CN108469389A - A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test - Google Patents
A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test Download PDFInfo
- Publication number
- CN108469389A CN108469389A CN201810124569.7A CN201810124569A CN108469389A CN 108469389 A CN108469389 A CN 108469389A CN 201810124569 A CN201810124569 A CN 201810124569A CN 108469389 A CN108469389 A CN 108469389A
- Authority
- CN
- China
- Prior art keywords
- test
- composite beam
- fatigue
- pavement
- evaluating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 60
- 230000000694 effects Effects 0.000 title claims abstract description 29
- 238000009661 fatigue test Methods 0.000 title claims abstract description 29
- 238000011156 evaluation Methods 0.000 title claims description 7
- 239000011229 interlayer Substances 0.000 title abstract description 10
- 239000010426 asphalt Substances 0.000 claims abstract description 85
- 239000010410 layer Substances 0.000 claims abstract description 73
- 238000012360 testing method Methods 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 239000012790 adhesive layer Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 238000011056 performance test Methods 0.000 claims abstract description 8
- 238000013461 design Methods 0.000 claims abstract description 6
- 238000010835 comparative analysis Methods 0.000 claims abstract description 4
- 238000012795 verification Methods 0.000 claims abstract description 4
- 238000013001 point bending Methods 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 8
- 238000004321 preservation Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000036961 partial effect Effects 0.000 claims description 2
- 230000002829 reductive effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 25
- 239000002344 surface layer Substances 0.000 abstract description 14
- 201000010099 disease Diseases 0.000 abstract description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 230000032683 aging Effects 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0005—Repeated or cyclic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0023—Bending
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Road Paving Structures (AREA)
Abstract
本发明涉及一种基于复合梁疲劳试验的路面层间粘结效果评价方法,包括如下步骤:步骤一:对沥青混合料进行配合比设计及性能验证;步骤二:计算成型复合梁试件所需沥青混合料质量以及粘层涂覆量;步骤三:复合梁试件成型与养生;步骤四:养生好的复合梁试件进行疲劳性能测试;步骤五:试验数据的分析及对比评价。本申请对粘层在路面结构组合中的性能评估,通过评价粘层对沥青路面面层疲劳寿命的影响,进而综合评价层间粘结效果,为粘层材料的选择提供依据,减少由于层间材料选择不当而引起的路面病害降低经济损失。
The invention relates to a method for evaluating the bond effect between pavement layers based on a composite beam fatigue test, comprising the following steps: step 1: performing mix ratio design and performance verification on asphalt mixture; step 2: calculating the required The quality of the asphalt mixture and the coating amount of the adhesive layer; Step 3: Forming and curing of composite beam specimens; Step 4: Fatigue performance test of the cured composite beam specimens; Step 5: Analysis and comparative evaluation of test data. This application evaluates the performance of the adhesive layer in the pavement structure combination. By evaluating the effect of the adhesive layer on the fatigue life of the asphalt pavement surface layer, and then comprehensively evaluates the interlayer bonding effect, it provides a basis for the selection of adhesive layer materials and reduces Pavement diseases caused by improper material selection can reduce economic losses.
Description
技术领域technical field
本发明属于道路材料工程技术领域,涉及一种基于复合梁疲劳试验的路面层间粘结效果评价方法。The invention belongs to the technical field of road material engineering, and relates to a method for evaluating the bonding effect of pavement interlayers based on composite beam fatigue tests.
背景技术Background technique
沥青路面粘层是为加强沥青路面各层粘结,使之形成连续整体而撒布的薄沥青层。层间粘结效果的好坏,直接影响到沥青路面的使用寿命。在我国沥青路面设计方法中,假设层间为完全连续,但由于层间处治措施不当,沥青路面面层之间往往容易产生脱层及滑移,使之成为路面结构的薄弱环节,削弱了路面结构的整体抗力,伴随着荷载反复作用,以及冻融、高温等不利条件,很易造成路面开裂等破坏。粘层材料的相关要求在规范中有所提及,但规定较为简单,大多仅涉及粘层材料的自身要求,缺乏粘结层在路面结构组合中的性能评估。一般学者在研究粘层材料在路面结构组合中的性能时,往往把研究重点局限在层间抗剪强度及拉拔强度两方面,忽略了粘层材料对面层整体结构的抗疲劳性能的影响。Asphalt pavement adhesive layer is a thin layer of asphalt spread to strengthen the bonding of each layer of asphalt pavement to form a continuous whole. The quality of the interlayer bonding effect directly affects the service life of the asphalt pavement. In the design method of asphalt pavement in our country, it is assumed that the interlayer is completely continuous, but due to improper interlayer treatment measures, delamination and slippage are often prone to occur between asphalt pavement surface layers, making it a weak link in the pavement structure and weakening the pavement. The overall resistance of the structure is accompanied by repeated loads, as well as unfavorable conditions such as freezing and thawing, high temperature, etc., which can easily cause damage such as cracking of the pavement. Relevant requirements for adhesive layer materials are mentioned in the specification, but the regulations are relatively simple, most of which only involve the own requirements of adhesive layer materials, and lack the performance evaluation of adhesive layer in pavement structure combination. When ordinary scholars study the performance of adhesive layer materials in the pavement structure combination, they often focus on the two aspects of interlayer shear strength and pull-out strength, ignoring the influence of adhesive layer materials on the fatigue resistance of the overall structure of the surface layer.
专利申请号为201510795294.6的发明专利公开了一种沥青路面层间粘结强度及耐久性的评价方法,分别成型45°斜剪试件与圆柱体试件,以50mm/min的加载速率测定25、40、60℃下的最大破坏荷载并计算抗剪强度值,得到剪切强度比。按照最大破坏荷载的0.2~0.7倍的某一固定值对斜剪试件进行加载,荷载采用半正矢波形进行加载,加载频率为10Hz,重复多次加载直至试件破坏,试件破坏时对应的加载次数即为该应力水平下的结构寿命。该评价方法简单易操作,对沥青路面层间粘结抗剪切性能评价具有重要意义,但是该专利也忽略了粘层材料对面层整体结构的抗疲劳性能的影响。The invention patent with the patent application number 201510795294.6 discloses a method for evaluating the bond strength and durability between layers of asphalt pavement. The 45° oblique shear specimen and the cylindrical specimen are formed respectively, and the 25, Calculate the maximum failure load at 40 and 60°C and calculate the shear strength value to obtain the shear strength ratio. The oblique shear specimen is loaded according to a fixed value of 0.2 to 0.7 times the maximum failure load. The load is loaded with a haversine waveform, and the loading frequency is 10 Hz. Repeat the loading until the specimen is destroyed. When the specimen is destroyed, the corresponding The number of loading times is the structural life under this stress level. This evaluation method is simple and easy to operate, and is of great significance to the evaluation of the bonded shear resistance between asphalt pavement layers. However, this patent also ignores the influence of the adhesive layer material on the fatigue resistance of the overall structure of the surface layer.
专利申请号为201410027525.4的发明专利公开了一种沥青砂和改性沥青砂桥面铺装防水粘结层抗剪切性能的评价方法,采用如下方法实现:首先制备剪切复合试件,在室温条件下,取出养生28天并晾干的尺寸为300mm×300mm×50mm的设计标号的水泥混凝土试件,表面刮浆处理后,在其表面涂抹粘层油,再按设计厚度在其上加铺桥面铺装层沥青混合料,碾压成型剪切复合试件,沿轮碾方向切割成规定尺寸的试件,进行冻融循环试验,一组试件不真空饱水,将另一组试件真空饱水后放入塑料袋中,加入约15mL水,在-18℃下冻16h后,立即放入60℃恒温水槽中,保温24h,两组试件均浸入60℃的恒温水槽中不少于2h;进行剪切试验,计算冻融循环抗剪强度比RSR,要求RSR≥85%,该专利也忽略了粘层材料对面层整体结构的抗疲劳性能的影响。The invention patent with the patent application number 201410027525.4 discloses a method for evaluating the shear resistance of asphalt sand and modified asphalt sand bridge deck pavement waterproof adhesive layer. Under the conditions, take out the cement concrete specimen with the design label size of 300mm×300mm×50mm that has been cured for 28 days and dried. The bridge deck pavement layer asphalt mixture is rolled and formed into shear composite specimens, cut into specimens of specified size along the rolling direction, and subjected to freeze-thaw cycle tests. One set of specimens is not vacuum-saturated with water, and the other set of specimens Put the specimens into a plastic bag after being vacuum-saturated with water, add about 15mL of water, freeze at -18°C for 16 hours, then immediately put them in a constant temperature water tank at 60°C, and keep them warm for 24 hours. Both groups of test pieces are immersed in a constant temperature water tank at 60°C Less than 2h; carry out the shear test, calculate the freeze-thaw cycle shear strength ratio RSR, RSR is required to be ≥ 85%, and this patent also ignores the influence of the adhesive layer material on the fatigue resistance of the overall structure of the surface layer.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供一种基于复合梁疲劳试验的路面层间粘结效果评价方法,其目的在于评价粘层材料对沥青路面面层疲劳寿命的影响,进而综合评价层间粘结效果,为粘层材料的选择提供依据,减少由于层间材料选择不当而引起的路面病害,降低经济损失。In order to overcome the deficiencies in the prior art, the present invention provides a method for evaluating the bonding effect between layers of pavement based on composite beam fatigue tests. The bonding effect provides a basis for the selection of adhesive layer materials, reduces road surface diseases caused by improper selection of interlayer materials, and reduces economic losses.
本发明提供了如下的技术方案:The present invention provides following technical scheme:
一种基于复合梁疲劳试验的路面层间粘结效果评价方法,包括如下步骤:A method for evaluating the bonding effect between pavement layers based on composite beam fatigue tests, comprising the following steps:
步骤一:对沥青混合料进行配合比设计及性能验证;Step 1: Proportion design and performance verification of asphalt mixture;
步骤二:计算成型复合梁试件所需沥青混合料质量以及粘层涂覆量;Step 2: Calculate the quality of asphalt mixture and the coating amount of adhesive layer required for forming composite beam specimens;
步骤三:复合梁试件成型与养生;Step 3: Forming and curing of composite beam specimens;
步骤四:养生好的复合梁试件进行疲劳性能测试;Step 4: Fatigue performance test of the well-cured composite beam specimen;
步骤五:试验数据的分析及对比评价。Step 5: Analysis and comparative evaluation of test data.
优选的是,步骤一中,沥青混合料分为上面层所用的沥青混合料和下面层所用的沥青混合料。Preferably, in step 1, the asphalt mixture is divided into the asphalt mixture used for the upper layer and the asphalt mixture used for the lower layer.
上述任一方案优选的是,上面层所用的沥青混合料选用湖沥青双改性(湖沥青-SBS)AC-13型沥青混合料。In any of the above schemes, preferably, the asphalt mixture used in the upper layer is double-modified lake asphalt (lake asphalt-SBS) AC-13 type asphalt mixture.
上述任一方案优选的是,下面层所用的沥青混合料选用温拌SBS改性AC-20C型。For any of the above schemes, it is preferred that the asphalt mixture used in the lower layer is of warm-mix SBS modified AC-20C type.
上述任一方案优选的是,步骤二中,沥青混合料质量按照所需体积和测量密度进行计算。Preferably, in any of the above schemes, in step 2, the mass of the asphalt mixture is calculated according to the required volume and the measured density.
上述任一方案优选的是,步骤三中成型与养生方法包括以下步骤;Preferably, in any of the above schemes, the molding and health preservation method in step 3 includes the following steps;
(1)采用试模制作成型梁试件;(1) Use the test mold to make the shaped beam test piece;
(2)将成型梁试件切割为疲劳试件,粘层处于疲劳试件正中;(2) Cut the formed beam test piece into a fatigue test piece, and the adhesive layer is in the middle of the fatigue test piece;
(3)将疲劳试件放入环境箱养生。(3) Put the fatigue specimens into the environmental chamber for health preservation.
上述任一方案优选的是,步骤(1)成型梁试件包括上面层和下面层,上面层和下面层之间设有粘层。Preferably, in any of the above schemes, the shaped beam test piece in step (1) includes an upper layer and a lower layer, and an adhesive layer is arranged between the upper layer and the lower layer.
上述任一方案优选的是,粘层材料选用SBS改性沥青、橡胶沥青和乳化沥青中的至少一种。Preferably, in any of the above schemes, the sticky layer material is selected from at least one of SBS modified asphalt, rubber asphalt and emulsified asphalt.
上述任一方案优选的是,粘层材料选用SBS改性沥青。In any of the above schemes, it is preferred that SBS modified asphalt is selected as the sticky layer material.
上述任一方案优选的是,粘层材料选用橡胶沥青。Preferably, in any of the above schemes, rubber asphalt is selected as the sticky layer material.
上述任一方案优选的是,粘层材料选乳化沥青。Preferably, in any of the above schemes, the sticky layer material is emulsified asphalt.
上述任一方案优选的是,步骤(1)试模内壁尺寸为150mm×150mm×550mm。Preferably, in any of the above schemes, the size of the inner wall of the test mold in step (1) is 150mm×150mm×550mm.
上述任一方案优选的是,步骤(1)中试模制作成型复合梁试件的具体方法为:It is preferred that any of the above-mentioned schemes is that the concrete method for making the molded composite beam specimen in the step (1) is as follows:
(A)首先将试模内部刷油,并把下压块放到试模的下部,外露一部分,然后将垫板刷油后放到下压板上面;(A) First brush the inside of the test mold with oil, and put the lower pressure block on the lower part of the test mold, exposing a part, then brush the backing plate with oil and put it on the lower pressure plate;
(B)将下面层用沥青混合料分多次填充到试模中,之后撒布粘层沥青,将上面层用沥青混合料分多次填充到试模中,最后将上压块放入试模内,外露一部分;(B) Fill the lower layer into the test mold with asphalt mixture several times, then spread the sticky layer of asphalt, fill the upper layer with asphalt mixture into the test mold several times, and finally put the upper compact into the test mold Inner, exposed part;
(C)将整个试模放到压力机上,加压直到上、下压块都压入试模为止,维持压力5min;(C) Put the whole trial mold on the press, pressurize until the upper and lower briquetting blocks are pressed into the trial mold, and maintain the pressure for 5 minutes;
(D)解除压力后取下试模,放置冷却至室温,然后脱模。(D) Remove the test mold after releasing the pressure, let it cool down to room temperature, and then remove the mold.
上述任一方案优选的是,上压块和下压块露出试模外的部分相等。In any of the above schemes, it is preferred that the parts of the upper pressing block and the lower pressing block exposed outside the test mold are equal.
上述任一方案优选的是,步骤(2)中,采用切割设备将成型梁试件切割为380mm×50mm×63.5mm的疲劳试件,粘层处于疲劳试件高度的正中位置。Preferably, in any of the above schemes, in step (2), the formed beam specimen is cut into fatigue specimens of 380mm×50mm×63.5mm by cutting equipment, and the adhesive layer is at the center of the height of the fatigue specimen.
上述任一方案优选的是,步骤(3)中,养生温度为15℃±0.5℃,养生时间为4h以上。Preferably, in any of the above schemes, in step (3), the curing temperature is 15°C±0.5°C, and the curing time is more than 4 hours.
上述任一方案优选的是,步骤四:疲劳性能测试的具体方法为:将养护好的复合梁试件放入四点弯曲疲劳加载装置内,加载频率为10Hz±0.1Hz,采用恒应变控制的连续偏正弦加载模式进行疲劳试验;试验终止条件为弯曲劲度模量降低到初始弯曲劲度模量50%对应的加载循环次数。Preferably, any of the above schemes is that step 4: the specific method of fatigue performance test is: put the cured composite beam specimen into the four-point bending fatigue loading device, the loading frequency is 10Hz±0.1Hz, and the constant strain control method is adopted. The fatigue test was carried out in the continuous biased sinusoidal loading mode; the test termination condition was the number of loading cycles corresponding to the bending stiffness modulus reduced to 50% of the initial bending stiffness modulus.
有益效果:Beneficial effect:
本发明提供一种对基于复合梁疲劳试验的路面层间粘结效果评价方法,包括如下步骤:The invention provides a method for evaluating the bonding effect between pavement layers based on a composite beam fatigue test, comprising the following steps:
步骤一:对沥青混合料进行配合比设计及性能验证;Step 1: Proportion design and performance verification of asphalt mixture;
步骤二:计算成型复合梁试件所需沥青混合料质量以及粘层涂覆量;Step 2: Calculate the quality of asphalt mixture and the coating amount of adhesive layer required for forming composite beam specimens;
步骤三:复合梁试件成型与养生;Step 3: Forming and curing of composite beam specimens;
步骤四:养生好的复合梁试件进行疲劳性能测试;Step 4: Fatigue performance test of the well-cured composite beam specimen;
步骤五:试验数据的分析及对比评价。疲劳性能测试为沥青混合料四点弯曲疲劳寿命试验,采用四点弯曲疲劳加载装置,在规定试验条件下,测定压实混合料承受重复弯曲荷载的疲劳寿命。在四点弯曲疲劳寿命试验的基础上,成型上面层、下面层,上面层和下面层中间为粘结层的复合梁试件,进行复合梁疲劳性能试验,评价粘层材料对沥青路面面层疲劳寿命的影响以及评价层间粘结效果。Step 5: Analysis and comparative evaluation of test data. The fatigue performance test is a four-point bending fatigue life test of asphalt mixture, using a four-point bending fatigue loading device to measure the fatigue life of the compacted mixture under repeated bending loads under specified test conditions. On the basis of the four-point bending fatigue life test, a composite beam specimen with an upper layer and a lower layer, and an adhesive layer between the upper layer and the lower layer is formed, and the fatigue performance test of the composite beam is carried out to evaluate the effect of the adhesive layer material on the asphalt pavement surface layer. Influence of fatigue life and evaluation of interlayer bonding effect.
本申请对粘层在路面结构组合中的性能评估,通过评价粘层对沥青路面面层疲劳寿命的影响,进而综合评价层间粘结效果,为粘层材料的选择提供依据,减少由于层间材料选择不当而引起的路面病害降低经济损失。This application evaluates the performance of the adhesive layer in the pavement structure combination. By evaluating the effect of the adhesive layer on the fatigue life of the asphalt pavement surface layer, and then comprehensively evaluates the interlayer bonding effect, it provides a basis for the selection of adhesive layer materials and reduces Pavement diseases caused by improper material selection can reduce economic losses.
附图说明:Description of drawings:
图1为本发明实施例1基于复合梁疲劳试验的沥青路面层间粘结效果评价方法中制作的成型复合梁试件的剖面图。Fig. 1 is a cross-sectional view of a formed composite beam specimen produced in the method for evaluating the bonding effect between asphalt pavement layers based on the composite beam fatigue test in Example 1 of the present invention.
具体实施方式Detailed ways
为了进一步了解本发明的技术特征,下面结合具体实施例对本发明进行详细地阐述。实施例只对本发明具有示例性的作用,而不具有任何限制性的作用,本领域的技术人员在本发明的基础上做出的任何非实质性的修改,都应属于本发明的保护范围。In order to further understand the technical characteristics of the present invention, the present invention will be described in detail below in conjunction with specific embodiments. The embodiment is only exemplary to the present invention, and does not have any restrictive effect. Any insubstantial modification made by those skilled in the art on the basis of the present invention shall belong to the protection scope of the present invention.
实施例1Example 1
本发明采用的基于复合梁疲劳试验的沥青路面层间粘结效果评价方法,包括如下步骤:The bonding effect evaluation method between asphalt pavement layers based on composite beam fatigue test adopted by the present invention comprises the following steps:
1)依照JTG E51-2009《公路工程无机结合料稳定材料试验规程》中T0844-2009无机结合料稳定材料试件制作方法(梁式)成型复合梁式试件,复合梁试件结构如图1所示,其中所选试模内壁尺寸为150mm×150mm×550mm。1) In accordance with JTG E51-2009 "Test Regulations for Inorganic Binder Stable Materials in Highway Engineering" T0844-2009 Inorganic Binder Stable Material Specimen Manufacturing Method (Beam Type) to form a composite beam specimen, the structure of the composite beam specimen is shown in Figure 1 As shown, the size of the inner wall of the selected test mold is 150mm×150mm×550mm.
在成型复合梁式试件(即复合梁试件)时应当注意沥青混合料的添加顺序,参考实际路面结构,提前计算上面层1用沥青混合料用量、下面层2用沥青混合料用量及粘层3用量,成型时采用压力机成型。沥青混合料质量按照所需体积和测量密度进行计算,复合梁上面层1和下面层2压实后的高度均为30mm,粘层用量为最佳涂覆量(如SBS改性沥青粘层最佳涂覆量为1.4kg/m2,乳化沥青粘层最佳涂覆量为0.5kg/m2,橡胶沥青粘层最佳涂覆量为1.8kg/m2)。When forming composite beam specimens (i.e., composite beam specimens), attention should be paid to the order of adding asphalt mixture. With reference to the actual pavement structure, the amount of asphalt mixture used for the upper layer 1, the amount of asphalt mixture used for the lower layer 2, and the viscosity of the asphalt mixture should be calculated in advance. The amount of layer 3 is formed by a press during molding. The quality of the asphalt mixture is calculated according to the required volume and the measured density. The height of the upper layer 1 and the lower layer 2 of the composite beam after compaction is both 30mm, and the amount of the adhesive layer is the optimal coating amount (for example, the SBS modified asphalt adhesive layer is the most The best coating amount is 1.4kg/m 2 , the best coating amount of emulsified asphalt sticky course is 0.5kg/m 2 , and the best coating amount of rubber asphalt sticky course is 1.8kg/m 2 ).
首先将试模内部刷油,并把下压块放到试模的下部,外露2cm左右,然后将垫板刷油后放到下压板上面。将计算好的下面层2用沥青混合料分2~3次填充到试模中,每次填充后用捣棒均匀捣实,将表面整理平整,之后撒布粘层3沥青用料,将计算好的上面层1用沥青混合料分2~3次填充到试模中,每次填充后用捣棒均匀捣实,最后将上压块放入试模内,也应使其外露2cm左右(上压块、下压块露出试模外的部分应该相等)。将整个试模(连同上压块、下压块)放到压力机上,加压直到上压块、下压块都压入试模为止,维持压力5min。解除压力后取下试模,放置冷却至室温(不少于12h),然后采用拆卸模具方法脱模。First, oil the inside of the test mold, and put the lower pressure block on the lower part of the test mold, about 2cm exposed, and then brush the backing plate with oil and put it on the lower pressure plate. Fill the calculated lower layer 2 with asphalt mixture into the test mold in 2 to 3 times. After each filling, tamp it evenly with a tamping rod to make the surface smooth, and then spread the asphalt material for the sticky layer 3. The calculated The upper layer 1 of the upper layer is filled into the test mold with asphalt mixture in 2 to 3 times. After each filling, it is evenly tamped with a tamping stick. Finally, the upper briquetting block is put into the test mold, and it should also be exposed by about 2cm (upper layer). The part of the pressing block and the lower pressing block exposed outside the test mold should be equal). Put the whole trial mold (together with the upper briquetting block and the lower briquetting block) on the press, pressurize until both the upper briquetting block and the lower briquetting block are pressed into the trial mold, and maintain the pressure for 5 minutes. After releasing the pressure, remove the test mold, let it cool down to room temperature (not less than 12 hours), and then use the method of disassembling the mold to demould.
2)采用切割设备切割为疲劳试件2) Using cutting equipment to cut into fatigue specimens
将成型的150mm×150mm×550mm复合梁试件用切割机切割为380mm×50mm×63.5mm的疲劳试件,并且粘层3所在位置处于成型复合梁试件正中。长度为380mm±5mm、厚度为50mm±5mm、宽度为63.5±5mm,在切割时应仔细量取切割位置,保证粘层3位置在复合梁中间一层。Cut the formed 150mm×150mm×550mm composite beam specimen with a cutting machine into a 380mm×50mm×63.5mm fatigue specimen, and the position of the adhesive layer 3 is in the middle of the formed composite beam specimen. The length is 380mm±5mm, the thickness is 50mm±5mm, and the width is 63.5±5mm. When cutting, the cutting position should be carefully measured to ensure that the position of the adhesive layer 3 is in the middle layer of the composite beam.
3)利用成型复合梁试件进行四点弯曲疲劳寿命试验,测定复合梁疲劳寿命。3) The four-point bending fatigue life test is carried out by using the formed composite beam specimen to determine the fatigue life of the composite beam.
将复合梁试件放入环境箱养生,在15℃±0.5℃条件下养生4h以上,方可进行试验。Put the composite beam specimen into the environmental chamber for health preservation, and keep it under the condition of 15°C±0.5°C for more than 4 hours before the test can be carried out.
采用四点弯曲疲劳加载装置,在规定试验条件下,测定压实混合料承受重复弯曲荷载的疲劳寿命。将养护好的复合梁试件放入四点弯曲疲劳加载装置内,加载频率为10Hz±0.1Hz,采用恒应变控制的连续偏正弦加载模式进行疲劳试验。试验终止条件为弯曲劲度模量降低到初始弯曲劲度模量50%对应的加载循环次数。同一种结构组合,在相同试验条件下至少进行3次平行试验。Using a four-point bending fatigue loading device, under specified test conditions, the fatigue life of the compacted mixture subjected to repeated bending loads was determined. Put the cured composite beam specimen into the four-point bending fatigue loading device, the loading frequency is 10 Hz ± 0.1 Hz, and the fatigue test is carried out in the continuous partial sinusoidal loading mode controlled by constant strain. The test termination condition is the number of loading cycles corresponding to the bending stiffness modulus decreasing to 50% of the initial bending stiffness modulus. For the same structure combination, at least 3 parallel tests shall be carried out under the same test conditions.
复合梁试件具体包括上面层1和下面层2,上面层1和下面层2之间设有粘层3。上面层1选用湖沥青双改性(湖沥青-SBS)AC-13型沥青混合料,湖沥青双改性AC-13配合比如表1所示;下面层2选用温拌SBS改性AC-20C型,温拌SBS改性AC-20C级配如表2所示;粘层3选用SBS改性沥青、橡胶沥青和乳化沥青中的任意一种分别进行制作复合梁试件,采用乳化沥青制作粘层3时,需等到乳化沥青破乳后再填充上面层1用沥青混合料。The composite beam specimen specifically includes an upper layer 1 and a lower layer 2, and an adhesive layer 3 is arranged between the upper layer 1 and the lower layer 2. The upper layer 1 uses lake asphalt double-modified (lake asphalt-SBS) AC-13 asphalt mixture, and the mix ratio of lake asphalt double-modified AC-13 is shown in Table 1; the lower layer 2 uses warm-mix SBS modified AC-20C The gradation of warm-mix SBS modified AC-20C is shown in Table 2; the adhesive layer 3 is made of any one of SBS modified asphalt, rubber asphalt and emulsified asphalt to make composite beam specimens respectively, and emulsified asphalt is used to make adhesive For layer 3, it is necessary to wait until the emulsified asphalt is demulsified before filling the upper layer 1 with asphalt mixture.
通过采用不同材料的粘层3的复合梁试件疲劳性能对比,并利用沥青混合料加速老化方式,即短期老化的方法为将沥青混合料试件放入135℃烘箱中在通风条件下加热4h;长期老化的方法为先将沥青混合料短期老化,然后成型试件,冷却后脱模,将试件放置于85℃烘箱中,连续加热5天。研究面层和粘层3老化对沥青混合料疲劳性能的影响。By comparing the fatigue performance of composite beam specimens with adhesive layer 3 of different materials, and using the accelerated aging method of asphalt mixture, that is, the short-term aging method is to put the asphalt mixture specimen in an oven at 135°C and heat it under ventilation for 4 hours ; The method of long-term aging is to first aging the asphalt mixture for a short period of time, then forming the test piece, demoulding after cooling, placing the test piece in an oven at 85°C, and heating continuously for 5 days. The effect of surface course and sticky course 3 aging on the fatigue performance of asphalt mixture was studied.
通过对各矿料的水洗筛分得出来的结果,采用并根据《公路沥青路面施工技术规范》JTG F40-2004中湖沥青双改性AC-13型和温拌AC-20C级配要求,本申请的上面层1选用湖沥青双改性AC-13型沥青混合料,级配配比如下表1所示:The results obtained through washing and screening of various mineral materials are adopted and according to the "Technical Specifications for Highway Asphalt Pavement Construction" JTG F40-2004 Zhonghu asphalt double-modified AC-13 type and warm-mixed AC-20C gradation requirements, this paper The upper layer 1 of the application adopts lake asphalt double-modified AC-13 type asphalt mixture, and the gradation ratio is shown in the following table 1:
表1湖沥青双改性AC-13级配配比Table 1 Lake asphalt double-modified AC-13 gradation ratio
以上是集料用量,集料包括矿料和油石比。The above is the amount of aggregate, which includes the ratio of ore and asphalt.
本申请的下面层2选用温拌SBS改性AC-20C型沥青混合料,温拌AC-20C级配如表2所示:The lower layer 2 of this application uses warm-mix SBS modified AC-20C type asphalt mixture, and the gradation of warm-mix AC-20C is shown in Table 2:
表2温拌SBS改性AC-20C型沥青混合料配合比Table 2 Mixing ratio of warm mix SBS modified AC-20C asphalt mixture
根据上述成型梁试件的方法,依次成型湖沥青双改性AC-13型的上面层1、温拌AC-20C型的下面层2和粘层3,再使用切割机将其切割成长度为380mm±5mm、厚度为50mm±5mm、宽度为63.5±5mm的标准复合梁试件。According to the above-mentioned method for forming beam specimens, the upper layer 1 of lake asphalt double-modified AC-13 type, the lower layer 2 and adhesive layer 3 of warm-mixed AC-20C type are sequentially formed, and then cut into lengths by using a cutting machine. A standard composite beam specimen with a thickness of 380mm±5mm, a thickness of 50mm±5mm, and a width of 63.5±5mm.
为研究面层和粘层3老化对于复合梁疲劳性能的影响,本实验设置了3组实验,分别为面层和粘层3未老化的复合梁疲劳实验、面层和粘层3短期老化的复合梁疲劳实验以及面层和粘层3长期老化的复合梁疲劳实验,实验中粘层采用旋转薄膜烘箱试验(RTFOT)来模拟短期老化,采用压力老化试验(PAV)来模拟长期老化。In order to study the effect of the aging of the surface layer and the adhesive layer 3 on the fatigue performance of the composite beam, three groups of experiments were set up in this experiment, namely, the fatigue test of the unaged composite beam of the surface layer and the adhesive layer 3, and the short-term aging of the surface layer and the adhesive layer 3. Composite beam fatigue test and composite beam fatigue test of long-term aging of surface layer and adhesive layer 3. In the experiment, the adhesive layer was simulated by rotating thin film oven test (RTFOT) for short-term aging, and pressure aging test (PAV) was used to simulate long-term aging.
对面层进行四点弯曲疲劳试验,试验结果如表3所示:A four-point bending fatigue test was carried out on the surface layer, and the test results are shown in Table 3:
表3面层疲劳寿命数据Table 3 Surface layer fatigue life data
对复合梁进行四点弯曲疲劳实验,实验结果如表4所示:A four-point bending fatigue test was carried out on the composite beam, and the experimental results are shown in Table 4:
表4疲劳实验结果Table 4 fatigue test results
从表3和表4的实验结果可以看出:面层和粘层3长期老化的复合梁疲劳寿命严重衰减,其疲劳性能已经远远无法满足规范。另外,复合梁疲劳寿命还和粘层3所采用的材料有关,如表4所示,采用不同粘层3材料的复合梁疲劳寿命依次为:SBS改性沥青>橡胶沥青>乳化沥青。From the experimental results in Table 3 and Table 4, it can be seen that the fatigue life of the composite beam with long-term aging of the surface layer and the adhesive layer 3 is seriously attenuated, and its fatigue performance is far from meeting the specifications. In addition, the fatigue life of composite beams is also related to the materials used in the adhesive layer 3. As shown in Table 4, the fatigue life of composite beams using different adhesive layer 3 materials is in the order: SBS modified asphalt > rubber asphalt > emulsified asphalt.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810124569.7A CN108469389A (en) | 2018-02-07 | 2018-02-07 | A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810124569.7A CN108469389A (en) | 2018-02-07 | 2018-02-07 | A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108469389A true CN108469389A (en) | 2018-08-31 |
Family
ID=63266298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810124569.7A Pending CN108469389A (en) | 2018-02-07 | 2018-02-07 | A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108469389A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112686510A (en) * | 2020-12-22 | 2021-04-20 | 江苏中路工程技术研究院有限公司 | Asphalt pavement structure performance evaluation method |
CN113670709A (en) * | 2021-08-30 | 2021-11-19 | 河南省交通规划设计研究院股份有限公司 | Method for evaluating fatigue resistance of waterproof adhesive layer and bridge deck pavement composite structure |
CN113916689A (en) * | 2021-10-27 | 2022-01-11 | 北京建筑大学 | A kind of strength determination method of polymer concrete steel bridge deck pavement waterproof bonding layer |
CN113970494A (en) * | 2021-10-25 | 2022-01-25 | 北京建筑大学 | Test piece of asphalt pavement interlayer material in local release state and shear strength evaluation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11173973A (en) * | 1997-12-09 | 1999-07-02 | Hitachi Ltd | Measuring method for adhesion force of thin film |
JP2003039411A (en) * | 2001-07-26 | 2003-02-13 | Matsushita Electric Works Ltd | Kenaf composite board and its manufacturing method |
JP2010002289A (en) * | 2008-06-20 | 2010-01-07 | Society Of Japanese Aerospace Co Inc | Evaluation testing method of peeling in multilayer structure |
CN101354335B (en) * | 2007-07-27 | 2011-07-13 | 中芯国际集成电路制造(上海)有限公司 | Method for detecting interlayer adhesion force and preparation method of detecting test piece |
CN202175897U (en) * | 2011-04-21 | 2012-03-28 | 江苏中设工程咨询集团有限公司 | Road surface glass fiber reinforcing sub-seal layer structure |
CN105241761A (en) * | 2015-11-18 | 2016-01-13 | 北京市政路桥建材集团有限公司 | Method for evaluating bonding strength and durability between layers of asphalt road |
CN105445184A (en) * | 2016-01-06 | 2016-03-30 | 武汉理工大学 | Measuring method of CFRP, adhesive layer and steel adhering property |
CN106092880A (en) * | 2016-07-21 | 2016-11-09 | 中南安全环境技术研究院有限公司 | A kind of Site Detection deck paving interlayer bonding pull strength device and detection method |
CN106323777A (en) * | 2016-10-21 | 2017-01-11 | 山西省交通科学研究院 | Pavement material double-layer cylinder specimen compression torsional shear fatigue testing apparatus |
CN107389475A (en) * | 2017-08-21 | 2017-11-24 | 西南交通大学 | Asphalt interlaminar shear strength test device based on four_point bending beam method |
-
2018
- 2018-02-07 CN CN201810124569.7A patent/CN108469389A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11173973A (en) * | 1997-12-09 | 1999-07-02 | Hitachi Ltd | Measuring method for adhesion force of thin film |
JP2003039411A (en) * | 2001-07-26 | 2003-02-13 | Matsushita Electric Works Ltd | Kenaf composite board and its manufacturing method |
CN101354335B (en) * | 2007-07-27 | 2011-07-13 | 中芯国际集成电路制造(上海)有限公司 | Method for detecting interlayer adhesion force and preparation method of detecting test piece |
JP2010002289A (en) * | 2008-06-20 | 2010-01-07 | Society Of Japanese Aerospace Co Inc | Evaluation testing method of peeling in multilayer structure |
CN202175897U (en) * | 2011-04-21 | 2012-03-28 | 江苏中设工程咨询集团有限公司 | Road surface glass fiber reinforcing sub-seal layer structure |
CN105241761A (en) * | 2015-11-18 | 2016-01-13 | 北京市政路桥建材集团有限公司 | Method for evaluating bonding strength and durability between layers of asphalt road |
CN105445184A (en) * | 2016-01-06 | 2016-03-30 | 武汉理工大学 | Measuring method of CFRP, adhesive layer and steel adhering property |
CN106092880A (en) * | 2016-07-21 | 2016-11-09 | 中南安全环境技术研究院有限公司 | A kind of Site Detection deck paving interlayer bonding pull strength device and detection method |
CN106323777A (en) * | 2016-10-21 | 2017-01-11 | 山西省交通科学研究院 | Pavement material double-layer cylinder specimen compression torsional shear fatigue testing apparatus |
CN107389475A (en) * | 2017-08-21 | 2017-11-24 | 西南交通大学 | Asphalt interlaminar shear strength test device based on four_point bending beam method |
Non-Patent Citations (5)
Title |
---|
SEYED AMIRSHAYAN SAFAVIZADEH: "Fatigue and fracture characterization of fiberglass grid-reinforced beam specimens using four-point bending notched beam fatigue test and digital image correlation technique", 《MATERIALS AND STRUCTURES 》 * |
张金升等: "《沥青及沥青混合料实验教程》", 31 January 2015 * |
杜健欢等: "含层间界面的复合小梁疲劳性能影响因素的交互作用", 《公路》 * |
王文奇等: "路用乳化沥青黏层材料黏附性实验", 《实验室研究与探索》 * |
黄卫: "《大跨径桥梁钢桥面铺装设计理论与方法》", 31 October 2006 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112686510A (en) * | 2020-12-22 | 2021-04-20 | 江苏中路工程技术研究院有限公司 | Asphalt pavement structure performance evaluation method |
CN112686510B (en) * | 2020-12-22 | 2024-01-23 | 江苏中路工程技术研究院有限公司 | Asphalt pavement structural performance evaluation method |
CN113670709A (en) * | 2021-08-30 | 2021-11-19 | 河南省交通规划设计研究院股份有限公司 | Method for evaluating fatigue resistance of waterproof adhesive layer and bridge deck pavement composite structure |
CN113970494A (en) * | 2021-10-25 | 2022-01-25 | 北京建筑大学 | Test piece of asphalt pavement interlayer material in local release state and shear strength evaluation method |
CN113970494B (en) * | 2021-10-25 | 2023-11-21 | 北京建筑大学 | Test piece and shear strength evaluation method for interlayer material of asphalt pavement in local release state |
CN113916689A (en) * | 2021-10-27 | 2022-01-11 | 北京建筑大学 | A kind of strength determination method of polymer concrete steel bridge deck pavement waterproof bonding layer |
CN113916689B (en) * | 2021-10-27 | 2023-09-19 | 北京建筑大学 | A method for determining the strength of the waterproof bonding layer of polymer concrete steel bridge deck pavement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashid et al. | Experimental investigation of the bond strength between new to old concrete using different adhesive layers | |
CN108469389A (en) | A kind of road surface interlayer cementing effect evaluation method based on composite beam fatigue test | |
Rashid et al. | Experimental and analytical investigations on the behavior of interface between concrete and polymer cement mortar under hygrothermal conditions | |
López-Carreño et al. | Bond strength of whitetoppings and bonded overlays constructed with self-compacting high-performance concrete | |
CN105241761A (en) | Method for evaluating bonding strength and durability between layers of asphalt road | |
Haddad et al. | An anchorage system for CFRP strips bonded to thermally shocked concrete | |
Iwański et al. | Evaluation of the pavement performance | |
CN102519808A (en) | Device and method for testing interlayer shear fatigue of composite asphalt pavement | |
Rahman et al. | Review and analysis of Hamburg Wheel Tracking device test data. | |
CN108776213A (en) | It is a kind of based on the high molecular polymer fatigue life of concrete evaluation method strained greatly | |
CN110873669B (en) | Device and method for evaluating and testing long-term water stability of asphalt mixture | |
Zeinali et al. | Comparison of performance properties of terminal blend tire rubber and polymer modified asphalt mixtures | |
CN108982355A (en) | A kind of bituminous pavement interlayer bond state indoor simulation method based on Mashell molding method | |
Jafarifar | Shrinkage behaviour of steel-fibre-reinforced-concrete pavements | |
do Nascimento et al. | Investigation of the adhesion conditions of the micro-surfacing applied on asphalt concrete | |
Gu et al. | Laboratory performance evaluation of reinforced basalt fiber in sealing asphalt chips | |
CN103760039A (en) | Evaluation method for influence on anti-shearing performance of waterproof adhesive layer paved on bridge floor caused by deicing salt | |
Aravind et al. | Flexural strengthening of reinforced concrete (RC) beams retrofitted with corrugated glass fiber reinforced polymer (GFRP) laminates | |
CN107576783A (en) | A kind of asphalt mastic shape-memory properties method of testing | |
He et al. | Epoxy-resin adhesive for seam filling and pothole repair in pavement maintenance | |
Zhou et al. | Research of indoor molding of cold recycled foamed asphalt mixture with secondary hot compaction process considered | |
Sarsam et al. | Properties of super pave asphalt concrete subjected to impact of moisture damage | |
Hamzani et al. | Permanent deformation and fatigue of semi flexible pavement incorporating waste tire rubber and natural zeolite | |
CN113916689B (en) | A method for determining the strength of the waterproof bonding layer of polymer concrete steel bridge deck pavement | |
CN107036867A (en) | The gyratory compaction molding method of the Double-layer asphalt compound test specimen of different voidages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180831 |
|
RJ01 | Rejection of invention patent application after publication |