read the initial readings of each meter, read once every 10 minutes before pressurization, and start pressurizing if the readings remain unchanged for three consecutive times;
(2)、岩体单轴压缩试验(2), rock mass uniaxial compression test
岩体预压阶段,对岩体施加一定的压力对岩体进行前期预压,使岩体内微裂隙闭合;对试验岩样进行分级加载试验,记录轴向压力~变形曲线、轴向变形~侧向变形曲线,求取水平层状岩体的竖向弹性模量Ey和泊松比μy。In the pre-compression stage of the rock mass, a certain pressure is applied to the rock mass to pre-press the rock mass to close the micro-cracks in the rock mass; the test rock sample is subjected to a graded loading test, and the axial pressure-deformation curve, axial deformation- The lateral deformation curve is used to obtain the vertical elastic modulus E y and Poisson's ratio μ y of the horizontal layered rock mass.
(2)、承压板试验首次加卸载(2) The first loading and unloading of the bearing plate test
将确定的最大压力分为6级并分级施加压力;加压方式采用逐级多次小循环加卸载;对于竖向加载试验,除最后一级压力卸至零外,其他各级压力均应保留接触压力0.1MPa,以保证安全操作,避免传力柱倾倒。Divide the determined maximum pressure into 6 levels and apply pressure in stages; the pressurization method adopts multiple small cycles of loading and unloading step by step; for the vertical loading test, except that the pressure of the last stage is unloaded to zero, all other pressures should be retained The contact pressure is 0.1MPa to ensure safe operation and avoid the tipping of the force transmission column.
(3)、承压板试验重复加卸载过程(3) Repeat the loading and unloading process of the bearing plate test
第一级压力卸完后,接着施加下一级压力,如此反复直至最后一级压力,各级压力下的读数要求相同After the first stage pressure is discharged, the next stage pressure is applied, and so on until the last stage pressure.
(4)、承压板试验记录与观察(4) Test record and observation of bearing plate
在试验过程中,边读数、边记录,并观察试件变形破坏情况;分别绘制竖向与水平承压板试验中6级循环加卸载压力-变形曲线。During the test, read and record while reading, and observe the deformation and failure of the specimen; draw the 6-level cyclic loading and unloading pressure-deformation curves in the vertical and horizontal bearing plate tests respectively.
本发明技术方案的进一步改进在于:水平成层岩体变形参数综合确定方法的步骤4中确定反应水平层状岩体横观各向同性的5个变形指标的具体步骤如下:The further improvement of the technical solution of the present invention is: in
1)、建立三维数值模型1), build a three-dimensional numerical model
三维数值模型尺寸按3~5倍试验洞大小确定,模型顶面为测试现场实际地面形态;借助有限元程序中各向异性中节理岩体本构模型输入层状岩体横观各向同性力学指标,包括根据单轴压缩试验测定的竖向弹性模量Ey、泊松比μy,假定的水平向弹性模量Ex、泊松比μx和剪切模量G;根据水平及竖向承压板位置、形状与尺寸在模型中建立承压板模型,并赋予密度、弹性模型及泊松比三个物理力学参数;The size of the three-dimensional numerical model is determined by 3 to 5 times the size of the test hole, and the top surface of the model is the actual ground shape of the test site; the transverse isotropic mechanics of the layered rock mass is input with the aid of the anisotropic medium-joint rock mass constitutive model in the finite element program. Indicators, including the vertical elastic modulus Ey, Poisson's ratio μy determined by uniaxial compression test, assumed horizontal elastic modulus Ex, Poisson's ratio μx and shear modulus G; according to the horizontal and vertical bearing plate The position, shape and size of the bearing plate model are established in the model, and three physical and mechanical parameters of density, elasticity model and Poisson's ratio are assigned;
2)、按照竖向承压板试验加载方案,在数值模型试验中进行竖向承压板的分级加卸载模拟试验。2) According to the test loading scheme of the vertical bearing plate, the simulation test of the vertical bearing plate loading and unloading is carried out in the numerical model test.
3)、按照水平承压板试验加载方案,在数值模型试验中进行水平承压板的分级加卸载模拟试验。3) According to the loading plan of the horizontal bearing plate test, carry out the grading loading and unloading simulation test of the horizontal bearing plate in the numerical model test.
4)、记录并提取竖向、水平承压板数值模拟试验中压力与变形数据,绘制压力~变形曲线图。4), record and extract the pressure and deformation data in the vertical and horizontal bearing plate numerical simulation test, and draw the pressure-deformation curve.
5)、与现场实测的压力~变形曲线对比,根据数据偏差修改数值模型中岩体变形参数,重新进行数值加载试验,并进行结果比对;一直重复数值试验,直至误差小于10%;5) Compare with the pressure-deformation curve measured on site, modify the rock mass deformation parameters in the numerical model according to the data deviation, re-run the numerical loading test, and compare the results; repeat the numerical test until the error is less than 10%;
6)、根据数值模型中输入的岩体各向同性参数,最终确定水平层状岩体的变形指标Ex、Ey、μx、μy和G;6) According to the rock mass isotropic parameters input in the numerical model, the deformation indexes Ex, Ey, μx, μy and G of the horizontal layered rock mass are finally determined;
本发明技术方案的进一步改进在于:步骤5中是根据现场测定水平层状岩体竖向与水平向的RQD值和经验公式,估算水平层状岩体的弹性模量Ex、Ey值,印证数值反分析确定的弹性模量值。The further improvement of the technical solution of the present invention is: in
由于采用了上述技术方案,本发明取得的技术效果有:Owing to having adopted the above-mentioned technical scheme, the technical effects obtained by the present invention are as follows:
本发明的方法结合岩体单轴压缩试验、现场承压板试验数据和有限元计算程序的数值反分析,能够最终确定反应水平层状岩体横观各向同性的5个变形指标。其中,岩体单轴压缩试验主要确定层状岩体竖向弹性模量Ey和泊松比μy,数值反演模型主要用于确定岩体的水平向弹性模量Ex、泊松比μx和剪切模量G。岩体RQD值统计和经验公式估算的岩体竖向弹性模量Ey和水平向弹性模量Ex,印证数值反分析结果。The method of the invention combines the rock mass uniaxial compression test, the on-site bearing plate test data and the numerical inverse analysis of the finite element calculation program, and can finally determine five deformation indexes reflecting the transverse isotropy of the horizontal layered rock mass. Among them, the rock mass uniaxial compression test mainly determines the vertical elastic modulus Ey and Poisson’s ratio μy of the layered rock mass, and the numerical inversion model is mainly used to determine the horizontal elastic modulus Ex, Poisson’s ratio μx and shear ratio of the rock mass. Modulus G. The vertical elastic modulus Ey and the horizontal elastic modulus Ex of the rock mass estimated by the RQD value statistics and empirical formulas confirm the numerical inverse analysis results.
本发明提出了一种基于岩体单轴压缩试验、现场刚性承压板试验和数值反演相结合的水平层状岩体变形参数综合确定方法,为层状岩体工程设计与施工提供基础资料。The invention proposes a comprehensive determination method for the deformation parameters of horizontal layered rock mass based on the combination of rock mass uniaxial compression test, field rigid bearing plate test and numerical inversion, which provides basic data for layered rock mass engineering design and construction .
附图说明Description of drawings
图1是本发明竖向承压板试验立体示意图;Fig. 1 is the three-dimensional schematic diagram of vertical bearing plate test of the present invention;
图2是本发明竖向承压板试验主视图Fig. 2 is the front view of the vertical bearing plate test of the present invention
图3是本发明水平承压板试验立体示意图;Fig. 3 is the three-dimensional schematic diagram of the horizontal pressure-bearing plate test of the present invention;
图4是本发明水平承压板试验主视图;Fig. 4 is the front view of the horizontal pressure-bearing plate test of the present invention;
图5是本发明单轴压缩试验示意图;Fig. 5 is the schematic diagram of uniaxial compression test of the present invention;
其中,1、承压板,2、千斤顶,3、钢垫板,4、传力柱,5、测表支架,6、千分表、7、试验洞,8、水平承载台。Among them, 1. Bearing plate, 2. Jack, 3. Steel backing plate, 4. Force transmission column, 5. Gauge bracket, 6. Dial indicator, 7. Test hole, 8. Horizontal bearing platform.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明做进一步详细说明:The present invention is described in further detail below in conjunction with the accompanying drawings and specific embodiments:
本发明公开了一种水平成层岩体变形参数综合确定方法,该方法通过在现场的试验洞内进行单轴压缩试验、竖向承压板试验和水平承压板试验,得到试验数据,同时利用有限元计算程序进行数值反分析,综合现场测试结果综合确定反应水平层状岩体横观各向同性的5个变形指标。该方法能够精确测定水平成层岩体变形参数。The invention discloses a method for comprehensively determining deformation parameters of a horizontally layered rock mass. The method obtains test data by carrying out a uniaxial compression test, a vertical pressure-bearing plate test and a horizontal pressure-bearing plate test in an on-site test hole, and at the same time The numerical inverse analysis was carried out by using the finite element calculation program, and the five deformation indexes reflecting the transverse isotropy of the horizontal layered rock mass were comprehensively determined based on the field test results. The method can accurately measure the deformation parameters of horizontally layered rock mass.
一种水平成层岩体变形参数综合确定方法,所述方法在施工现场的试验洞内进行,单轴压缩试验和承压板试验使用的测试系统包括加压系统、传力系统和量测系统3个部分;加压系统包括高压油泵、液压稳压器、液压千斤顶、电动或手摇式油泵、高压油管及高压快速接头若干和量程为10~50MPa的压力表;传力系统包括承压板、传力柱及钢垫板;量测系统包括测表支架、磁性表架或万能表架和千分表、岩体侧向变形测线。其中,液压千斤顶为2~3台,电动或手摇式油泵为2~3台,压力表为2~3个;测表支架2~4根,磁性表架或万能表架5~7个,千分表5~7只;承压板的厚度为3cm~4cm,钢垫板的厚度为2cm~3cm。包括以下步骤,A method for comprehensively determining the deformation parameters of a horizontally layered rock mass, the method is carried out in a test hole on a construction site, and the test systems used in the uniaxial compression test and the bearing plate test include a pressure system, a force transmission system and a
1)、准备测试部件,在试验洞内选定测试位置,为现场试验做准备;1) Prepare the test components, select the test position in the test hole, and prepare for the field test;
2)、在试验洞内进行层状岩样的单轴压缩试验,记录轴向压力~变形曲线、轴向变形~侧向变形曲线,确定水平层状岩体的竖向弹性模量及泊松比。2) Carry out the uniaxial compression test of the layered rock samples in the test cave, record the axial pressure-deformation curve, the axial deformation-lateral deformation curve, and determine the vertical elastic modulus and Poisson of the horizontal layered rock mass. Compare.
该步骤中岩体单轴压缩试验的具体操作为,在加工好的立方体岩样上部由下到上依次叠放承压板、千斤顶、钢垫板、传力柱及钢垫板,最上方的钢垫板使用锚杆锚固在试验洞的顶壁;然后在承压板两侧分别设置用于安放测表支架的支座并且在支座上固定设置用于安放千分表的测表支架,千分表通过磁性表架或万能表架固定在测表支架上,在承压板四角布设4个千分表用于测量试件表面的竖向变形;利用环向测线测试岩样在轴向压缩下侧向变形。The specific operation of the rock mass uniaxial compression test in this step is to stack the pressure-bearing plate, the jack, the steel backing plate, the force-transmitting column and the steel backing plate on the upper part of the processed cubic rock sample from bottom to top. The steel backing plate is anchored on the top wall of the test hole with anchor rods; then the supports for placing the gauge brackets are respectively set on both sides of the bearing plate, and the gauge brackets for placing the dial gauge are fixed on the supports. The dial gauge is fixed on the test gauge support through a magnetic gauge frame or a universal gauge frame, and four dial gauges are arranged at the four corners of the pressure-bearing plate to measure the vertical deformation of the surface of the specimen; Deforms laterally under compression.
在测试系统安装调试并经一定时间的养护后进行测试试验的具体步骤为,The specific steps to carry out the test after the test system is installed and debugged and maintained for a certain period of time are as follows:
(1)、准备工作(1), preparation work
按设计压力的1.2倍确定最大试验压力;测读各测表的初始读数,加压前每10min读数一次,连续三次读数不变,即可开始加压;预压,在正式加载之前,先对岩体进行前期预压;Determine the maximum test pressure according to 1.2 times of the design pressure; measure the initial reading of each meter, read once every 10 minutes before pressurization, and start to pressurize if the readings remain unchanged for three consecutive times; prepress, before the formal loading, first The rock mass is preloaded in advance;
(2)、首次加卸载(2), first loading and unloading
将确定的最大压力分为6级并分级施加压力;加压方式采用逐级多次小循环加卸载;加压后立即读数一次,此后根据需要每隔10min记录加、卸载过程中荷载值与对应的竖向、侧向变形值,直到变形稳定后卸压;当所有承压板上测表相邻两次读数之差△Wi与同级压力下第一次读数与前一级压力下读数之差Wi的比值小于5%时,认为已稳定;卸压过程中的读数要求与加压相同;对于竖向加载试验,除最后一级压力卸至零外,其他各级压力均应保留接触压力0.1MPa,以保证安全操作,避免传力柱倾倒。Divide the determined maximum pressure into 6 grades and apply pressure in stages; the pressurization method adopts multiple small cycles of loading and unloading step by step; read once immediately after the pressurization, and then record the load value and the corresponding load value during the loading and unloading process every 10min as needed. The vertical and lateral deformation values are determined until the deformation is stable and the pressure is relieved; when the difference between the two adjacent readings of the gauges on all the pressure-bearing plates, △Wi, and the first reading under the same pressure and the reading under the previous pressure When the ratio of the difference Wi is less than 5%, it is considered to be stable; the reading requirements during the pressure relief process are the same as those for pressurization; for the vertical loading test, except the last stage pressure is discharged to zero, the other stages of pressure should retain the contact pressure 0.1MPa to ensure safe operation and prevent the power transmission column from tipping over.
(3)、重复加卸载过程(3) Repeat the loading and unloading process
第一级压力卸完后,接着施加下一级压力,如此反复直至最后一级压力,各级压力下的读数要求相同After the first stage pressure is discharged, the next stage pressure is applied, and so on until the last stage pressure.
(4)、记录与观察(4), record and observe
在试验过程中,边读数、边记录,并观察试件变形破坏情况;分别绘制竖向压力~变形曲线、轴向变形~侧向变形曲线。During the test, read and record while reading, and observe the deformation and failure of the specimen; draw the vertical pressure-deformation curve and the axial deformation-lateral deformation curve respectively.
3)、在试验洞内竖向承压板试验和水平承压板试验并进行数据的记录和压力-变形曲线的绘制;3), in the test hole vertical bearing plate test and horizontal bearing plate test and record the data and draw the pressure-deformation curve;
该步骤中竖向承压板试验的具体操作为,选定测试位置后再在测试位置处由下到上依次叠放承压板、千斤顶、钢垫板、传力柱及钢垫板,最上方的钢垫板使用锚杆锚固在试验洞的顶壁;然后在承压板两侧分别设置用于安放测表支架的支座并且在支座上固定设置用于安放千分表的测表支架,千分表通过磁性表架或万能表架固定在测表支架上,在承压板四角布设4个千分表用于测量试件表面的竖向变形;测试系统安装调试并经一定时间的养护后进行测试试验及数据处理。The specific operation of the vertical pressure-bearing plate test in this step is to select the test position and then stack the pressure-bearing plate, the jack, the steel backing plate, the force-transmitting column and the steel backing plate at the test position from bottom to top. The upper steel backing plate is anchored to the top wall of the test hole with anchor rods; then the supports for placing the gauge brackets are respectively set on both sides of the bearing plate, and the gauges for placing the dial gauge are fixed on the supports. The bracket, the dial indicator is fixed on the test bracket by the magnetic table frame or the universal indicator frame, and four dial indicators are arranged at the four corners of the pressure plate to measure the vertical deformation of the surface of the test piece; the test system is installed and debugged after a certain period of time. After the maintenance, test experiments and data processing are carried out.
该步骤中水平承压板试验的具体操作为,在试验洞内制作水平承载平台并选定测试位置,在测试位置处水平方向依次依次设置与测试位置的岩壁相接触的承压板、千斤顶、钢垫板、传力柱及与另一侧的岩壁接触的钢垫板;然后在承压板两侧各竖直安放两端分别固定于试验洞的顶部和底部的测表支架,在两根竖向的测表支架之间焊接2根水平的测表支架;在承压板四角布设4个千分表,测试试验过程中试件表面水平变形;测试系统安装调试并经一定时间的养护后进行测试试验。The specific operation of the horizontal bearing plate test in this step is to make a horizontal bearing platform in the test hole and select the test position, and at the test position, the bearing plates and jacks that are in contact with the rock wall of the test position are sequentially arranged in the horizontal direction. , a steel backing plate, a force transmission column and a steel backing plate in contact with the rock wall on the other side;
在测试系统安装调试并经一定时间的养护后进行测试试验的具体步骤为,The specific steps to carry out the test after the test system is installed and debugged and maintained for a certain period of time are as follows:
(1)、准备工作(1), preparation work
按设计压力的1.2倍确定最大试验压力;测读各测表的初始读数,加压前每10min读数一次,连续三次读数不变,即可开始加压;Determine the maximum test pressure according to 1.2 times the design pressure; measure and read the initial readings of each meter, read once every 10 minutes before pressurization, and start pressurizing if the readings remain unchanged for three consecutive times;
(2)、首次加卸载(2), first loading and unloading
将确定的最大压力分为6级并分级施加压力;加压方式采用逐级多次小循环加卸载;加压后立即读数一次,此后根据需要每隔10min记录加、卸载过程中荷载值与对应的变形值,直到变形稳定后卸压;当所有承压板上测表相邻两次读数之差△Wi与同级压力下第一次读数与前一级压力下读数之差Wi的比值小于5%时,认为已稳定;卸压过程中的读数要求与加压相同;对于竖向加载试验,除最后一级压力卸至零外,其他各级压力均应保留接触压力0.1MPa,以保证安全操作,避免传力柱倾倒。Divide the determined maximum pressure into 6 grades and apply pressure in stages; the pressurization method adopts multiple small cycles of loading and unloading step by step; read once immediately after the pressurization, and then record the load value and the corresponding load value during the loading and unloading process every 10min as needed. Deformation value until the deformation is stable and then unloaded; when the ratio of the difference between the two adjacent readings of the gauges on all the pressure-bearing plates, △Wi, and the difference between the first reading under the same pressure and the reading under the previous pressure, is less than 5%, it is considered to be stable; the reading requirements during the pressure relief process are the same as those for pressurization; for the vertical loading test, except the last stage pressure is released to zero, the other stages of pressure should retain the contact pressure of 0.1MPa to ensure Safe operation, avoid the power transmission column toppling.
(3)、重复加卸载过程(3) Repeat the loading and unloading process
第一级压力卸完后,接着施加下一级压力,如此反复直至最后一级压力,各级压力下的读数要求相同After the first stage pressure is discharged, the next stage pressure is applied, and so on until the last stage pressure.
(4)、记录与观察(4), record and observe
在试验过程中,边读数、边记录,并观察试件变形破坏情况;分别绘制竖向与水平承压板试验中6级循环加卸载压力-变形曲线。During the test, read and record while reading, and observe the deformation and failure of the specimen; draw the 6-level cyclic loading and unloading pressure-deformation curves in the vertical and horizontal bearing plate tests respectively.
4)、利用有限元计算程序进行数值反分析,综合现场测试结果综合确定反应水平层状岩体横观各向同性的5个变形指标。4) Use the finite element calculation program to carry out numerical inverse analysis, and comprehensively determine the five deformation indicators reflecting the transverse isotropy of the horizontal layered rock mass based on the field test results.
该步骤的操作中的具体子步骤为:The specific sub-steps in the operation of this step are:
1)、建立三维数值模型1), build a three-dimensional numerical model
三维数值模型尺寸按3~5倍试验洞大小确定,模型顶面为测试现场实际地表形态;借助有限元程序中各向异性中节理岩体本构模型输入层状岩体横观各向同性变形指标,包括根据单轴压缩试验测定的竖向弹性模量Ey、泊松比μy,假定的水平向弹性模量Ex、泊松比μx以及剪切模量G;根据水平及竖向承压板位置、形状与尺寸在模型中建立承压板模型,并赋予密度、弹性模型及泊松比三个物理力学参数;The size of the three-dimensional numerical model is determined by 3 to 5 times the size of the test hole, and the top surface of the model is the actual surface shape of the test site; the transverse isotropic deformation of the layered rock mass is input by means of the anisotropic medium-joint rock mass constitutive model in the finite element program Indicators, including the vertical elastic modulus Ey, Poisson’s ratio μy measured according to uniaxial compression test, assumed horizontal elastic modulus Ex, Poisson’s ratio μx and shear modulus G; according to the horizontal and vertical bearing plate The position, shape and size of the bearing plate model are established in the model, and three physical and mechanical parameters of density, elasticity model and Poisson's ratio are assigned;
2)、按照竖向承压板试验加载方案,在数值模型试验中进行竖向承压板的分级加卸载模拟试验。2) According to the test loading scheme of the vertical bearing plate, the simulation test of the vertical bearing plate loading and unloading is carried out in the numerical model test.
3)、严格按照水平承压板试验加载方案,在数值模型试验中进行水平承压板的分级加卸载模拟试验。3) Strictly follow the loading plan of the horizontal bearing plate test, and carry out the hierarchical loading and unloading simulation test of the horizontal bearing plate in the numerical model test.
4)、记录并提取竖向、水平承压板数值模拟试验中压力与变形数据,绘制压力—变形曲线图。4), record and extract the pressure and deformation data in the vertical and horizontal bearing plate numerical simulation test, and draw the pressure-deformation curve.
5)、与现场实测的压力~变形曲线对比,根据数据偏差修改数值模型中岩体变形参数,重新进行数值加载试验,并进行结果比对;一直重复数值试验,直至误差小于10%;5) Compare with the pressure-deformation curve measured on site, modify the rock mass deformation parameters in the numerical model according to the data deviation, re-run the numerical loading test, and compare the results; repeat the numerical test until the error is less than 10%;
6)、综合现场试验和数据处理,最终确定水平层状岩体的变形参数Ex、Ey、μx、μy和G。6) Integrate field tests and data processing, and finally determine the deformation parameters Ex, Ey, μx, μy and G of the horizontal layered rock mass.
5)、结合现场岩体结构调查结果和经验公式确定层状岩体弹性模量,以印证前面确定的岩体变形指标。5) Determine the elastic modulus of the layered rock mass in combination with the survey results of the rock mass structure on site and the empirical formula to verify the rock mass deformation index determined earlier.
该步骤中是根据现场测定水平层状岩体竖向与水平向的RQD值和经验公式,估算水平层状岩体的弹性模量Ex、Ey值,印证数值反分析确定的弹性模量值。In this step, according to the vertical and horizontal RQD values and empirical formulas of the horizontal layered rock mass measured on site, the elastic modulus Ex and Ey values of the horizontal layered rock mass are estimated, and the elastic modulus value determined by the numerical inverse analysis is confirmed.
本发明的方法结合现场试验数据和有限元计算程序数值反分析,能够最终确定反应水平层状岩体横观各向同性的5个变形指标。其中,岩体单轴压缩试验主要确定层状岩体竖向弹性模量Ey和泊松比μy,数值反演模型主要用于确定岩体的水平向弹性模量Ex、泊松比μx和剪切模量G。岩体RQD值统计和经验公式估算岩体的法向弹性模量Ey和水平向弹性模量Ex,印证数值反分析结果。The method of the invention combines the field test data and the numerical inverse analysis of the finite element calculation program, and can finally determine five deformation indexes reflecting the transverse isotropy of the horizontal layered rock mass. Among them, the rock mass uniaxial compression test mainly determines the vertical elastic modulus Ey and Poisson’s ratio μy of the layered rock mass, and the numerical inversion model is mainly used to determine the horizontal elastic modulus Ex, Poisson’s ratio μx and shear ratio of the rock mass. Modulus G. The rock mass RQD value statistics and empirical formulas are used to estimate the rock mass's normal elastic modulus Ey and horizontal elastic modulus Ex, which confirms the results of numerical inverse analysis.
下面是具体的实施例:The following are specific examples:
首先在现场选择专用的试验洞,试验洞高约2m左右,宽约3.5m左右,以方便试验操作为原则,完整性好的岩体试验洞可开挖成平顶形式矩形断面,完整性差的岩体试验洞可开挖成直墙拱形。准备试验所用到的部件,承压板试验使用的测试系统包括加压系统、传力系统和量测系统3个部分;其中加压系统包括高压油泵一台、液压稳压器一台、液压千斤顶3台、电动或手摇式油泵3台、高压油管及高压快速接头若干和量程为10~50Mpa的压力表3个;传力系统包括厚度为3cm~4cm的承压板、传力柱及厚度为2cm~3cm的钢垫板;量测系统包括测表支架4根、磁性表架或万能表架7个和千分表7个。其中的钢垫板和承压板使用钢板制作而成的,测表支架可以使用钢管或者工字钢制作。First, select a special test hole on the site. The test hole is about 2m high and about 3.5m wide. Based on the principle of convenient test operation, the rock mass test hole with good integrity can be excavated into a flat-topped rectangular section, and the rock mass with poor integrity can be excavated. The body test hole can be excavated into a straight wall arch. The components used in preparing the test, the test system used in the pressure-bearing plate test includes three parts: the pressure system, the force transmission system and the measurement system; the pressure system includes a high-pressure oil pump, a hydraulic pressure regulator, and a
在做好准备工作后进行具体的试验,包括以下步骤,After the preparations are made, a specific test is carried out, including the following steps,
1)、准备测试部件,在试验洞7内选定测试位置,为现场试验做准备。通常选择试验洞7地面中间部位为竖向承压板1试验的测试位置。1), prepare the test components, select the test position in the
2)、在试验洞内进行层状岩样的单轴压缩试验,记录轴向压力~变形曲线、轴向变形~侧向变形曲线,确定水平层状岩体的竖向弹性模量及泊松比。2) Carry out the uniaxial compression test of the layered rock samples in the test cave, record the axial pressure-deformation curve, the axial deformation-lateral deformation curve, and determine the vertical elastic modulus and Poisson of the horizontal layered rock mass. Compare.
该步骤中岩体单轴压缩试验的具体操作为,在加工好的立方体岩样上部由下到上依次叠放承压板1、千斤顶2、钢垫板3、传力柱4及钢垫板3,最上方的钢垫板3使用锚杆锚固在试验洞7的顶壁;然后在承压板1两侧分别设置用于安放测表支架的支座并且在支座上固定设置用于安放千分表6的测表支架5,千分表6通过磁性表架或万能表架固定在测表支架5上,在承压板1四角布设4个千分表用于测量岩样表面的竖向变形;利用环向测线测试岩样在轴向压缩下侧向变形。具体如图5所示。The specific operation of the uniaxial compression test of the rock mass in this step is to stack the
在测试系统安装调试并经一定时间的养护后进行测试试验的具体步骤为,The specific steps to carry out the test after the test system is installed and debugged and maintained for a certain period of time are as follows:
(1)、准备工作(1), preparation work
按设计压力的1.2倍确定最大试验压力;测读各测表的初始读数,加压前每10min读数一次,连续三次读数不变,即可开始加压;预压,在正式加载之前,先对岩体进行前期预压;Determine the maximum test pressure according to 1.2 times of the design pressure; measure the initial reading of each meter, read once every 10 minutes before pressurization, and start to pressurize if the readings remain unchanged for three consecutive times; prepress, before the formal loading, first The rock mass is preloaded in advance;
(2)、首次加卸载(2), first loading and unloading
将确定的最大压力分为6级并分级施加压力;加压方式采用逐级多次小循环加卸载;加压后立即读数一次,此后根据需要每隔10min记录加、卸载过程中荷载值与对应的竖向、侧向变形值,直到变形稳定后卸压;当所有承压板上测表相邻两次读数之差△Wi与同级压力下第一次读数与前一级压力下读数之差Wi的比值小于5%时,认为已稳定;卸压过程中的读数要求与加压相同;对于竖向加载试验,除最后一级压力卸至零外,其他各级压力均应保留接触压力0.1MPa,以保证安全操作,避免传力柱倾倒。Divide the determined maximum pressure into 6 grades and apply pressure in stages; the pressurization method adopts multiple small cycles of loading and unloading step by step; read once immediately after the pressurization, and then record the load value and the corresponding load value during the loading and unloading process every 10min as needed. The vertical and lateral deformation values are determined until the deformation is stable and the pressure is relieved; when the difference between the two adjacent readings of the gauges on all the pressure-bearing plates, △Wi, and the first reading under the same pressure and the reading under the previous pressure When the ratio of the difference Wi is less than 5%, it is considered to be stable; the reading requirements during the pressure relief process are the same as those for pressurization; for the vertical loading test, except the last stage pressure is discharged to zero, the other stages of pressure should retain the contact pressure 0.1MPa to ensure safe operation and prevent the power transmission column from tipping over.
(3)、重复加卸载过程(3) Repeat the loading and unloading process
第一级压力卸完后,接着施加下一级压力,如此反复直至最后一级压力,各级压力下的读数要求相同After the first stage pressure is discharged, the next stage pressure is applied, and so on until the last stage pressure.
(4)、记录与观察(4), record and observe
在试验过程中,边读数、边记录,并观察试件变形破坏情况;分别绘制轴向压力~变形曲线、轴向变形~侧向变形曲线。其中侧向变形可取三条测线测试结果的平均值During the test, read and record while reading, and observe the deformation and failure of the specimen; draw the axial pressure-deformation curve and the axial deformation-lateral deformation curve respectively. Among them, the lateral deformation can take the average value of the test results of the three measuring lines
在进行加卸载时需要严格按照试验规范进行。When loading and unloading, it is necessary to strictly follow the test specifications.
3)、在试验洞内竖向承压板1试验和水平承压板1试验并进行数据的记录和压力变形曲线的绘制。3) In the test hole, test the
该步骤中竖向承压板1试验的具体操作为,把测试位置表面用掺有速凝剂的水泥砂浆抹平,再在测试位置处由下到上依次叠放承压板1、千斤顶2、钢垫板3、传力柱4及钢垫板3,最上方的钢垫板3使用锚杆锚固在试验洞7的顶壁。安装时应注意使整个测试系统所有部件保持在同一轴线上且与加压方向一致、与水平层状岩体层面法向一致;传力柱4与洞顶围岩之间的钢板可通过螺栓锚固在围岩表面,视围岩的平整性在钢垫板3锚固之前可对锚固位置围岩表面进行砂浆抹平处理。然后是量测系统的布设,在承压板1两侧各安放测表之间5一根,采用简支梁支承形式,固定支架的支点必须安放在试验影响的范围以外;在承压板1四角布设4个千分表6,测试试验过程中试件表面竖向变形。具体的是,在承压板1两侧分别设置用于安放测表之间5的支座,在支座上固定设置用于安放千分表6的测表之间5,千分表6通过磁性表架或万能表架固定在测表之间5上,在承压板1四角布设4个千分表6用于测量试件表面的竖向变形;测试系统安装调试并经一定时间的养护后进行测试试验及数据处理。具体如图1、图2所示。The specific operation of the
该步骤中水平承压板1试验的具体操作为,首先在试验洞7内制作高约1.5m、宽50cm、长度为试验洞7宽度的水平承载平台并选定试验洞7侧壁为测试位置。如果试验洞7的侧壁不平使用掺有速凝剂的水泥砂浆把岩体测试表面抹平,而后竖直放置承压板1,并轻敲使之密切结合。在测试位置处水平方向依次依次设置与测试位置的岩壁相接触的承压板1、千斤顶2、钢垫板3、传力柱4及与另一侧的岩壁接触的钢垫板3。然后在承压板1两侧各竖直安放两端分别固定于试验洞7的顶部和底部的测表之间5,在两根竖向的测表之间5之间焊接2根水平的测表之间5;在承压板1四角布设4个千分表6,测试试验过程中试件表面水平变形;测试系统安装调试并经一定时间的养护后进行测试试验。安装时应注意使整个测试系统所有部件保持在同一轴线上且与加压方向一致、与水平层状岩体层面方向一致,使用混凝土的位置需要经过一段时间的养护才能进行试验。具体如图3、图4所示。The specific operation of the test of the
在测试系统安装调试并经一定时间的养护后进行测试试验的具体步骤为,The specific steps to carry out the test after the test system is installed and debugged and maintained for a certain period of time are as follows:
(1)、准备工作(1), preparation work
按设计压力的1.2倍确定最大试验压力;测读各测表的初始读数,加压前每10min读数一次,连续三次读数不变,即可开始加压;Determine the maximum test pressure according to 1.2 times the design pressure; measure and read the initial readings of each meter, read once every 10 minutes before pressurization, and start pressurizing if the readings remain unchanged for three consecutive times;
(2)、首次加卸载(2), first loading and unloading
将确定的最大压力分为6级并分级施加压力;加压方式采用逐级多次小循环加卸载;加压后立即读数一次,此后根据需要每隔10min记录加、卸载过程中荷载值与对应的变形值,直到变形稳定后卸压;当所有承压板1上测表相邻两次读数之差△Wi与同级压力下第一次读数与前一级压力下读数之差Wi的比值小于5%时,认为已稳定;卸压过程中的读数要求与加压相同;对于竖向加载试验,除最后一级压力卸至零外,其他各级压力均应保留接触压力0.1MPa,以保证安全操作,避免传力柱4倾倒。Divide the determined maximum pressure into 6 grades and apply pressure in stages; the pressurization method adopts multiple small cycles of loading and unloading step by step; read once immediately after the pressurization, and then record the load value and the corresponding load value during the loading and unloading process every 10min as needed. Deformation value until the deformation is stable and then unloaded; when the difference between the two adjacent readings of the measuring gauges on all the
(3)、重复加卸载过程(3) Repeat the loading and unloading process
第一级压力卸完后,接着施加下一级压力,如此反复直至最后一级压力,各级压力下的读数要求相同After the first stage pressure is discharged, the next stage pressure is applied, and so on until the last stage pressure.
(4)、记录与观察(4), record and observe
在试验过程中,边读数、边记录,并观察试件变形破坏情况,如果发现问题及时纠正处理。在试验完毕后根据记录的数据分别绘制竖向与水平承压板1试验中6级循环加卸载压力-变形曲线。During the test, read and record while reading, and observe the deformation and damage of the specimen, and correct and deal with it in time if any problem is found. After the test, according to the recorded data, the 6-level cyclic loading and unloading pressure-deformation curves in the vertical and
在进行加卸载时需要严格按照试验规范进行。When loading and unloading, it is necessary to strictly follow the test specifications.
4)、利用有限元计算程序进行数值反分析,综合现场测试结果综合确定反应水平层状岩体横观各向同性的5个变形指标。4) Use the finite element calculation program to carry out numerical inverse analysis, and comprehensively determine the five deformation indicators reflecting the transverse isotropy of the horizontal layered rock mass based on the field test results.
该步骤的操作中的具体子步骤为:The specific sub-steps in the operation of this step are:
1)、建立三维数值模型1), build a three-dimensional numerical model
三维数值模型尺寸按3~5倍试验洞7大小确定,模型顶面为测试现场实际地面形态;借助有限元程序中各向异性中节理岩体本构模型输入层状岩体横观各向同性力学指标,包括根据单轴压缩试验测定的竖向弹性模量Ey、泊松比μy,假定的水平向弹性模量Ex、泊松比μx和剪切模量G;根据水平及竖向承压板位置、形状与尺寸在模型中建立承压板模型,并赋予密度、弹性模型及泊松比三个物理力学参数;The size of the three-dimensional numerical model is determined by 3 to 5 times the size of the
2)、按照竖向承压板1试验加载方案,在数值模型试验中进行竖向承压板1的分级加卸载模拟试验。2) According to the test loading scheme of the
3)、严格按照水平承压板1试验加载方案,在数值模型试验中进行水平承压板1的分级加卸载模拟试验。3) Strictly follow the test loading plan of the
4)、记录并提取竖向、水平承压板1数值模拟试验中压力与变形数据,绘制压力~变形曲线图。4), record and extract the pressure and deformation data in the numerical simulation test of the vertical and
5)、与现场实测的压力—变形曲线对比,根据数据偏差修改数值模型中岩体变形参数,重新进行数值加载试验,并进行结果比对;一直重复数值试验,直至误差小于10%;5) Compared with the pressure-deformation curve measured on site, modify the rock mass deformation parameters in the numerical model according to the data deviation, re-run the numerical loading test, and compare the results; repeat the numerical test until the error is less than 10%;
6)、综合现场试验和数值反演结果,数值模拟采用的岩体变形参数即为水平层状岩体的变形参数Ex、Ey、μx、μy和G。6) Based on the field test and numerical inversion results, the rock mass deformation parameters used in the numerical simulation are the deformation parameters Ex, Ey, μx, μy and G of the horizontal layered rock mass.
7)、根据现场测定水平层状岩体竖向与水平向的RQD值和经验公式,估算水平层状岩体的弹性模量Ex、Ey值,印证数值反分析确定的岩体弹性模量值。7) Estimate the elastic modulus Ex and Ey values of the horizontal layered rock mass according to the vertical and horizontal RQD values and empirical formulas of the horizontal layered rock mass measured on site, and verify the elastic modulus value of the rock mass determined by the numerical inverse analysis. .
该实施例中,最终能够确定水平层状岩体的变形参数Ex、Ey、μx、μy和G,为层状岩体工程设计与施工提供基础资料。In this embodiment, the deformation parameters Ex, Ey, μx, μy and G of the horizontal layered rock mass can be finally determined, which provides basic data for the engineering design and construction of the layered rock mass.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810248871.3A CN108535113B (en) | 2018-03-25 | 2018-03-25 | A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810248871.3A CN108535113B (en) | 2018-03-25 | 2018-03-25 | A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108535113A CN108535113A (en) | 2018-09-14 |
CN108535113B true CN108535113B (en) | 2020-11-13 |
Family
ID=63483728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810248871.3A Active CN108535113B (en) | 2018-03-25 | 2018-03-25 | A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108535113B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345360A (en) * | 2020-11-18 | 2021-02-09 | 同济大学 | Surrounding rock in-situ testing device and method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111693364A (en) * | 2020-08-03 | 2020-09-22 | 西南交通大学 | Stratified rock mass annular strain multi-point testing method |
CN114136771A (en) * | 2021-11-03 | 2022-03-04 | 元能科技(厦门)有限公司 | Test method for optimizing compression modulus |
CN116086958B (en) * | 2022-12-30 | 2023-10-27 | 华能澜沧江水电股份有限公司 | On-site large-area deformation test method for soft and hard layered rock mass |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5025668A (en) * | 1988-06-30 | 1991-06-25 | Institut Francais Du Petrole | Cell for the triaxial stress testing of a rock sample and a testing method using such a cell |
JP2004279272A (en) * | 2003-03-17 | 2004-10-07 | Tokyo Electric Power Co Inc:The | Method and system for evaluating physical property of bedrock, program, and recording medium |
CN102661898A (en) * | 2012-05-12 | 2012-09-12 | 山东科技大学 | Method for testing mechanical parameters of stone by using center anchored bearing plate |
CN104483199A (en) * | 2014-11-19 | 2015-04-01 | 黄河勘测规划设计有限公司 | Field rock mass poisson ratio test method |
CN204758390U (en) * | 2015-07-30 | 2015-11-11 | 中冶集团武汉勘察研究院有限公司 | Rock test piece lateral deformation surveys gauge stand frame |
CN206772713U (en) * | 2017-04-14 | 2017-12-19 | 中国科学院武汉岩土力学研究所 | A kind of device for determining bedded rock anisotropy deformation parameter |
CN206920243U (en) * | 2017-05-23 | 2018-01-23 | 湖北工业大学 | A kind of uniaxial compression test device |
CN207123442U (en) * | 2017-08-31 | 2018-03-20 | 中水北方勘测设计研究有限责任公司 | A kind of experimental rig that deep rock-mass deformation is measured by amesdial |
-
2018
- 2018-03-25 CN CN201810248871.3A patent/CN108535113B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5025668A (en) * | 1988-06-30 | 1991-06-25 | Institut Francais Du Petrole | Cell for the triaxial stress testing of a rock sample and a testing method using such a cell |
JP2004279272A (en) * | 2003-03-17 | 2004-10-07 | Tokyo Electric Power Co Inc:The | Method and system for evaluating physical property of bedrock, program, and recording medium |
CN102661898A (en) * | 2012-05-12 | 2012-09-12 | 山东科技大学 | Method for testing mechanical parameters of stone by using center anchored bearing plate |
CN104483199A (en) * | 2014-11-19 | 2015-04-01 | 黄河勘测规划设计有限公司 | Field rock mass poisson ratio test method |
CN204758390U (en) * | 2015-07-30 | 2015-11-11 | 中冶集团武汉勘察研究院有限公司 | Rock test piece lateral deformation surveys gauge stand frame |
CN206772713U (en) * | 2017-04-14 | 2017-12-19 | 中国科学院武汉岩土力学研究所 | A kind of device for determining bedded rock anisotropy deformation parameter |
CN206920243U (en) * | 2017-05-23 | 2018-01-23 | 湖北工业大学 | A kind of uniaxial compression test device |
CN207123442U (en) * | 2017-08-31 | 2018-03-20 | 中水北方勘测设计研究有限责任公司 | A kind of experimental rig that deep rock-mass deformation is measured by amesdial |
Non-Patent Citations (1)
Title |
---|
软硬相间层状岩体变形参数理论研究及工程应用;刘彬;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》;20061215(第12期);第9-66页 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345360A (en) * | 2020-11-18 | 2021-02-09 | 同济大学 | Surrounding rock in-situ testing device and method |
Also Published As
Publication number | Publication date |
---|---|
CN108535113A (en) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108535113B (en) | A Comprehensive Determination Method for Deformation Parameters of Horizontally Layered Rock Mass | |
CN101592575B (en) | Airbag-loading potable weak and soft interlayer direct shear apparatus | |
CN102645383B (en) | Method for measuring shear strength of discontinuous shear plane of rock by utilizing three-shaft compression | |
CN108458920B (en) | Rock-soil body in-situ mechanical parameter comprehensive test method | |
CN103499495B (en) | Shield duct piece erosion test device under a kind of bar in chlorine salt solution and load coupling | |
CN110806372B (en) | Soil permeability test device and method under variable stress conditions | |
CN104165807A (en) | Large-deflection destruction testing device and method for prestressed concrete plate beam | |
CN105716956A (en) | Creep test device and control system thereof | |
CN110018056B (en) | An experimental device and method for evaluating the stability of pores in sandstone reservoirs | |
CN113281190A (en) | Hydraulic engineering asphalt concrete direct tensile test device and application method thereof | |
CN1170136C (en) | Rock fracture seepage test device | |
CN103758359B (en) | A kind of safe and reliable joist post construction system and construction method thereof | |
CN106124313A (en) | Concrete and similar material are by the test device and method depressing comprehensive deformation performance | |
CN106053209A (en) | In-situ rock mass tension shear testing system and method | |
CN109211549A (en) | A kind of outer air bag load testing machine of structural elements plane | |
Parivallal et al. | Evaluation of in-situ stress in masonry structures by flat jack technique | |
CN108627400A (en) | A kind of angle steel X-braced panels stability bearing capacity experimental rig and method | |
Medeiros et al. | Innovation in flat-jack application to evaluate modern high-strength hollow concrete block masonry | |
CN207937274U (en) | A device for testing deformation parameters of irregular rock mass samples | |
CN203414358U (en) | Erosion testing device for shield segment under chlorine salt environment and load coupling effect | |
CN104075945B (en) | Anchoring structure rheological testing machine and method for simulating rheological properties of geologic structure body by utilizing machine | |
CN110132714B (en) | Device and method for testing deformation parameters of irregular rock mass sample | |
CN208091831U (en) | A kind of Rock And Soil in-situ mechanical parameter comprehensive testing device | |
CN204356823U (en) | A kind ofly pull out the loading test device with horizontal sliding simultaneously for rock anchorage base | |
CN105865940B (en) | A kind of live sliding surface shear index test device of non-disturbance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |