CN108330245B - A kind of high-purity smelting method of stainless steel - Google Patents
A kind of high-purity smelting method of stainless steel Download PDFInfo
- Publication number
- CN108330245B CN108330245B CN201810132857.7A CN201810132857A CN108330245B CN 108330245 B CN108330245 B CN 108330245B CN 201810132857 A CN201810132857 A CN 201810132857A CN 108330245 B CN108330245 B CN 108330245B
- Authority
- CN
- China
- Prior art keywords
- equal
- stainless steel
- refining
- smelting
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 63
- 239000010935 stainless steel Substances 0.000 title claims abstract description 63
- 238000003723 Smelting Methods 0.000 title claims abstract description 60
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 110
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 91
- 239000010959 steel Substances 0.000 claims abstract description 91
- 238000007670 refining Methods 0.000 claims abstract description 58
- 229910052786 argon Inorganic materials 0.000 claims abstract description 57
- 239000002893 slag Substances 0.000 claims abstract description 43
- 239000012535 impurity Substances 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 238000010891 electric arc Methods 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 42
- 239000011651 chromium Substances 0.000 claims description 41
- 239000001301 oxygen Substances 0.000 claims description 38
- 238000005261 decarburization Methods 0.000 claims description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 239000007789 gas Substances 0.000 claims description 24
- 238000007664 blowing Methods 0.000 claims description 23
- 238000006722 reduction reaction Methods 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 15
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 15
- 239000004571 lime Substances 0.000 claims description 15
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 11
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 11
- 238000006477 desulfuration reaction Methods 0.000 claims description 11
- 230000023556 desulfurization Effects 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910000805 Pig iron Inorganic materials 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910000604 Ferrochrome Inorganic materials 0.000 claims description 6
- 229910001309 Ferromolybdenum Inorganic materials 0.000 claims description 6
- 238000009529 body temperature measurement Methods 0.000 claims description 6
- 239000003546 flue gas Substances 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 230000002829 reductive effect Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000004512 die casting Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 238000010079 rubber tapping Methods 0.000 description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 13
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910052745 lead Inorganic materials 0.000 description 6
- 229910017082 Fe-Si Inorganic materials 0.000 description 5
- 229910005347 FeSi Inorganic materials 0.000 description 5
- 229910017133 Fe—Si Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241001062472 Stokellia anisodon Species 0.000 description 2
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910004534 SiMn Inorganic materials 0.000 description 1
- 240000002017 Solanum caripense Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/005—Manufacture of stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
技术领域technical field
本发明公开了一种不锈钢的高纯净冶炼方法,属于不锈钢制备领域。The invention discloses a high-purity smelting method of stainless steel, which belongs to the field of stainless steel preparation.
背景技术Background technique
在不锈钢的冶炼过程中,内生夹杂主要是进行脱氧合金化操作时,加入到钢液中的脱氧剂(Al、FeSi、SiMn等)被氧化生成Al2O3、SiO2以及MgO·Al2O3、SiO2-MnO、Al2O3-SiO2-MnO等复合脱氧产物;合金元素(Cr、Ti、Si、Mn)部分被氧化形成FeO·Cr2O3、SiO2-Cr2O3、A12O3-Cr2O3、Cr2O3-MnS、TiO2等夹杂;钢液在冷却凝固结晶过程中,由于温度下降及局部成分偏析还会形成二次脱氧产物等。当这些产物来不及从钢液内排出,便残留在钢中形成内生夹杂。In the smelting process of stainless steel, the endogenous inclusions are mainly due to the deoxidizer (Al, FeSi, SiMn, etc.) added to the molten steel being oxidized to form Al 2 O 3 , SiO 2 and MgO·Al 2 during the deoxidation and alloying operation. O 3 , SiO 2 -MnO, Al 2 O 3 -SiO 2 -MnO and other composite deoxidation products; alloy elements (Cr, Ti, Si, Mn) are partially oxidized to form FeO·Cr 2 O 3 , SiO 2 -Cr 2 O 3. A1 2 O 3 -Cr 2 O 3 , Cr 2 O 3 -MnS, TiO 2 and other inclusions; in the process of cooling, solidification and crystallization of molten steel, secondary deoxidation products will be formed due to temperature drop and local component segregation. When these products are too late to be discharged from the molten steel, they remain in the steel to form endogenous inclusions.
Al具有较强的脱氧能力,但其脱氧产物从Al2O3对多数牌号的不锈钢性能有不良影响,因此在不锈钢冶炼过程中的使用受到很大限制。从国内外相关研究中发现,在综合考虑不锈钢液的脱氧、脱硫和脱磷效果时,可以选择含有碱土金属元素(钡、钙和镁)和稀土等的复合精炼剂,它们不仅有很强的脱氧、脱硫和还原脱磷能力,而且其脱氧产物的上浮速度快,在钢中几乎没有残留。遗憾的是,这方面的研究目前还多处在实验室研究阶段,很少在不锈钢的实际生产中得到应用和推广。Al has strong deoxidation ability, but its deoxidation product from Al 2 O 3 has adverse effects on the properties of most grades of stainless steel, so its use in stainless steel smelting is greatly limited. It has been found from relevant research at home and abroad that when comprehensively considering the deoxidation, desulfurization and dephosphorization effects of stainless steel liquid, compound refining agents containing alkaline earth metal elements (barium, calcium and magnesium) and rare earth can be selected. Deoxidation, desulfurization and reductive dephosphorization ability, and the deoxidation product has a fast floating speed, and there is almost no residue in the steel. Unfortunately, most of the research in this area is still in the laboratory research stage, and it is rarely applied and promoted in the actual production of stainless steel.
不锈钢成品中的外来夹杂是在冶炼和浇注过程中,耐火材料的冲刷和侵蚀带入钢液的大型夹杂物、混入钢液的炉渣(如AOD出钢过程的钢渣混出)以及在钢液的运输和浇注过程中的二次氧化等。The foreign inclusions in the finished stainless steel are large inclusions brought into the molten steel by the erosion and erosion of the refractory material during the smelting and pouring process, slag mixed into the molten steel (such as the steel slag in the AOD tapping process) and in the molten steel. Secondary oxidation during transportation and pouring, etc.
不锈钢液中的氮化物主要是以TiN的形式出现的,它是溶解于钢中的[N]以及冶炼、浇注过程中,钢液吸入空气中的N2,与钢中[Ti]作用的产物。另外,在钢液的凝固过程中,还会有CrN、Cr2N等其它类型的氮化物产生。Nitride in stainless steel is mainly in the form of TiN, which is the product of [N] dissolved in steel and N 2 in the air inhaled by molten steel during smelting and pouring, which interacts with [Ti] in steel . In addition, during the solidification process of molten steel, other types of nitrides such as CrN and Cr 2 N will also be produced.
总之,在冶炼的过程中,钢中O、N、S、N等含量较高时,会导致钢锭宏观组织缩孔缩松,甚至形成气泡,还可能形成氧化物和氮化物等夹杂,成为裂纹产生和扩展的有利位置,严重降低不锈钢的力学性能。因此,需对钢液进行纯净化处理,将O、N、S含量控制在较低的范围内。然而,对于选定的原材料,熔炼坩埚的稳定性和合金熔炼工艺是控制杂质含量的关键所在。In short, in the process of smelting, when the content of O, N, S, N, etc. in the steel is high, it will cause the macrostructure of the steel ingot to shrink, shrink, and even form bubbles, and may also form inclusions such as oxides and nitrides, which become cracks. The vantage point for generation and expansion, severely degrades the mechanical properties of stainless steel. Therefore, it is necessary to purify the molten steel to control the content of O, N, and S within a lower range. However, for selected raw materials, the stability of the melting crucible and the alloy melting process are the keys to controlling the impurity content.
专利[CN200410017115.8]公布了一种含N双相不锈钢的冶炼生产方法,采用“电弧炉初炼+AOD炉精炼”的方式,在AOD炉冶炼时,通过吹入钢液中的氮气的时间、流量控制,控制钢液中氮的含量,所需精炼温度高、精炼时间长,容易造成某些真空下易挥发元素(如Al等)的烧损,而且脱气效果并不理想,气体含量无法降到期望的水平。The patent [CN200410017115.8] discloses a smelting production method of N-containing duplex stainless steel, which adopts the method of "primary smelting in electric arc furnace + refining in AOD furnace". , flow control, to control the nitrogen content in molten steel, the required refining temperature is high and the refining time is long, which is easy to cause the burning loss of some volatile elements (such as Al, etc.) under vacuum, and the degassing effect is not ideal, the gas content Couldn't go down to the desired level.
发明内容SUMMARY OF THE INVENTION
本发明的目的针对不锈钢工业冶炼生产过程中易出现的各种缺陷、夹杂、以及成分偏析等问题,提供一种不锈钢的高纯净冶炼方法,在高纯氩气保护下采用电弧进行母合金熔炼、AOD+LF炉外精炼、VD真空精炼、模铸钢锭等过程,即可获得低杂质含量的不锈钢钢锭。The object of the present invention is to provide a high-purity smelting method of stainless steel for the problems such as various defects, inclusions, and component segregation that are prone to occur in the industrial smelting and production process of stainless steel, using an arc to smelt the master alloy under the protection of high-purity argon gas, AOD+LF out-of-furnace refining, VD vacuum refining, die-casting steel ingots and other processes can obtain stainless steel ingots with low impurity content.
具体实现本发明的技术方案是:一种不锈钢的高纯净冶炼方法,包括以下步骤:The technical scheme that specifically realizes the present invention is: a high-purity smelting method of stainless steel, comprising the following steps:
第一步,将经过充分烘烤的废钢,生铁进行电弧冶炼:In the first step, the fully baked scrap steel and pig iron are subjected to arc smelting:
电弧冶炼中,采用大渣量,多次流渣,控制电炉冶炼过程的有害元素P≤0.05%,Si≤0.4%,As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,Cu≤0.20%且电炉出钢温度≥1600℃;In electric arc smelting, a large amount of slag and multiple slag flows are used to control the harmful elements in the electric furnace smelting process: P≤0.05%, Si≤0.4%, As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001% , Bi≤0.001%, Cu≤0.20% and electric furnace tapping temperature≥1600℃;
第二步:进行AOD+LF炉外精炼;在AOD炉通过调整氧在混合气体中的分压进行脱碳;在LF炉通过还原性渣实现强制脱氧以及氧化铬的还原,充入惰性气体氩气加速钢-渣之间的还原反应;The second step: carry out AOD+LF refining outside the furnace; decarburize by adjusting the partial pressure of oxygen in the mixed gas in the AOD furnace; realize forced deoxidation and reduction of chromium oxide by reducing slag in the LF furnace, and fill the inert gas argon Gas accelerates the reduction reaction between steel and slag;
第三步:VD真空精炼The third step: VD vacuum refining
将第二步的产物倒渣后转到VD炉进行抽真空,保持真空度67Pa以下;真空保持15分钟,保证合金元素在钢液中分布均匀,随后进行精炼,精炼温度≥1600℃,软吹氩15分钟,软吹氩温度≥1600℃,吊包镇静;After the product of the second step is poured into the slag, it is transferred to the VD furnace for vacuuming, and the vacuum degree is kept below 67Pa; the vacuum is maintained for 15 minutes to ensure that the alloying elements are evenly distributed in the molten steel, and then refined, the refining temperature is ≥1600 ° C, soft blowing Argon for 15 minutes, soft blowing argon temperature ≥ 1600 ℃, hanging bag sedative;
第四步:浇注过程Step 4: Pouring Process
浇注条件具体为:当温度≥1580℃开始浇注,锭身注速600m3/h,冒口注速280m3/h,脱模时间8.5小时,完成不锈钢的高纯净冶炼。The pouring conditions are as follows: when the temperature is greater than or equal to 1580°C, the pouring is started, the ingot body injection rate is 600m 3 /h, the riser injection rate is 280m 3 /h, and the demolding time is 8.5 hours, completing the high-purity smelting of stainless steel.
进一步的,大渣量为废钢≥600kg/t。Further, the amount of large slag is scrap steel ≥ 600kg/t.
进一步的,第二步AOD炉脱碳过程中:Further, in the second step AOD furnace decarburization process:
经电炉冶炼的钢水通过钢包送入AOD炉,向熔池喷吹氧气和氩气;The molten steel smelted by the electric furnace is sent to the AOD furnace through the ladle, and oxygen and argon are injected into the molten pool;
当AOD炉中的温度≥1600℃后分批加入铬铁、钼铁,根据烟气及火焰测温度,进行测温取样;When the temperature in the AOD furnace is greater than or equal to 1600 °C, add ferrochromium and ferromolybdenum in batches, measure the temperature according to the flue gas and flame, and conduct temperature measurement and sampling;
当w([C])≥0.7%时,在AOD采用纯氧吹炼,温度>1580℃时,w[(Cr)]=20%,氧化碳;When w([C])≥0.7%, pure oxygen is used for blowing in AOD, and when the temperature is >1580℃, w[(Cr)]=20%, carbon oxide;
当w([C])≤0.7%,采用O2、Ar连续变化方式脱碳,O2:Ar=(2~3):1,When w([C])≤0.7%, adopt O 2 , Ar continuous change method for decarburization, O 2 : Ar=(2~3): 1,
当w([C])≤0.10%,用纯氩吹炼,用钢中余氧及渣中的Cr2O3进一步脱碳,通过调整氩氧比例,O2:Ar=1:(2~3.5)控制终点C≤0.06%的同时,减少铬的氧化;When w([C])≤0.10%, pure argon is used for blowing, and the residual oxygen in the steel and Cr 2 O 3 in the slag are used for further decarburization. By adjusting the ratio of argon and oxygen, O 2 : Ar=1: (2~ 3.5) While controlling the end point C≤0.06%, reduce the oxidation of chromium;
当w([C])≤0.03%时,采用纯氩气吹炼5~15min,使钢液中溶解氧继续脱碳去除有害气体杂质,还可以减少还原剂Fe-Si的用量When w([C])≤0.03%, pure argon is used for smelting for 5-15 minutes, so that the dissolved oxygen in the molten steel can continue to be decarburized to remove harmful gas impurities, and the dosage of reducing agent Fe-Si can also be reduced.
进一步的,根据钢液中硅的含量加入石灰,保持[Si]=石灰加入量/[(3.2~4.3)G],其中,G为钢液的总重量;其中,Cr的收得率≥96%,Mn的收得率≥88%,总的合金收得率≥96%Further, add lime according to the content of silicon in the molten steel, keep [Si]=lime addition/[(3.2~4.3)G], wherein, G is the total weight of the molten steel; wherein, the yield of Cr≥96 %, the yield of Mn ≥ 88%, the total alloy yield ≥ 96%
本发明相对于现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明在高纯氩气保护下采用电弧进行钢液的初步熔炼,可有效控制合金熔化过程中的污染,降低夹杂的含量。(1) The present invention adopts electric arc to carry out preliminary melting of molten steel under the protection of high-purity argon gas, which can effectively control the pollution in the alloy melting process and reduce the content of inclusions.
(2)本发明精炼过程中采用AOD+LF炉外精炼。在脱碳期,通过调整氧在混合气体中的分压,实现脱碳的作用;在还原期,通过充入惰性气体氩气实现强制脱氧,实现氧化铬的还原。(2) In the refining process of the present invention, AOD+LF is used for out-of-furnace refining. In the decarburization period, the effect of decarburization is realized by adjusting the partial pressure of oxygen in the mixed gas; in the reduction period, forced deoxidation is realized by filling the inert gas argon to realize the reduction of chromium oxide.
(3)本发明合金冶炼过程中采用VD真空精炼,钢液在此过程中充分扩散,同时软吹氩气的过程可以进一步的防止钢液的氧化,减少夹杂。(3) VD vacuum refining is adopted in the alloy smelting process of the present invention, the molten steel is fully diffused in the process, and the process of soft blowing argon can further prevent the oxidation of molten steel and reduce inclusions.
附图说明Description of drawings
图1是本发明不锈钢熔炼流程图;Fig. 1 is the stainless steel smelting flow chart of the present invention;
图2是本发明不锈钢冶炼过程全[O]的变化图;Fig. 2 is the change diagram of the whole [O] of the stainless steel smelting process of the present invention;
图3是本发明不锈钢冶炼过程夹杂物尺寸和数量变化图;Fig. 3 is the change diagram of inclusion size and quantity in the stainless steel smelting process of the present invention;
图4是本发明制得不锈钢组织形貌图。Fig. 4 is the microstructure diagram of the stainless steel prepared by the present invention.
具体实施方式Detailed ways
下面结合实施例和附图详述本发明。The present invention will be described in detail below with reference to the embodiments and accompanying drawings.
一种不锈钢的高纯净冶炼方法,在惰性气体气氛保护条件下采用电弧设备熔炼在高真空下通过电弧设备快速升温、降温,并通过AOD+LF炉外精炼,VD真空精炼,可获得低杂质、高纯净的不锈钢。A high-purity smelting method for stainless steel, using arc equipment to smelt under the protection of inert gas atmosphere, rapidly heating and cooling through arc equipment under high vacuum, and refining outside the AOD+LF furnace and VD vacuum refining to obtain low impurity, High purity stainless steel.
实施例具所体参数如下:The specific parameters of the embodiment are as follows:
某钢铁厂通过实施本发明实验方法,生产6炉410S不锈钢,其具体成分见表1。其中,有害杂质元素As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,P≤0.0020%,Al≤0.015%,中心疏松<1.0级,硫化物≤1.0级,氧化物≤1.5级。A steel plant produces 6 furnaces of 410S stainless steel by implementing the experimental method of the present invention, and its specific components are shown in Table 1. Among them, harmful impurity elements As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001%, Bi≤0.001%, P≤0.0020%, Al≤0.015%, central looseness <1.0 grade, sulfide≤1.0 grade, oxide ≤ grade 1.5.
成分见表1The ingredients are shown in Table 1
表1不锈钢化学成分(wt.%)Table 1 Stainless steel chemical composition (wt.%)
实施例1Example 1
将经过充分烘烤的废钢,生铁进行电弧冶炼,采用废钢、生铁作为不锈钢的原料供应具有较大的灵活性,可根据市场镍价和不锈钢返回料价格的波动以及供应情况调整铁水和不锈钢返回料的比例。The fully baked scrap steel and pig iron are subjected to arc smelting, and the use of scrap steel and pig iron as the raw material supply of stainless steel has greater flexibility, and the molten iron and stainless steel return material can be adjusted according to the fluctuation of the market nickel price and stainless steel return material price and the supply situation. proportion.
(1)电弧冶炼(1) Arc smelting
采用真空电弧炉进行熔炼,当真空感应熔炼炉真空度达60Pa时,通入高纯氩气至0.1MPa时快速升温至炉料完全熔化。The vacuum electric arc furnace is used for melting. When the vacuum degree of the vacuum induction melting furnace reaches 60Pa, the high-purity argon gas is introduced to 0.1MPa, and the temperature is rapidly increased until the charge is completely melted.
为了获得较低的出钢P,采用大渣量(≥600kg/t),多次流渣的方法,电炉出钢:P≤0.05%,Si≤0.4%,电炉出钢温度≥1600℃。In order to obtain lower tapping P, adopt the method of large slag amount (≥600kg/t) and multiple slag flow, electric furnace tapping: P≤0.05%, Si≤0.4%, electric furnace tapping temperature ≥1600℃.
电炉冶炼过程作杂质元素分析并做记录,有害元素As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,Cu≤0.20%。In the process of electric furnace smelting, the impurity elements are analyzed and recorded. The harmful elements As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001%, Bi≤0.001%, Cu≤0.20%.
(2)采用AOD+LF炉外精炼。在脱碳期,通过调整氧在混合气体中的分压,实现脱碳的作用;在还原期,通过充入惰性气体氩气实现强制脱氧,实现氧化铬的还原。(2) Refining outside the furnace using AOD+LF. In the decarburization period, the effect of decarburization is realized by adjusting the partial pressure of oxygen in the mixed gas; in the reduction period, forced deoxidation is realized by filling the inert gas argon to realize the reduction of chromium oxide.
经电炉冶炼的钢水通过钢包送入AOD炉,向熔池喷吹氧气和氩气,降低碳含量,增加铬的氧化。为了确保快速脱碳,降低铬损,节省氩气,吹炼初期应采用低的氩氧比。随着碳含量的降低,提高氩氧比。添加硅铁、石灰,通过加强吹氩搅拌,将氧化铬转化为金属,以生产低硫不锈钢。当AOD炉中的温度≥1600℃后分批加入铬铁、钼铁,根据烟气及火焰测温度,进行测温取样,当w([C])≥0.7%时,在AOD采用纯氧吹炼,温度>1580℃时,w[(Cr)]=20%,首先氧化碳;当w([C])≤0.7%,采用O2、Ar(N2)连续变化方式脱碳,O2:Ar=2:1,脱碳效率提高6%;当w([C])≤0.10%,用纯氩吹炼,用钢中余氧及渣中的Cr2O3进一步脱碳,通过调整氩氧比例,O2:Ar=1:2,控制终点C≤0.06%,在进一步提高脱碳速度的同时,减少铬的氧化,当w([C])≤0.03%时,采用纯氩气吹炼5~15min,使钢液中溶解氧继续脱碳去除有害气体杂质,还可以减少还原剂Fe-Si的用量,将钢水温度由原来工艺的提高1-4℃/s,变成降低3-6℃/s。根据钢液中硅的含量加入石灰,保持[Si]=石灰加入量/[(3.2~4.3)G],其中,G为钢液的总重量。其中,Cr的收得率≥96%,Mn的收得率≥88%,总的合金收得率≥96%。The molten steel smelted by the electric furnace is sent to the AOD furnace through the ladle, and oxygen and argon are injected into the molten pool to reduce the carbon content and increase the oxidation of chromium. In order to ensure rapid decarburization, reduce chromium loss and save argon, a low argon-to-oxygen ratio should be used in the initial stage of blowing. As the carbon content decreases, the argon to oxygen ratio is increased. Ferrosilicon and lime are added, and chromium oxide is converted into metal by intensifying argon stirring to produce low-sulfur stainless steel. When the temperature in the AOD furnace is ≥1600℃, add ferrochrome and ferromolybdenum in batches, measure the temperature according to the flue gas and flame, and conduct temperature measurement and sampling. When w([C])≥0.7%, use pure oxygen blowing in AOD. When the temperature is >1580℃, w[(Cr)]=20%, carbon dioxide is firstly oxidized; when w([C])≤0.7%, the decarburization is carried out by continuous change of O 2 and Ar(N 2 ), and O 2 : Ar=2:1, the decarburization efficiency is increased by 6%; when w([C])≤0.10%, pure argon is used for blowing, and the residual oxygen in the steel and Cr 2 O 3 in the slag are used for further decarburization. Argon oxygen ratio, O 2 : Ar=1:2, control end point C≤0.06%, reduce the oxidation of chromium while further increasing the decarburization rate, when w([C])≤0.03%, use pure argon gas Blowing for 5 to 15 minutes, so that the dissolved oxygen in the molten steel can continue to decarburize to remove harmful gas impurities, and it can also reduce the amount of reducing agent Fe-Si, and increase the temperature of molten steel from the original process of 1-4 ° C / s to a decrease of 3 -6°C/s. Lime is added according to the silicon content in the molten steel, keeping [Si]=the amount of lime added/[(3.2-4.3)G], where G is the total weight of the molten steel. Among them, the yield of Cr is ≥96%, the yield of Mn is ≥88%, and the total alloy yield is ≥96%.
LF精炼过程:LF精炼加铝粒预脱氧、脱硫,倒渣,去除渣中P、Si。钢液中w[S]<10×10-6,与传统加入FeSi还原Cr2O3相比,还原精炼时间缩短5~17min,脱硫效率提高至60%-90%。此时,[H]≤1-3ppm,[O]≤30-60ppm。LF refining process: LF refining adds aluminum particles for pre-deoxidation, desulfurization, slag pouring, and removal of P and Si in the slag. When w[S] in molten steel is less than 10×10 -6 , compared with the traditional reduction of Cr 2 O 3 by adding FeSi, the reduction refining time is shortened by 5-17 minutes, and the desulfurization efficiency is increased to 60%-90%. At this time, [H]≤1-3ppm, [O]≤30-60ppm.
(3)VD真空精炼(3) VD vacuum refining
VD真空精炼:倒渣后转到真空位抽真空。保持真空度67Pa以下;真空保持15分钟,保证合金元素在钢液中分布均匀,随后进行精炼,精炼温度≥1600℃,软吹氩15分钟,软吹氩温度≥1600℃,吊包镇静;VD vacuum refining: After pouring the slag, transfer to the vacuum position to vacuumize. Keep the vacuum degree below 67Pa; keep the vacuum for 15 minutes to ensure that the alloy elements are evenly distributed in the molten steel, and then carry out refining.
(4)浇注过程(4) pouring process
当温度≥1580℃开始浇注,锭身注速600m3/h,冒口注速280m3/h,脱模时间8.5小时,完成不锈钢的高纯净冶炼。When the temperature is greater than or equal to 1580℃, the pouring starts, the injection rate of the ingot body is 600m 3 /h, the injection rate of the riser is 280m 3 /h, and the demolding time is 8.5 hours, and the high-purity smelting of stainless steel is completed.
采用以上方法冶炼的不锈钢的杂质含量明显降低,表2、表3、表4分别为不同阶段钢液的化学成分、夹杂物成分以及低倍组织的检测。The impurity content of stainless steel smelted by the above method is obviously reduced. Table 2, Table 3 and Table 4 respectively show the detection of chemical composition, inclusion composition and low magnification structure of molten steel at different stages.
表2不同阶段钢液的化学成分Table 2 Chemical composition of molten steel at different stages
表3不锈钢中夹杂物的成分变化Table 3 Compositional changes of inclusions in stainless steel
表4不锈钢低倍组织检测Table 4 Low magnification structure detection of stainless steel
实施例2Example 2
将经过充分烘烤的废钢,生铁进行电弧冶炼,采用废钢,生铁作为不锈钢的原料,供应具有较大的灵活性,可根据市场镍价和不锈钢返回料价格的波动以及供应情况调整铁水和不锈钢返回料的比例。The fully baked scrap steel and pig iron are subjected to arc smelting, and the scrap steel and pig iron are used as the raw materials of stainless steel. The supply has great flexibility, and the molten iron and stainless steel return can be adjusted according to the fluctuation of the market nickel price and stainless steel return material price and the supply situation. ratio of material.
(1)电弧冶炼(1) Arc smelting
采用真空电弧炉进行熔炼,当真空感应熔炼炉真空度达60Pa时,通入高纯氩气至0.1MPa时快速升温至炉料完全熔化。The vacuum electric arc furnace is used for melting. When the vacuum degree of the vacuum induction melting furnace reaches 60Pa, the high-purity argon gas is introduced to 0.1MPa, and the temperature is rapidly increased until the charge is completely melted.
为了获得较低的出钢P,采用大渣量(≥600kg/t),多次流渣的方法,电炉出钢:P≤0.05%,Si≤0.4%,电炉出钢温度≥1600℃。In order to obtain lower tapping P, adopt the method of large slag amount (≥600kg/t) and multiple slag flow, electric furnace tapping: P≤0.05%, Si≤0.4%, electric furnace tapping temperature ≥1600℃.
电炉冶炼过程作杂质元素分析并做记录,有害元素As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,Cu≤0.20%。In the process of electric furnace smelting, the impurity elements are analyzed and recorded. The harmful elements As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001%, Bi≤0.001%, Cu≤0.20%.
(2):采用AOD+LF炉外精炼。在脱碳期,通过调整氧在混合气体中的分压,实现脱碳的作用;在还原期,通过充入惰性气体氩气实现强制脱氧,实现氧化铬的还原。(2): Refining outside the furnace using AOD+LF. In the decarburization period, the effect of decarburization is realized by adjusting the partial pressure of oxygen in the mixed gas; in the reduction period, forced deoxidation is realized by filling the inert gas argon to realize the reduction of chromium oxide.
经电炉冶炼的钢水通过钢包送入AOD炉,向熔池喷吹氧气和氩气,降低碳含量,增加铬的氧化。为了确保快速脱碳,降低铬损失,节省氩气,吹炼初期应采用低的氩氧比。随着碳含量的降低,提高氩氧比。添加硅铁、石灰,通过加强吹氩搅拌,将氧化铬转化为金属,以生产低硫不锈钢。当AOD炉中的温度≥1600℃后分批加入铬铁、钼铁,根据烟气及火焰测温度,进行测温取样,当w([C])≥0.7%时,在AOD采用纯氧吹炼,温度>1580℃时,w[(Cr)]=20%,首先氧化碳;当w([C])≤0.7%,采用O2、Ar连续变化方式脱碳,O2:Ar=2.5:1,脱碳效率提高6%;当w([C])≤0.10%,用纯氩吹炼,用钢中余氧及渣中的Cr2O3进一步脱碳,通过调整氩氧比例,O2:Ar=1:2.5,控制终点C≤0.06%,在进一步提高脱碳速度的同时,减少铬的氧化,当w([C])≤0.03%时,采用纯氩气吹炼5~15min,使钢液中溶解氧继续脱碳去除有害气体杂质,还可以减少还原剂Fe-Si的用量。根据钢液中硅的含量加入石灰,保持[Si]=石灰加入量/[(3.2~4.3)G],其中,G为钢液的总重量。其中,Cr的收得率≥96%,Mn的收得率≥88%,总的合金收得率≥96%。The molten steel smelted by the electric furnace is sent to the AOD furnace through the ladle, and oxygen and argon are injected into the molten pool to reduce the carbon content and increase the oxidation of chromium. In order to ensure rapid decarburization, reduce chromium loss and save argon, a low argon-to-oxygen ratio should be used in the initial stage of blowing. As the carbon content decreases, the argon to oxygen ratio is increased. Ferrosilicon and lime are added, and chromium oxide is converted into metal by intensifying argon stirring to produce low-sulfur stainless steel. When the temperature in the AOD furnace is ≥1600℃, add ferrochrome and ferromolybdenum in batches, measure the temperature according to the flue gas and flame, and conduct temperature measurement and sampling, when w([C])≥0.7%, use pure oxygen blowing in AOD When the temperature is >1580℃, w[(Cr)]=20%, carbon dioxide is firstly oxidized; when w([C])≤0.7%, decarburization is carried out by continuous change of O 2 and Ar, O 2 : Ar=2.5 : 1, the decarburization efficiency is increased by 6%; when w([C])≤0.10%, pure argon is used for blowing, and the residual oxygen in the steel and Cr 2 O 3 in the slag are used for further decarburization. By adjusting the ratio of argon and oxygen, O 2 : Ar=1: 2.5, control the end point C≤0.06%, while further increasing the decarburization rate, reduce the oxidation of chromium, when w([C])≤0.03%, adopt pure argon to blow for 5~ For 15 minutes, the dissolved oxygen in the molten steel can continue to be decarburized to remove harmful gas impurities, and the dosage of the reducing agent Fe-Si can also be reduced. Lime is added according to the silicon content in the molten steel, keeping [Si]=the amount of lime added/[(3.2-4.3)G], where G is the total weight of the molten steel. Among them, the yield of Cr is ≥96%, the yield of Mn is ≥88%, and the total alloy yield is ≥96%.
LF精炼过程:LF精炼加铝粒预脱氧、脱硫,倒渣,去除渣中P、Si。钢液中w[S]<10×10-6,与传统加入FeSi还原Cr2O3相比,还原精炼时间缩短5~17min,脱硫效率提高至60%-90%。此时,[H]≤1-3ppm,[O]≤30-60ppm。LF refining process: LF refining adds aluminum particles for pre-deoxidation, desulfurization, slag pouring, and removal of P and Si in the slag. When w[S] in molten steel is less than 10×10 -6 , compared with the traditional reduction of Cr 2 O 3 by adding FeSi, the reduction refining time is shortened by 5-17 minutes, and the desulfurization efficiency is increased to 60%-90%. At this time, [H]≤1-3ppm, [O]≤30-60ppm.
(3)VD真空精炼(3) VD vacuum refining
VD真空精炼:倒渣后转到真空位抽真空。保持真空度67Pa以下;真空保持15分钟,保证合金元素在钢液中分布均匀,随后进行精炼,精炼温度≥1600℃,软吹氩15分钟,软吹氩温度≥1600℃,吊包镇静;VD vacuum refining: After pouring the slag, transfer to the vacuum position to vacuumize. Keep the vacuum degree below 67Pa; keep the vacuum for 15 minutes to ensure that the alloy elements are evenly distributed in the molten steel, and then carry out refining.
(4)浇注过程(4) pouring process
当温度≥1580℃开始浇注,锭身注速600m3/h,冒口注速280m3/h,脱模时间8.5小时,完成不锈钢的高纯净冶炼。When the temperature is greater than or equal to 1580℃, the pouring starts, the injection rate of the ingot body is 600m 3 /h, the injection rate of the riser is 280m 3 /h, and the demolding time is 8.5 hours, and the high-purity smelting of stainless steel is completed.
采用以上方法冶炼的不锈钢的杂质含量明显降低,表5、表6分别为不同阶段钢液的化学成分、夹杂物成分以及低倍组织的检测。The impurity content of stainless steel smelted by the above method is obviously reduced. Table 5 and Table 6 respectively show the chemical composition, inclusion composition and low-magnification detection of molten steel at different stages.
表5不同阶段钢液的化学成分Table 5 Chemical composition of molten steel at different stages
表6不锈钢中夹杂物的成分变化Table 6 Compositional changes of inclusions in stainless steel
实施例3Example 3
不锈钢的冶炼选用优质废钢,生铁或铁水,经过充分烘烤的合金进行初熔。The smelting of stainless steel uses high-quality scrap steel, pig iron or molten iron, and the fully baked alloy is initially melted.
(1)电弧冶炼(1) Arc smelting
采用真空电弧炉进行熔炼,当真空感应熔炼炉真空度达60Pa时,通入高纯氩气至0.1MPa时快速升温至炉料完全熔化。The vacuum electric arc furnace is used for melting. When the vacuum degree of the vacuum induction melting furnace reaches 60Pa, the high-purity argon gas is introduced to 0.1MPa, and the temperature is rapidly increased until the charge is completely melted.
为了获得较低的出钢P,采用大渣量(≥600kg/t),多次流渣的方法,电炉出钢:P≤0.05%,Si≤0.4%,电炉出钢温度≥1600℃。In order to obtain lower tapping P, adopt the method of large slag amount (≥600kg/t) and multiple slag flow, electric furnace tapping: P≤0.05%, Si≤0.4%, electric furnace tapping temperature ≥1600℃.
电炉冶炼过程作杂质元素分析并做记录,有害元素As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,Cu≤0.20%。In the process of electric furnace smelting, the impurity elements are analyzed and recorded. The harmful elements As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001%, Bi≤0.001%, Cu≤0.20%.
(2)采用AOD+LF炉外精炼。在脱碳期,通过调整氧在混合气体中的分压,实现脱碳的作用;在还原期,通过充入惰性气体氩气实现强制脱氧,实现氧化铬的还原。(2) Refining outside the furnace using AOD+LF. In the decarburization period, the effect of decarburization is realized by adjusting the partial pressure of oxygen in the mixed gas; in the reduction period, forced deoxidation is realized by filling the inert gas argon to realize the reduction of chromium oxide.
经电炉冶炼的钢水通过钢包送入AOD炉,向熔池喷吹氧气和氩气,降低碳含量,增加铬的氧化。为了确保快速脱碳,降低铬损,节省氩气,吹炼初期应采用低的氩氧比。随着碳含量的降低,提高氩氧比。添加硅铁、石灰,通过加强吹氩搅拌,将氧化铬转化为金属,以生产不锈钢。当AOD炉中的温度≥1600℃后分批加入铬铁、钼铁,根据烟气及火焰测温度,进行测温取样,当w([C])≥0.7%时,在AOD采用纯氧吹炼,温度>1580℃时,w[(Cr)]=20%,首先氧化碳;当w([C])≤0.7%,采用O2、Ar(N2)连续变化方式脱碳,O2:Ar=3:1,脱碳效率提高6%;当w([C])≤0.10%,用纯氩吹炼,用钢中余氧及渣中的Cr2O3进一步脱碳,通过调整氩氧比例,O2:Ar=1:3,控制终点C≤0.06%,在进一步提高脱碳速度的同时,减少铬的氧化,当w([C])≤0.03%时,采用纯氩气吹炼5~15min,使钢液中溶解氧继续脱碳去除有害气体杂质,还可以减少还原剂Fe-Si的用量。根据钢液中硅的含量加入石灰,保持[Si]=石灰加入量/[(3.2~4.3)G],其中,G为钢液的总重量。其中,Cr的收得率≥96%,Mn的收得率≥88%,总的合金收得率≥96%。The molten steel smelted by the electric furnace is sent to the AOD furnace through the ladle, and oxygen and argon are injected into the molten pool to reduce the carbon content and increase the oxidation of chromium. In order to ensure rapid decarburization, reduce chromium loss, and save argon, a low argon-to-oxygen ratio should be used in the initial stage of blowing. As the carbon content decreases, the argon to oxygen ratio is increased. Ferrosilicon and lime are added, and chromium oxide is converted into metal by intensifying argon stirring to produce stainless steel. When the temperature in the AOD furnace is ≥1600℃, add ferrochrome and ferromolybdenum in batches, measure the temperature according to the flue gas and flame, and conduct temperature measurement and sampling, when w([C])≥0.7%, use pure oxygen blowing in AOD When the temperature is more than 1580℃, w[(Cr)]=20%, the carbon is oxidized first; when w([C])≤0.7%, the decarburization is carried out by continuously changing O 2 and Ar(N 2 ), and the O 2 : Ar=3:1, the decarburization efficiency is increased by 6%; when w([C])≤0.10%, pure argon is used for blowing, and the residual oxygen in the steel and Cr 2 O 3 in the slag are used for further decarburization. Argon oxygen ratio, O 2 : Ar=1:3, control end point C≤0.06%, reduce the oxidation of chromium while further increasing the decarburization rate, when w([C])≤0.03%, use pure argon gas Blowing for 5 to 15 minutes can make the dissolved oxygen in the molten steel continue to decarburize to remove harmful gas impurities, and can also reduce the amount of reducing agent Fe-Si. Lime is added according to the content of silicon in the molten steel, keeping [Si]=amount of lime added/[(3.2-4.3)G], where G is the total weight of the molten steel. Among them, the yield of Cr is ≥96%, the yield of Mn is ≥88%, and the total alloy yield is ≥96%.
LF精炼过程:LF精炼加铝粒预脱氧、脱硫,倒渣,去除渣中P、Si。钢液中w[S]<10×10-6,与传统加入FeSi还原Cr2O3相比,还原精炼时间缩短5~17min,脱硫效率提高至60%-90%。此时,[H]≤1-3ppm,[O]≤30-60ppm。LF refining process: LF refining adds aluminum particles for pre-deoxidation, desulfurization, slag pouring, and removal of P and Si in the slag. When w[S] in molten steel is less than 10×10 -6 , compared with the traditional reduction of Cr 2 O 3 by adding FeSi, the reduction refining time is shortened by 5-17 minutes, and the desulfurization efficiency is increased to 60%-90%. At this time, [H]≤1-3ppm, [O]≤30-60ppm.
(3)VD真空精炼(3) VD vacuum refining
VD真空精炼:倒渣后转到真空位抽真空。保持真空度67Pa以下;真空保持15分钟,保证合金元素在钢液中分布均匀,随后进行精炼,精炼温度≥1600℃,软吹氩15分钟,软吹氩温度≥1600℃,吊包镇静。VD vacuum refining: After pouring the slag, transfer to the vacuum position to vacuumize. Keep the vacuum degree below 67Pa; keep the vacuum for 15 minutes to ensure that the alloy elements are evenly distributed in the molten steel, and then carry out refining.
(4)浇注过程(4) pouring process
当温度≥1580℃开始浇注,锭身注速600m3/h,冒口注速280m3/h,脱模时间8.5小时,完成不锈钢的高纯净冶炼When the temperature is greater than or equal to 1580℃, the pouring starts, the injection rate of the ingot body is 600m 3 /h, the injection rate of the riser is 280m 3 /h, and the demolding time is 8.5 hours, and the high-purity smelting of stainless steel is completed.
采用以上方法冶炼的不锈钢的杂质含量明显降低,表7、表8分别为不同阶段钢液的化学成分、夹杂物成分以及低倍组织的检测。The impurity content of stainless steel smelted by the above method is obviously reduced. Table 7 and Table 8 respectively show the chemical composition, inclusion composition and low-magnification detection of molten steel at different stages.
表7不同阶段钢液的化学成分Table 7 Chemical composition of molten steel in different stages
表8不锈钢中夹杂物的成分变化Table 8 Compositional changes of inclusions in stainless steel
实施例4Example 4
不锈钢的冶炼选用烘干优质废钢,生铁或铁水,经过充分烘烤的合金进行初熔。For the smelting of stainless steel, high-quality scrap steel, pig iron or molten iron, and fully baked alloys are used for initial melting.
(1)电弧冶炼(1) Arc smelting
采用真空电弧炉进行熔炼,当真空感应熔炼炉真空度达60Pa时,通入高纯氩气至0.1MPa时快速升温至炉料完全熔化。The vacuum electric arc furnace is used for melting. When the vacuum degree of the vacuum induction melting furnace reaches 60Pa, the high-purity argon gas is introduced to 0.1MPa, and the temperature is rapidly increased until the charge is completely melted.
为了获得较低的出钢P,采用大渣量(≥600kg/t),多次流渣的方法,电炉出钢:P≤0.05%,Si≤0.4%,电炉出钢温度≥1600℃。In order to obtain lower tapping P, adopt the method of large slag amount (≥600kg/t) and multiple slag flow, electric furnace tapping: P≤0.05%, Si≤0.4%, electric furnace tapping temperature ≥1600℃.
电炉冶炼过程作杂质元素分析并做记录,有害元素As≤0.007%,Sn≤0.004%,Sb≤0.010%,Pb≤0.001%,Bi≤0.001%,Cu≤0.20%。In the process of electric furnace smelting, the impurity elements are analyzed and recorded. The harmful elements As≤0.007%, Sn≤0.004%, Sb≤0.010%, Pb≤0.001%, Bi≤0.001%, Cu≤0.20%.
(2)采用AOD+LF炉外精炼。在脱碳期,通过调整氧在混合气体中的分压,实现脱碳的作用;在还原期,通过充入惰性气体氩气实现强制脱氧,实现氧化铬的还原。(2) Refining outside the furnace using AOD+LF. In the decarburization period, the effect of decarburization is realized by adjusting the partial pressure of oxygen in the mixed gas; in the reduction period, forced deoxidation is realized by filling the inert gas argon to realize the reduction of chromium oxide.
经电炉冶炼的钢水通过钢包送入AOD炉,向熔池喷吹氧气和氩气,降低碳含量,增加铬的氧化。为了确保快速脱碳,降低铬损,节省氩气,吹炼初期应采用低的氩氧比。随着碳含量的降低,提高氩氧比。添加硅铁、石灰,通过加强吹氩搅拌,将氧化铬转化为金属,以生产低硫不锈钢。当AOD炉中的温度≥1600℃后分批加入铬铁、钼铁,根据烟气及火焰测温度,进行测温取样,当w([C])≥0.7%时,在AOD采用纯氧吹炼,温度>1580℃时,w[(Cr)]=20%,首先氧化碳;当w([C])≤0.7%,采用O2、Ar连续变化方式脱碳,O2:Ar=3:1,脱碳效率提高6%;当w([C])≤0.10%,用纯氩吹炼,用钢中余氧及渣中的Cr2O3进一步脱碳,通过调整氩氧比例,O2:Ar=1:3,控制终点C≤0.06%,在进一步提高脱碳速度的同时,减少铬的氧化,当w([C])≤0.03%时,采用纯氩气吹炼5~15min,使钢液中溶解氧继续脱碳去除有害气体杂质,还可以减少还原剂Fe-Si的用量,将钢水温度由原来工艺的提高1-4℃/s,变成降低3-6℃/s。根据钢液中硅的含量加入石灰,保持[Si]=石灰加入量/[(3.2~4.3)G],其中,G为钢液的总重量。其中,Cr的收得率≥96%,Mn的收得率≥88%,总的合金收得率≥96%。The molten steel smelted by the electric furnace is sent to the AOD furnace through the ladle, and oxygen and argon are injected into the molten pool to reduce the carbon content and increase the oxidation of chromium. In order to ensure rapid decarburization, reduce chromium loss and save argon, a low argon-to-oxygen ratio should be used in the initial stage of blowing. As the carbon content decreases, the argon to oxygen ratio is increased. Ferrosilicon and lime are added, and chromium oxide is converted into metal by intensifying argon stirring to produce low-sulfur stainless steel. When the temperature in the AOD furnace is ≥1600℃, add ferrochrome and ferromolybdenum in batches, measure the temperature according to the flue gas and flame, and conduct temperature measurement and sampling. When w([C])≥0.7%, use pure oxygen blowing in AOD. When the temperature is >1580℃, w[(Cr)]=20%, carbon dioxide is firstly oxidized; when w([C])≤0.7%, decarburization is carried out by continuous change of O 2 and Ar, O 2 : Ar=3 : 1, the decarburization efficiency is increased by 6%; when w([C])≤0.10%, pure argon is used for blowing, and the residual oxygen in the steel and Cr 2 O 3 in the slag are used for further decarburization. By adjusting the ratio of argon and oxygen, O 2 : Ar=1:3, control the end point C≤0.06%, while further increasing the decarburization rate, reduce the oxidation of chromium, when w([C])≤0.03%, use pure argon to blow 5~ 15min, the dissolved oxygen in the molten steel can continue to decarburize to remove harmful gas impurities, and it can also reduce the amount of reducing agent Fe-Si, and the molten steel temperature can be increased from 1-4℃/s in the original process to a decrease of 3-6℃/s. s. Lime is added according to the silicon content in the molten steel, keeping [Si]=the amount of lime added/[(3.2-4.3)G], where G is the total weight of the molten steel. Among them, the yield of Cr is ≥96%, the yield of Mn is ≥88%, and the total alloy yield is ≥96%.
LF精炼过程:LF精炼加铝粒预脱氧、脱硫,倒渣,去除渣中P、Si。钢液中w[S]<10×10-6,与传统加入FeSi还原Cr2O3相比,还原精炼时间缩短5~17min,脱硫效率提高至60%-90%。此时,[H]≤1-3ppm,[O]≤30-60ppm。LF refining process: LF refining adds aluminum particles for pre-deoxidation, desulfurization, slag pouring, and removal of P and Si in the slag. When w[S] in molten steel is less than 10×10 -6 , compared with the traditional reduction of Cr 2 O 3 by adding FeSi, the reduction refining time is shortened by 5-17 minutes, and the desulfurization efficiency is increased to 60%-90%. At this time, [H]≤1-3ppm, [O]≤30-60ppm.
(3)VD真空精炼(3) VD vacuum refining
VD真空精炼:倒渣后转到真空位抽真空。保持真空度67Pa以下;真空保持15分钟,保证合金元素在钢液中分布均匀,随后进行精炼,精炼温度≥1600℃,软吹氩15分钟,软吹氩温度≥1600℃,吊包镇静。VD vacuum refining: After pouring the slag, transfer to the vacuum position to vacuumize. Keep the vacuum degree below 67Pa; keep the vacuum for 15 minutes to ensure that the alloy elements are evenly distributed in the molten steel, and then carry out refining.
(4)浇注过程(4) pouring process
当温度≥1580℃开始浇注,锭身注速600m3/h,冒口注速280m3/h,脱模时间8.5小时,完成不锈钢的高纯净冶炼When the temperature is greater than or equal to 1580℃, the pouring starts, the injection rate of the ingot body is 600m 3 /h, the injection rate of the riser is 280m 3 /h, and the demolding time is 8.5 hours, and the high-purity smelting of stainless steel is completed.
采用以上方法冶炼的不锈钢的杂质含量明显降低,表9、表10分别为不同阶段钢液的化学成分、夹杂物成分以及低倍组织的检测。The impurity content of stainless steel smelted by the above method is significantly reduced. Table 9 and Table 10 respectively show the chemical composition, inclusion composition and low-magnification detection of molten steel at different stages.
表9不同阶段钢液的化学成分Table 9 Chemical composition of molten steel at different stages
表10不锈钢中夹杂物的成分变化Table 10 Compositional changes of inclusions in stainless steel
本发明的原理:本发明是通过电弧冶炼炉进行冶炼,在冶炼的过程中通入高纯氩气,因此可以有效防止合金被氧化,阻止杂质元素的进入,降低易挥发元素的烧损;同时,在冶炼过程中通过大渣量(≥600kg/t),多次流渣等方法,降低钢中P的含量;LF精炼加铝粒预脱氧。此外,该设备可以实现快速升温、降温,在进行母合金精炼时,可获得低杂质高纯净的不锈钢,该不锈钢的冶炼制备方法主要应用于工业化生产过程中不锈钢的生产。通过电炉冶炼→AOD+LF炉外精炼→VD真空精炼→模铸钢锭三步冶炼不锈钢,即采用电炉在高纯氩气保护下化料,可有效控制合金熔化过程中的污染,降低易挥发元素的烧损;采用AOD+LF炉外精炼脱氧、调整钢液中氩氧的分压、除P、Si等夹杂;采用VD真空精炼,进一步消除钢液中的夹杂,从而实现高纯净化冶炼。Principle of the present invention: The present invention is smelted by an electric arc smelting furnace, and high-purity argon gas is introduced into the smelting process, so it can effectively prevent the alloy from being oxidized, prevent the entry of impurity elements, and reduce the burning loss of volatile elements; , In the smelting process, the content of P in the steel is reduced by methods such as large slag amount (≥600kg/t) and multiple slag flows; LF refining adds aluminum particles for pre-deoxidation. In addition, the equipment can achieve rapid heating and cooling. When refining the master alloy, stainless steel with low impurities and high purity can be obtained. The smelting and preparation method of stainless steel is mainly used in the production of stainless steel in the industrial production process. Three-step smelting of stainless steel through electric furnace smelting→AOD+LF refining outside the furnace→VD vacuum refining→die casting ingot Burning loss of elements; use AOD+LF out-of-furnace refining and deoxidation, adjust the partial pressure of argon and oxygen in molten steel, and remove P, Si and other inclusions; use VD vacuum refining to further eliminate inclusions in molten steel, so as to achieve high-purity smelting .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810132857.7A CN108330245B (en) | 2018-02-09 | 2018-02-09 | A kind of high-purity smelting method of stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810132857.7A CN108330245B (en) | 2018-02-09 | 2018-02-09 | A kind of high-purity smelting method of stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108330245A CN108330245A (en) | 2018-07-27 |
CN108330245B true CN108330245B (en) | 2020-01-24 |
Family
ID=62928616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810132857.7A Active CN108330245B (en) | 2018-02-09 | 2018-02-09 | A kind of high-purity smelting method of stainless steel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108330245B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796167A (en) * | 2018-07-05 | 2018-11-13 | 泰州市申工不锈钢制品有限公司 | A kind of stainless steel smelting method |
CN110322057B (en) * | 2019-06-20 | 2023-04-18 | 江阴兴澄特种钢铁有限公司 | Prediction system and prediction method for carbon component in tapping of 100t direct-current electric arc furnace |
CN111519111A (en) * | 2020-04-23 | 2020-08-11 | 江阴市劲松科技有限公司 | Process for smelting precipitation hardening steel |
CN111500930B (en) * | 2020-05-06 | 2022-01-28 | 山西太钢不锈钢股份有限公司 | Component control method of ultrapure stainless steel for nuclear power |
CN111455131B (en) * | 2020-05-29 | 2021-11-09 | 攀钢集团攀枝花钢铁研究院有限公司 | Smelting and continuous casting method of high-cleanliness wear-resistant steel |
CN111910045B (en) * | 2020-07-08 | 2021-09-24 | 甘肃酒钢集团宏兴钢铁股份有限公司 | A kind of smelting method of high-purity austenitic stainless steel |
CN113005261A (en) * | 2021-01-29 | 2021-06-22 | 海盐中达金属电子材料有限公司 | Comprehensive deoxidation and desulfurization process for smelting stainless steel by using small-capacity AOD furnace |
CN113186471A (en) * | 2021-03-18 | 2021-07-30 | 兴化市广福金属制品有限公司 | High-purity and high-hardness stainless steel material |
CN113215475B (en) * | 2021-03-26 | 2022-06-24 | 舞阳钢铁有限责任公司 | Production method for controlling nitrogen and impurities of high-alloy steel |
CN113201625B (en) * | 2021-03-31 | 2022-10-21 | 甘肃酒钢集团宏兴钢铁股份有限公司 | Control method of stainless steel inclusion for flux-cored wire |
CN113832303B (en) * | 2021-09-10 | 2022-08-12 | 湖州盛特隆金属制品有限公司 | Method for smelting ultra-low carbon and ultra-low silicon hastelloy by hastelloy waste |
CN114107603A (en) * | 2021-11-26 | 2022-03-01 | 攀钢集团江油长城特殊钢有限公司 | Smelting method of low-silicon low-aluminum tungsten-containing boron-containing high-chromium martensitic stainless steel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105296881A (en) * | 2014-07-31 | 2016-02-03 | 宝钢特钢有限公司 | Stainless heat resistant steel for turbine disc of large gas turbine and manufacturing method of forging thereof |
CN105861951A (en) * | 2016-06-07 | 2016-08-17 | 东北特钢集团大连特殊钢有限责任公司 | Manufacturing method of oversized continuous casting slab of nickel stainless steel |
CN106636953A (en) * | 2016-10-14 | 2017-05-10 | 中原特钢股份有限公司 | Method for smelting martensitic stainless steel P91 for boiler pipe |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61157618A (en) * | 1984-12-29 | 1986-07-17 | Daido Steel Co Ltd | Production of alloy steel containing cr |
-
2018
- 2018-02-09 CN CN201810132857.7A patent/CN108330245B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105296881A (en) * | 2014-07-31 | 2016-02-03 | 宝钢特钢有限公司 | Stainless heat resistant steel for turbine disc of large gas turbine and manufacturing method of forging thereof |
CN105861951A (en) * | 2016-06-07 | 2016-08-17 | 东北特钢集团大连特殊钢有限责任公司 | Manufacturing method of oversized continuous casting slab of nickel stainless steel |
CN106636953A (en) * | 2016-10-14 | 2017-05-10 | 中原特钢股份有限公司 | Method for smelting martensitic stainless steel P91 for boiler pipe |
Also Published As
Publication number | Publication date |
---|---|
CN108330245A (en) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108330245B (en) | A kind of high-purity smelting method of stainless steel | |
CN102071287B (en) | Method for melting high-temperature-resistance and high-pressure-resistance alloy steel | |
CN105018669B (en) | Production method of industrial pure iron for nuclear power | |
CN113774277B (en) | Ultra-low carbon and ultra-low manganese industrial pure iron and preparation method thereof | |
CN101353753B (en) | Ultra-low carbon high-purity industrial pure iron and manufacturing method thereof | |
CN113249639A (en) | Production method for improving castability of silicon-manganese killed silicon steel | |
CN113802045A (en) | Refining process of ultra-low carbon low aluminum steel | |
CN107365949A (en) | A kind of method of smelting ultralow-carbon high-alloy stainless steel | |
CN110819761B (en) | Bottom pouring steel ingot or electrode blank and preparation method thereof | |
CN117965840B (en) | Converter phosphorus controlled smelting method for low temperature steel and production method of high quality low temperature steel | |
CN117926117B (en) | Method for producing N08810 steel ingot by VODC refining furnace | |
JP2002266047A (en) | Ductile cast iron pipe and manufacturing method therefor | |
JPH0480093B2 (en) | ||
CN114807748A (en) | Steel for high-strength roller cone bit and preparation method thereof | |
CN114292984A (en) | RC process technology for researching [ Mn ] [ Si ] element by LF refining slag component | |
CN113106194A (en) | Method for reducing size of B-type inclusions in aluminum deoxidized steel | |
CN106811573A (en) | Improve the manufacture method of the steel of molten steel casting properties | |
CN117947239B (en) | Low-phosphorus converter smelting method and production method for low-temperature steel | |
CN114807749B (en) | Steel bar for mining machinery and production process thereof | |
CN113957197B (en) | Converter tapping metallurgy process for reducing large-size inclusions in bearing steel | |
CN117925947B (en) | High purity low temperature steel and production method thereof | |
RU2460807C1 (en) | Manufacturing method of high-carbon steel with further continuous pouring to small-section workpiece | |
CN118147529A (en) | Ultra-low oxygen free-cutting alloy die steel and smelting method thereof | |
CN118256682A (en) | A smelting process for improving the slag line life of a stopper rod for low-carbon low-alloy steel casting and a stopper rod | |
CN115505853A (en) | Square steel for high-speed rail brake and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |