CN108270402A - Voltage detecting and control circuit - Google Patents
Voltage detecting and control circuit Download PDFInfo
- Publication number
- CN108270402A CN108270402A CN201810199958.6A CN201810199958A CN108270402A CN 108270402 A CN108270402 A CN 108270402A CN 201810199958 A CN201810199958 A CN 201810199958A CN 108270402 A CN108270402 A CN 108270402A
- Authority
- CN
- China
- Prior art keywords
- voltage
- output
- module
- input terminal
- pmos transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims description 40
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000003321 amplification Effects 0.000 abstract description 17
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 17
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 230000008859 change Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 101150110971 CIN7 gene Proteins 0.000 description 8
- 101150110298 INV1 gene Proteins 0.000 description 8
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 8
- 101100508840 Daucus carota INV3 gene Proteins 0.000 description 7
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 6
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/301—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16566—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
- G01R19/16576—Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明属于模拟集成电路技术领域,涉及一种电压检测及控制电路,尤其适用于动态放大器电源电压波动的检测和电源电压波动下增益的校正。The invention belongs to the technical field of analog integrated circuits, and relates to a voltage detection and control circuit, which is especially suitable for the detection of dynamic amplifier power supply voltage fluctuations and the correction of gain under power supply voltage fluctuations.
背景技术Background technique
集成电路工艺的进步使数字电路工作速度不断提高,集成密度不断增大,电源电压逐渐降低,表征数字电路综合性能的数据明显提高;然而,工艺进步、电源电压降低恶化了很多重要的模拟电路模块的性能,影响最大的当属放大器。作为模拟电路中广泛应用的基本模块,一方面,工艺进步产生了很多CMOS器件的非理想效应,这对敏感的模拟电路影响较大,另一方面,电源电压降低导致放大器的结构选择受到限制。有鉴于此,动态放大器成为设计和研究的热点,动态放大器结构简单且无静态功耗,很好的适应了低电源电压,极大的降低了功耗,因而在很多电路中得到应用,如模数转换器(ADC)等;但是,动态放大器的增益易受电源电压波动的影响,而实际电路中,电源电压的波动是难以避免的,这就极大的限制了动态放大器的性能和适用范围,因此在设计使用动态放大器时,需要考虑减小或消除电源电压波动对增益的影响。The progress of integrated circuit technology has continuously increased the working speed of digital circuits, increased the integration density, and gradually reduced the power supply voltage. The data representing the comprehensive performance of digital circuits has been significantly improved; The performance that has the greatest impact is the amplifier. As a basic module widely used in analog circuits, on the one hand, technological progress has produced many non-ideal effects of CMOS devices, which have a greater impact on sensitive analog circuits; on the other hand, the reduction of power supply voltage has limited the choice of amplifier structures. In view of this, dynamic amplifiers have become a hot spot in design and research. Dynamic amplifiers have a simple structure and no static power consumption. They are well adapted to low power supply voltages and greatly reduce power consumption. Therefore, they are used in many circuits, such as analog However, the gain of the dynamic amplifier is easily affected by the fluctuation of the power supply voltage, and in the actual circuit, the fluctuation of the power supply voltage is unavoidable, which greatly limits the performance and scope of application of the dynamic amplifier , so when designing and using a dynamic amplifier, it is necessary to consider reducing or eliminating the influence of power supply voltage fluctuations on the gain.
一种带共模检测的动态放大器如图1所示,在图1中,该动态放大器主要由用于复位的第四PMOS管M1、第五PMOS管M2、第六PMOS管M3,用做输入对管的第三NMOS管M4、第四NMOS管M5,控制放大过程的第五NMOS管M6、第六NMOS管M7,用于检测输出共模的电容第二电容C1、第三电容C2,控制输出接入的第一压控开关SW1和第二压控开关SW2和表示负载的第四电容CLN、第五电容CLP组成。图中外部时钟信号clk控制动态放大器在复位和放大两个阶段切换,共模检测器CMD对输出共模Vx进行检测,当Vx点电压大于设定的固定电压时,输出Vctrl为高电平,当Vx点电压小于设定的固定电压时,输出Vctrl为低电平;通过输出控制信号Vctrl改变第五NMOS管M6栅端电压控制放大结束,通过控制接负载的第一压控开关SW1和第二压控开关SW2断开负载和动态放大器输出。A dynamic amplifier with common mode detection is shown in Figure 1. In Figure 1, the dynamic amplifier is mainly composed of the fourth PMOS transistor M1, the fifth PMOS transistor M2, and the sixth PMOS transistor M3 for reset, which are used as input The third NMOS transistor M4 and the fourth NMOS transistor M5 of the pair of tubes, the fifth NMOS transistor M6 and the sixth NMOS transistor M7 that control the amplification process are used to detect the output common-mode capacitance of the second capacitor C 1 and the third capacitor C 2 , composed of the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2 that control the output access, and the fourth capacitor C LN and the fifth capacitor C LP representing the load. In the figure, the external clock signal clk controls the dynamic amplifier to switch between the reset and amplification phases. The common mode detector CMD detects the output common mode V x . When the voltage of the V x point is greater than the set fixed voltage, the output V ctrl is high. Level, when the voltage at point V x is less than the set fixed voltage, the output V ctrl is low level; change the gate terminal voltage of the fifth NMOS transistor M6 through the output control signal V ctrl to control the end of the amplification, and control the end of the amplification by controlling the first connected to the load The voltage-controlled switch SW1 and the second voltage-controlled switch SW2 disconnect the load and the dynamic amplifier output.
其中,在复位阶段,由外部时钟控制的信号clk为低电平,用于复位的第四PMOS管M1、第五PMOS管M2、第六PMOS管M3打开,同时由clk控制的第六NMOS管M7关断,动态放大器内部结点V1、V2、Vx被充电到电源电压,共模检测器CMD输出的Vctrl为高电平,第五NMOS管M6导通,第一压控开关SW1和第二压控开关SW2闭合,输出负载的第四电容CLN、第五电容CLP和放大器直接相连并被充电到电源电压,此即为复位状态。Among them, in the reset phase, the signal clk controlled by the external clock is low level, the fourth PMOS transistor M1, the fifth PMOS transistor M2, and the sixth PMOS transistor M3 used for reset are turned on, and the sixth NMOS transistor controlled by clk M7 is turned off, the internal nodes V 1 , V 2 , and V x of the dynamic amplifier are charged to the power supply voltage, the V ctrl output by the common mode detector CMD is high level, the fifth NMOS transistor M6 is turned on, and the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2 are closed, and the fourth capacitor C LN and the fifth capacitor C LP of the output load are directly connected to the amplifier and charged to the power supply voltage, which is the reset state.
当外部时钟信号clk变为高电平,该动态放大器开始放大,具体过程为:由外部时钟信号clk控制的第四PMOS管M1、第五PMOS管M2、第六PMOS管M3直接关断,此时Vx保持高阻,则Vx结点电荷总量保持不变,由clk控制的第六NMOS管M7开启,由放大期间保持不变的输入信号Vip、Vin控制的第三NMOS管M4、第四NMOS管M5开始对V1、V2两结点进行放电,如果认为设定的共模电压为Vdet,动态放大器输入对管的NMOS阈值电压为Vth,β=Cox*μ*W/L,其中Cox为单位面积栅氧化层电容,μ为载流子迁移率,W/L为MOS管宽长比,负载电容CLP=CLN=CL,那么Voutn,Voutp两点的电压变化随输入信号和时间的关系为:When the external clock signal clk becomes high level, the dynamic amplifier starts to amplify. The specific process is: the fourth PMOS transistor M1, the fifth PMOS transistor M2, and the sixth PMOS transistor M3 controlled by the external clock signal clk are directly turned off. When V x keeps high resistance, the total charge of V x node remains unchanged, the sixth NMOS transistor M7 controlled by clk is turned on, and the third NMOS transistor M7 controlled by input signals V ip and V in that remain unchanged during amplification M4 and the fourth NMOS transistor M5 start to discharge the two nodes of V 1 and V 2 , if the set common-mode voltage is considered to be V det , the NMOS threshold voltage of the dynamic amplifier input pair transistor is V th , β=C ox * μ*W/L, where C ox is the capacitance of the gate oxide layer per unit area, μ is the carrier mobility, W/L is the width-to-length ratio of the MOS tube, and the load capacitance C LP = CLN = CL , then V outn , The relationship between the voltage change of the two points of V outp with the input signal and time is:
在V1、V2的放电过程中,Vx点的电压会通过第二电容C1、第三电容C2跟随V1、V2变化,通常取C1=C2,那么放电过程中Vx点电压变化的表达式为:During the discharge process of V 1 and V 2 , the voltage at point V x will follow the change of V 1 and V 2 through the second capacitor C 1 and the third capacitor C 2 , usually C 1 =C 2 , then during the discharge process V The expression of the voltage change at point x is:
Vx点的电压随V1、V2的放电不断下降,当下降到设定的共模电压时,则Vctrl由高电平变为低电平,这样控制动态放大器的第五NMOS管M6关断,切断V1、V2的放电通路,同时断开第一压控开关SW1和第二压控开关SW2,使负载电容和动态放大器的输出断开,从而保存放大后的电压,放大时间为Vx从电源电压VDD放电到设定的共模电压的时间t,可以表示为:The voltage at point V x drops continuously with the discharge of V 1 and V 2 , and when it drops to the set common-mode voltage, V ctrl changes from high level to low level, thus controlling the fifth NMOS transistor M6 of the dynamic amplifier Turn off, cut off the discharge path of V 1 and V 2 , and at the same time disconnect the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2, so that the load capacitance and the output of the dynamic amplifier are disconnected, so as to save the amplified voltage and the amplified time The time t for Vx to discharge from the supply voltage VDD to the set common-mode voltage can be expressed as:
相应的,增益可以通过放大时间得到确定:Accordingly, the gain can be determined by the amplification time:
上式中Vcm为输入差分信号Vip和Vin的共模电平,当Vip和Vin的差值较小时,增益表达式可以简化为:In the above formula, V cm is the common-mode level of input differential signals V ip and V in . When the difference between V ip and V in is small, the gain expression can be simplified as:
显然,通过增益表达式可以发现,该动态放大器的增益和VDD相关,在实际电路的使用过程中,电源电压极有可能处在不同的直流电压下,即使使用稳压器进行稳压,电源电压的波动也会影响到动态放大器的增益,这对于需要固定增益放大器的电路应用带来了隐患,造成输入信号放大倍数变化。Obviously, through the gain expression, it can be found that the gain of the dynamic amplifier is related to V DD . During the use of the actual circuit, the power supply voltage is very likely to be at a different DC voltage. Even if a voltage regulator is used for voltage stabilization, the power supply Voltage fluctuations will also affect the gain of the dynamic amplifier, which brings hidden dangers to circuit applications that require a fixed gain amplifier, resulting in changes in the amplification factor of the input signal.
发明内容Contents of the invention
针对上述不足之处,本发明提出一种电压检测及控制电路,用于检测电压并通过检测结果提供控制信号,尤其适用于动态放大器的电源电压波动检测和电源电压波动下增益的校正,将本发明提供的电压检测及控制电路代替动态放大器中的共模检测器CMD,克服了上述动态放大器电源电压的变化和波动对增益的影响。In view of the above shortcomings, the present invention proposes a voltage detection and control circuit for detecting voltage and providing control signals through the detection results, especially suitable for power supply voltage fluctuation detection of dynamic amplifiers and correction of gain under power supply voltage fluctuations. The voltage detection and control circuit provided by the invention replaces the common mode detector CMD in the dynamic amplifier, and overcomes the influence of the change and fluctuation of the power supply voltage of the dynamic amplifier on the gain.
本发明的技术方案为:Technical scheme of the present invention is:
电压检测及控制电路,包括基准电压输出缓冲模块402、电压运算模块403和比较器模块404,The voltage detection and control circuit includes a reference voltage output buffer module 402, a voltage operation module 403 and a comparator module 404,
所述基准电压输出缓冲模块402的输入端连接基准电压,其输出端连接所述电压运算模块403的第二输入端;The input end of the reference voltage output buffer module 402 is connected to the reference voltage, and its output end is connected to the second input end of the voltage operation module 403;
所述比较器模块404的第一输入端连接所述电压运算模块403的输出端,其第二输入端连接待检测电压,其输出端作为所述电压检测及控制电路的输出端;The first input terminal of the comparator module 404 is connected to the output terminal of the voltage calculation module 403, its second input terminal is connected to the voltage to be detected, and its output terminal is used as the output terminal of the voltage detection and control circuit;
所述电压运算模块403包括第一反相器INV1、第二反相器INV2、第三反相器INV3、第一电容C3、第一NMOS管MN1、第二NMOS管MN2、第一PMOS管MP1和第二PMOS管MP2,The voltage calculation module 403 includes a first inverter INV1, a second inverter INV2, a third inverter INV3, a first capacitor C3 , a first NMOS transistor MN1, a second NMOS transistor MN2, a first PMOS transistor MP1 and the second PMOS tube MP2,
第一PMOS管MP1的源极作为所述电压运算模块403的第一输入端连接外部调整电压,其栅极连接第一反相器INV1的输出端,其漏极连接第一NMOS管MN1和第二PMOS管MP2的漏极以及第一电容C3的上极板;The source of the first PMOS transistor MP1 is used as the first input terminal of the voltage operation module 403 to connect to the external adjustment voltage, its gate is connected to the output terminal of the first inverter INV1, and its drain is connected to the first NMOS transistor MN1 and the first NMOS transistor MN1 and the first inverter INV1. The drain of the second PMOS transistor MP2 and the upper plate of the first capacitor C3 ;
第二反相器INV2的输入端连接第一反相器INV1的输入端并连接外部时钟信号clk,其输出端连接第一NMOS管MN1的栅极;The input terminal of the second inverter INV2 is connected to the input terminal of the first inverter INV1 and connected to the external clock signal clk, and the output terminal thereof is connected to the gate of the first NMOS transistor MN1;
第二PMOS管MP2的源极连接第一NMOS管MN1的源极并作为所述电压运算模块403的第二输入端,其栅极连接第三反相器INV3的输入端并连接外部时钟信号clk;The source of the second PMOS transistor MP2 is connected to the source of the first NMOS transistor MN1 and serves as the second input terminal of the voltage operation module 403, and its gate is connected to the input terminal of the third inverter INV3 and connected to the external clock signal clk ;
第二NMOS管MN2的栅极连接第三反相器INV3的输出端,其漏极连接第一电容C3的下极板并作为所述电压运算模块403的输出端,其源极接地。The gate of the second NMOS transistor MN2 is connected to the output terminal of the third inverter INV3, its drain is connected to the lower plate of the first capacitor C3 as the output terminal of the voltage calculation module 403, and its source is grounded.
具体的,所述基准电压输出缓冲模块402包括运算放大器、第一电阻R1和第三PMOS管MP3,Specifically, the reference voltage output buffer module 402 includes an operational amplifier, a first resistor R1 and a third PMOS transistor MP3,
运算放大器的正向输入端连接所述基准电压,其负向输入端连接第三PMOS管MP3的漏极和第一电阻R1的一端并作为所述基准电压输出缓冲模块402的输出端,其输出端连接第三PMOS管MP3的栅极,第三PMOS管MP3的源极接电源电压,第一电阻R1的另一端接地。The positive input terminal of the operational amplifier is connected to the reference voltage, and its negative input terminal is connected to the drain of the third PMOS transistor MP3 and one end of the first resistor R1 as the output terminal of the reference voltage output buffer module 402, which outputs The terminal is connected to the gate of the third PMOS transistor MP3, the source of the third PMOS transistor MP3 is connected to the power supply voltage, and the other end of the first resistor R1 is grounded.
具体的,所述比较器模块404包括一个比较器405,所述比较器405的负向输入端连接所述电压运算模块403的输出端,其正向输入端连接所述待检测电压,其输出端作为所述电压检测及控制电路的输出端。Specifically, the comparator module 404 includes a comparator 405, the negative input terminal of the comparator 405 is connected to the output terminal of the voltage operation module 403, the positive input terminal is connected to the voltage to be detected, and its output terminal as the output terminal of the voltage detection and control circuit.
具体的,所述外部调整电压VY的电压值大于所述基准电压输出缓冲模块402输出端的电压值Vrefbuf。Specifically, the voltage value of the external adjustment voltage V Y is greater than the voltage value V refbuf of the output terminal of the reference voltage output buffer module 402 .
本发明的工作原理为:Working principle of the present invention is:
基准电压Vref是一个不随电源电压、温度、工艺变化的准确的电压,其通过基准电压输出缓冲模块402后得到一个缓冲基准电压Vrefbuf;电压运算模块403在外部时钟信号clk的控制下,对外部调整电压VY和缓冲基准电压Vrefbuf进行处理,得到一个比较信号Vdet=VY-Vrefbuf;通过比较待检测电压VX和比较信号Vdet的电压值控制输出的控制信号Vctrl为低电平或高电平,通过调整比较信号Vdet的值调整控制信号Vctrl为高电平的条件。The reference voltage V ref is an accurate voltage that does not change with the power supply voltage, temperature, and process. After passing through the reference voltage output buffer module 402, a buffered reference voltage V refbuf is obtained; the voltage operation module 403 is controlled by the external clock signal clk. The external adjustment voltage V Y and the buffer reference voltage V refbuf are processed to obtain a comparison signal V det = V Y -V refbuf ; the output control signal V ctrl is controlled by comparing the voltage value of the voltage to be detected V X and the comparison signal V det to Low level or high level, the condition that the control signal V ctrl is high level is adjusted by adjusting the value of the comparison signal V det .
本发明的有益效果为:本发明提供的电压检测及控制电路检测范围大,适用范围广,尤其适用于动态放大器,通过调整在电源电压波动下的比较信号Vdet的电压值,从而调整不同电源电压下动态放大器的放大时间,在电源电压的一定变化范围内,得到不随电源电压变化变化的动态放大器放大倍数,从而获得抗电源电压波动的增益稳定动态放大器。The beneficial effects of the present invention are: the voltage detection and control circuit provided by the present invention has a large detection range and a wide application range, and is especially suitable for dynamic amplifiers. By adjusting the voltage value of the comparison signal V det under power supply voltage fluctuations, different power supplies can be adjusted. The amplification time of the dynamic amplifier under voltage, within a certain variation range of the power supply voltage, obtains the dynamic amplifier amplification factor that does not change with the power supply voltage change, thereby obtaining a gain-stabilized dynamic amplifier that is resistant to power supply voltage fluctuations.
附图说明Description of drawings
图1为传统带共模检测的电荷转移型动态放大器的电路示意图。Figure 1 is a schematic circuit diagram of a conventional charge-transfer dynamic amplifier with common-mode detection.
图2为本发明提供的电压检测及控制电路适用于电荷转移型动态放大器校正增益时的电路示意图。FIG. 2 is a schematic circuit diagram of the voltage detection and control circuit provided by the present invention when it is suitable for correcting the gain of the charge-transfer dynamic amplifier.
图3为本发明提供的电压检测及控制电路的内部模块组成示意图。FIG. 3 is a schematic diagram of the internal modules of the voltage detection and control circuit provided by the present invention.
图4为实施例中基准电压输出缓冲模块的内部结构示意图。Fig. 4 is a schematic diagram of the internal structure of the reference voltage output buffer module in the embodiment.
图5为本发明中电压运算模块的内部结构示意图。FIG. 5 is a schematic diagram of the internal structure of the voltage calculation module in the present invention.
图6为实施例中比较器模块的内部结构示意图。Fig. 6 is a schematic diagram of the internal structure of the comparator module in the embodiment.
图7为实施例中将本发明适用于电荷转移型动态放大器实现电压波动下增益稳定的电路示意图。FIG. 7 is a schematic circuit diagram of applying the present invention to a charge-transfer dynamic amplifier to realize gain stability under voltage fluctuations in an embodiment.
图8为实施例中将本发明用于电压监测时的电路示意图。Fig. 8 is a circuit schematic diagram when the present invention is used for voltage monitoring in an embodiment.
具体实施方式Detailed ways
下面结合附图和具体实施例进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图3所示,本发明包括基准电压输出缓冲模块402、电压运算模块403和比较器模块404,基准电压输出缓冲模块402的输入端连接基准电压Vref,其输出端输出缓冲基准电压Vrefbuf至电压运算模块403的第二输入端;电压运算模块403的第一输入端连接外部调整电压VY,在外部时钟信号clk的控制下对其第一输入端和第二输入端的信号进行处理,得到一个比较信号Vdet=VY-Vrefbuf输出到比较器模块404的第一输入端;比较器模块404的第二输入端连接待检测电压VX,通过比较待检测电压VX和比较信号Vdet的值得到一个控制信号Vctrl。As shown in Figure 3, the present invention includes a reference voltage output buffer module 402, a voltage operation module 403 and a comparator module 404, the input end of the reference voltage output buffer module 402 is connected to the reference voltage V ref , and its output end outputs the buffer reference voltage V refbuf To the second input terminal of the voltage calculation module 403; the first input terminal of the voltage calculation module 403 is connected to the external adjustment voltage V Y , and the signals of its first input terminal and the second input terminal are processed under the control of the external clock signal clk, Obtain a comparison signal V det =V Y -V refbuf output to the first input terminal of the comparator module 404; the second input terminal of the comparator module 404 is connected to the voltage V X to be detected, by comparing the voltage V X to be detected and the comparison signal The value of V det gets a control signal V ctrl .
本发明提供的电压检测及控制电路通过调整基准电压Vref和外部调整电压VY的值得到不同比较信号Vdet的值,从而可以根据需要实现不同条件的输出控制信号Vctrl的产生,比较信号Vdet的范围可以为0~VDD,检测范围大。The voltage detection and control circuit provided by the present invention obtains the values of different comparison signals V det by adjusting the values of the reference voltage V ref and the external adjustment voltage V Y , so that the generation of the output control signal V ctrl of different conditions can be realized as required, and the comparison signal The range of V det can be 0-V DD , and the detection range is large.
如图2和图7所示,本发明提供的电压检测及控制电路可以代替传统动态放大器中的共模检测器CMD应用到动态放大器中,电压检测及控制电路的第一输入端连接动态放大器中的输出共模电压点,其第二输入端连接电源电压VDD,即待检测电压VX为输出共模电压,外部调整电压VY为电源电压VDD,输出的控制信号Vctrl控制动态放大器的放大过程。实施例中电荷转移型动态放大器包括第四PMOS管M1、第五PMOS管M2、第六PMOS管M3,第三NMOS管M4、第四NMOS管M5、第五NMOS管M6、第六NMOS管M7,第二电容C1、第三电容C2、第四电容CLN、第五电容CLP,第一压控开关SW1和第二压控开关SW2。第三NMOS管M4和第四NMOS管M5为动态放大器的输入对管,第三NMOS管M4的栅极为动态放大器的正相输入端,第四NMOS管M5的栅极为动态放大器的负相输入端,第三NMOS管M4的源极连接第四NMOS管M5的源极和第三NMOS管M6的漏极,第三NMOS管M6的栅极连接控制信号Vctrl,其源极连接第六NMOS管M7的漏极,第六NMOS管M7的栅极连接外部时钟信号clk,其源极接地。第三NMOS管M4的漏极连接第四PMOS管M1的漏极、第二电容C1的上极板和第一压控开关SW1的输入端,是动态放大器的负相输出端V1,第四NMOS管M5的漏极连接第六PMOS管M3的漏极、第三电容C2的上极板和第二压控开关SW2的输入端,是动态放大器的正相输出端V2,第五PMOS管M2的漏极连接第二电容C1和第三电容C2的下极板和本发明提供的电压检测和控制电路的第一输入端,第四PMOS管M1、第五PMOS管M2和第六PMOS管M3的栅极都连接外部时钟信号clk,第四PMOS管M1、第五PMOS管M2和第六PMOS管M3的源极都连接电源电压VDD,本发明输出的控制信号Vctrl控制第一压控开关SW1和第二压控开关SW2的闭合和断开,第一压控开关SW1的输出端连接第四电容CLN的上极板,第二压控开关SW2的输出端连接第五电容CLP的上极板,第四电容CLN和第五电容CLP的下极板均接地。As shown in Figure 2 and Figure 7, the voltage detection and control circuit provided by the present invention can replace the common mode detector CMD in the traditional dynamic amplifier and be applied to the dynamic amplifier, and the first input end of the voltage detection and control circuit is connected to the dynamic amplifier The output common-mode voltage point, the second input terminal is connected to the power supply voltage V DD , that is, the voltage to be detected V X is the output common-mode voltage, the external adjustment voltage V Y is the power supply voltage V DD , and the output control signal V ctrl controls the dynamic amplifier the amplification process. In the embodiment, the charge-transfer dynamic amplifier includes a fourth PMOS transistor M1, a fifth PMOS transistor M2, a sixth PMOS transistor M3, a third NMOS transistor M4, a fourth NMOS transistor M5, a fifth NMOS transistor M6, and a sixth NMOS transistor M7. , the second capacitor C 1 , the third capacitor C 2 , the fourth capacitor C LN , the fifth capacitor C LP , the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2. The third NMOS transistor M4 and the fourth NMOS transistor M5 are the input pair of the dynamic amplifier, the gate of the third NMOS transistor M4 is the positive phase input terminal of the dynamic amplifier, and the gate of the fourth NMOS transistor M5 is the negative phase input terminal of the dynamic amplifier , the source of the third NMOS transistor M4 is connected to the source of the fourth NMOS transistor M5 and the drain of the third NMOS transistor M6, the gate of the third NMOS transistor M6 is connected to the control signal V ctrl , and its source is connected to the sixth NMOS transistor The drain of M7, the gate of the sixth NMOS transistor M7 are connected to the external clock signal clk, and the source of the sixth NMOS transistor M7 is grounded. The drain of the third NMOS transistor M4 is connected to the drain of the fourth PMOS transistor M1, the upper plate of the second capacitor C1 and the input terminal of the first voltage-controlled switch SW1, which is the negative phase output terminal V1 of the dynamic amplifier. The drain of the four NMOS transistor M5 is connected to the drain of the sixth PMOS transistor M3, the upper plate of the third capacitor C2 and the input end of the second voltage-controlled switch SW2, which is the non-inverting output end V2 of the dynamic amplifier, and the fifth The drain of the PMOS transistor M2 is connected to the lower plate of the second capacitor C1 and the third capacitor C2 and the first input end of the voltage detection and control circuit provided by the present invention, the fourth PMOS transistor M1, the fifth PMOS transistor M2 and The gates of the sixth PMOS transistor M3 are all connected to the external clock signal clk, the sources of the fourth PMOS transistor M1, the fifth PMOS transistor M2 and the sixth PMOS transistor M3 are all connected to the power supply voltage V DD , and the control signal V ctrl output by the present invention Control the closing and opening of the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2, the output end of the first voltage-controlled switch SW1 is connected to the upper plate of the fourth capacitor CLN , and the output end of the second voltage-controlled switch SW2 is connected to The upper plate of the fifth capacitor C LP , the lower plates of the fourth capacitor C LN and the fifth capacitor C LP are all grounded.
如图4所示为本实施例中基准电压输出缓冲模块402的电路结构图,包括运算放大器、第一电阻R1和第三PMOS管MP3,运算放大器的正向输入端连接基准电压Vref,其负向输入端连接第三PMOS管MP3的漏极和第一电阻R1的一端并作为基准电压输出缓冲模块的输出端输出缓冲基准电压Vrefbuf,其输出端连接第三PMOS管MP3的栅极,第三PMOS管MP3的源极接电源电压VDD,第一电阻R1的另一端接地。由于电压运算模块403中的运算操作过程需要缓冲基准电压Vrefbuf具备较高的响应速度,因此需要将基准电压Vref缓冲得到缓冲基准电压Vrefbuf,其作用主要是提高驱动能力,从而满足具体应用中对响应速度的要求。As shown in FIG. 4 , the circuit structure diagram of the reference voltage output buffer module 402 in this embodiment includes an operational amplifier, a first resistor R1 and a third PMOS transistor MP3. The positive input terminal of the operational amplifier is connected to the reference voltage V ref , which The negative input terminal is connected to the drain of the third PMOS transistor MP3 and one end of the first resistor R1 and is used as the output terminal of the reference voltage output buffer module to output the buffered reference voltage V refbuf , and its output terminal is connected to the gate of the third PMOS transistor MP3, The source of the third PMOS transistor MP3 is connected to the power supply voltage V DD , and the other end of the first resistor R1 is grounded. Since the calculation operation process in the voltage calculation module 403 requires the buffered reference voltage V refbuf to have a relatively high response speed, it is necessary to buffer the reference voltage V ref to obtain the buffered reference voltage V refbuf . Requirements for speed of response.
图5所示为本发明中电压运算模块403的结构示意图。图6所示为本实施例中比较器模块404的电路结构图,包括一个比较器405,所述比较器405的负向输入端连接所述电压运算模块的输出端,其正向输入端连接待检测电压VX,其输出端作为所述电压检测及控制电路的输出端,当待检测电压VX大于比较信号Vdet的电压值时,控制信号Vctrl输出为高电平;当待检测电压VX小于比较信号Vdet的电压值时,控制信号Vctrl输出为低电平。FIG. 5 is a schematic structural diagram of the voltage calculation module 403 in the present invention. Figure 6 shows the circuit structure diagram of the comparator module 404 in this embodiment, including a comparator 405, the negative input of the comparator 405 is connected to the output of the voltage calculation module, and its positive input is connected to The output terminal of the voltage to be detected V X is used as the output terminal of the voltage detection and control circuit. When the voltage to be detected V X is greater than the voltage value of the comparison signal V det , the output of the control signal V ctrl is a high level; When the voltage V X is less than the voltage value of the comparison signal V det , the output of the control signal V ctrl is at a low level.
当外部时钟信号clk为低电平时,由外部时钟信号clk连接的第四PMOS管M1的栅极、第五PMOS管M2的栅极、第六PMOS管M3的栅极均为低电平,动态放大器中的第四PMOS管M1、第五PMOS管M2、第六PMOS管M3导通,外部时钟信号clk连接的第六NMOS管M7的栅极也为低电平,第六NMOS管M7关断,动态放大器的负相输出端V1、正相输出端V2和内部结点Vx被充电到电源电压VDD,同一外部时钟信号clk连接到电压运算模块403,其中外部时钟信号clk连接第五PMOS管M9的栅极,使第五PMOS管M9导通,外部控制时钟clk连接第一反相器INV1、第二反相器INV2、第三反相器INV3的输入端,外部控制时钟clk使第二反相器INV2的输出端连接的第一NMOS管MN1的栅极为高电平,从而控制第一NMOS管MN1导通;外部时钟信号clk使第一反相器INV1的输出端连接的第一PMOS管MP1的栅极为高电平,从而控制第一PMOS管MP1关断;外部时钟信号clk使第三反相器INV3的输出端连接的第二NMOS管MN2的栅极为高电平,从而控制第二NMOS管MN2导通,随后,第一电容C3的上极板电压被充电到基准电压输出缓冲模块402输出的基准缓冲电压Vrefbuf,第一电容C3的下极板电压被放电到地,那么,电压运算模块403的内部结点Vtop和比较信号Vdet的电压可以表示为:When the external clock signal clk is at a low level, the gates of the fourth PMOS transistor M1, the fifth PMOS transistor M2, and the sixth PMOS transistor M3 connected by the external clock signal clk are all at a low level, and the dynamic The fourth PMOS transistor M1, the fifth PMOS transistor M2, and the sixth PMOS transistor M3 in the amplifier are turned on, the gate of the sixth NMOS transistor M7 connected to the external clock signal clk is also at a low level, and the sixth NMOS transistor M7 is turned off , the negative phase output terminal V 1 , the positive phase output terminal V 2 and the internal node V x of the dynamic amplifier are charged to the power supply voltage V DD , and the same external clock signal clk is connected to the voltage operation module 403, wherein the external clock signal clk is connected to the first The grid of the fifth PMOS transistor M9 turns on the fifth PMOS transistor M9, the external control clock clk is connected to the input terminals of the first inverter INV1, the second inverter INV2, and the third inverter INV3, and the external control clock clk Make the gate of the first NMOS transistor MN1 connected to the output terminal of the second inverter INV2 be at a high level, thereby controlling the conduction of the first NMOS transistor MN1; the external clock signal clk makes the output terminal of the first inverter INV1 connected to the The gate of the first PMOS transistor MP1 is at a high level, thereby controlling the first PMOS transistor MP1 to be turned off; the external clock signal clk makes the gate of the second NMOS transistor MN2 connected to the output terminal of the third inverter INV3 be at a high level, Therefore, the second NMOS transistor MN2 is controlled to be turned on, and then the upper plate voltage of the first capacitor C3 is charged to the reference buffer voltage V refbuf output by the reference voltage output buffer module 402, and the lower plate voltage of the first capacitor C3 is charged to discharge to the ground, then, the voltage of the internal node V top and the comparison signal V det of the voltage operation module 403 can be expressed as:
Vtop=Vrefbuf V top = V refbuf
Vdet=0V det =0
比较器模块404内部的比较器405的负相输入端电压即为电压运算模块403输出的比较电压Vdet,对于比较器405,其正相输入端连接的动态放大器中第五PMOS管M2的漏端节点即电压检测及控制电路的第一输入端Vx被充电到电源电压VDD,有VDD>Vdet,比较器405的输出端连接比较器模块404的输出端,使输出的控制信号Vctrl的电压上升为高电平,从而控制第一压控开关SW1、第二压控开关SW2闭合,使动态放大器的负相输出端V1连接到第四电容CLN的上极板,动态放大器的正相输出端V2连接到第五电容CLP的上极板,则第四电容CLN、第五电容CLP的上极板电压均为电源电压VDD,与控制信号Vctrl相连的动态放大器的第五NMOS管M6的栅极电压为高电平,则第五NMOS管M6导通,但是因为第六NMOS管M7关断,因此整个动态放大器处在复位阶段,动态放大器的正相输出端和负相输出端的电压为:The negative phase input terminal voltage of the comparator 405 inside the comparator module 404 is the comparison voltage V det output by the voltage operation module 403. For the comparator 405, the drain of the fifth PMOS transistor M2 in the dynamic amplifier connected to the positive phase input terminal of the comparator module 404 is The terminal node, that is, the first input terminal V x of the voltage detection and control circuit is charged to the power supply voltage V DD , V DD >V det , the output terminal of the comparator 405 is connected to the output terminal of the comparator module 404, so that the output control signal The voltage of V ctrl rises to a high level, thereby controlling the closing of the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2, so that the negative phase output terminal V 1 of the dynamic amplifier is connected to the upper plate of the fourth capacitor C LN , and the dynamic The non-inverting output terminal V 2 of the amplifier is connected to the upper plate of the fifth capacitor C LP , and the voltages of the upper plates of the fourth capacitor C LN and the fifth capacitor C LP are both the power supply voltage V DD , which are connected to the control signal V ctrl The gate voltage of the fifth NMOS transistor M6 of the dynamic amplifier is high level, then the fifth NMOS transistor M6 is turned on, but because the sixth NMOS transistor M7 is turned off, the entire dynamic amplifier is in the reset phase, and the positive voltage of the dynamic amplifier The voltages at the phase output and the negative phase output are:
Voutn=V1=VDD V outn =V 1 =V DD
Voutp=V2=VDD V outp =V 2 =V DD
当外部时钟信号clk由低电平变为高电平时,动态放大器开始进行放大,具体过程为,由外部时钟信号clk连接的第四PMOS管M1的栅极、第五PMOS管M2的栅极、第六PMOS管M3的栅极均变为高电平,控制第四PMOS管M1、第五PMOS管M2和第六PMOS管M3均关断,同时,外部时钟信号clk使第六NMOS管M7的栅极变为高电平,第六NMOS管M7导通,输入对管第三NMOS管M4、第四NMOS管M5的栅极分别接正相输入电压Vip、负相输入电压Vin,开始对第四电容CLN上极板电压Voutn和第五电容CLP上极板电压Voutp进行放电(正相输入电压Vip和负相输入电压Vin在放大期间保持不变),定义第三NMOS管M4、第四NMOS管M5的阈值电压相等且都为Vth,两者的β=Cox*μ*W/L也相等,输出电压随输入电压和时间的变化关系为:When the external clock signal clk changes from low level to high level, the dynamic amplifier starts to amplify. The specific process is as follows: the gate of the fourth PMOS transistor M1 connected by the external clock signal clk, the gate of the fifth PMOS transistor M2, The gates of the sixth PMOS transistor M3 all change to a high level, controlling the fourth PMOS transistor M1, the fifth PMOS transistor M2 and the sixth PMOS transistor M3 to be turned off, and at the same time, the external clock signal clk makes the sixth NMOS transistor M7 The gate becomes high level, the sixth NMOS transistor M7 is turned on, the gates of the third NMOS transistor M4 and the fourth NMOS transistor M5 of the input pair are respectively connected to the positive-phase input voltage V ip and the negative-phase input voltage V in , and start Discharge the upper plate voltage V outn of the fourth capacitor C LN and the upper plate voltage V outp of the fifth capacitor C LP (the positive-phase input voltage V ip and the negative-phase input voltage V in remain unchanged during amplification), define the first The threshold voltages of the third NMOS transistor M4 and the fourth NMOS transistor M5 are equal and both are V th , and the β=C ox *μ*W/L of the two are also equal, and the relationship between the output voltage and the input voltage and time is as follows:
同一外部时钟信号clk连接到电源电压波动检测模块403,其中外部时钟信号clk连接第二PMOS管MP2的栅极,使第二PMOS管MP2关断,外部时钟信号clk连接第一反相器INV1、第二反相器INV2、第三反相器INV3的输入端,外部时钟信号clk使第二反相器INV2的输出端连接的第一NMOS管MN1的栅极为低电平,控制第一NMOS管MN1关断,外部时钟信号clk使第一反相器INV1的输出端连接的第一PMOS管MP1的栅极为低电平,从而控制第一PMOS管MP1导通,外部时钟信号clk使第三反相器INV3的输出端连接的第二NMOS管MN2的栅极为低电平,控制第二NMOS管MN2关断,随后,第一电容C3的上极板电压被充电到电源电压VDD,第五电容C3的下极板电压Vdet表示为:The same external clock signal clk is connected to the power supply voltage fluctuation detection module 403, wherein the external clock signal clk is connected to the gate of the second PMOS transistor MP2 to turn off the second PMOS transistor MP2, and the external clock signal clk is connected to the first inverter INV1, The input terminal of the second inverter INV2 and the third inverter INV3, the external clock signal clk makes the gate of the first NMOS transistor MN1 connected to the output terminal of the second inverter INV2 be low level, and controls the first NMOS transistor MN1 is turned off, the external clock signal clk makes the gate of the first PMOS transistor MP1 connected to the output terminal of the first inverter INV1 low level, thereby controlling the conduction of the first PMOS transistor MP1, and the external clock signal clk makes the third inverter The gate of the second NMOS transistor MN2 connected to the output terminal of the phase device INV3 is at a low level, and the second NMOS transistor MN2 is controlled to be turned off. Then, the upper plate voltage of the first capacitor C 3 is charged to the power supply voltage V DD , and the second NMOS transistor MN2 is turned off. The lower plate voltage V det of the five capacitors C 3 is expressed as:
Vdet=VDD-Vrefbuf V det = V DD - V refbuf
比较器模块404内部的比较器405的负相输入端电压即为电压运算模块403的输出的比较信号Vdet的电压,对于比较器405,其正相输入端连接到动态放大器中第五PMOS管M2的漏端Vx,Vx点的电压在放大过程中表示为:The negative-phase input terminal voltage of the comparator 405 inside the comparator module 404 is the voltage of the comparison signal V det of the output of the voltage operation module 403. For the comparator 405, its positive-phase input terminal is connected to the fifth PMOS transistor in the dynamic amplifier. The drain terminal V x of M2, the voltage at the point V x is expressed as:
放大过程中,比较器模块404内部的比较器405的正相输入端电压Vx随放大时间下降,负相输入端为电压运算模块403输出的比较信号Vdet,比较器405的正相输入端电压Vx从VDD逐渐下降,一旦比较器405的正相输入电压Vx小于负相输入端电压Vdet,比较器405输出的控制信号Vctrl会由高电平变为低电平,控制第一压控开关SW1、第二压控开关SW2关断,断开动态放大器的负相输出端与第四电容CLN上极板的连接,断开动态放大器的正相输出端与第五电容CLP上极板的连接,同时关断第五NMOS管M6,放大时间由比较器405的正相输入端电压Vx从VDD下降到Vdet的时间t确定:During the amplification process, the positive-phase input terminal voltage V x of the comparator 405 inside the comparator module 404 decreases with the amplification time, the negative-phase input terminal is the comparison signal V det output by the voltage operation module 403, and the positive-phase input terminal of the comparator 405 The voltage V x gradually decreases from V DD , once the positive phase input voltage V x of the comparator 405 is lower than the negative phase input terminal voltage V det , the control signal V ctrl output by the comparator 405 will change from high level to low level to control The first voltage-controlled switch SW1 and the second voltage-controlled switch SW2 are turned off, disconnect the negative-phase output terminal of the dynamic amplifier and the connection of the upper plate of the fourth capacitor C LN , and disconnect the positive-phase output terminal of the dynamic amplifier and the fifth capacitor C LP is connected to the upper plate, and the fifth NMOS transistor M6 is turned off at the same time. The amplification time is determined by the time t when the voltage V x of the non-inverting input terminal of the comparator 405 drops from V DD to V det :
第一压控开关SW1、第二压控开关SW2关断后,第四电容CLN和第五电容CLP的上极板电压就是放大后的动态放大器的负相输出电压和正相输出电压,且在下次复位以前不再改变,对应得到的动态放大器的增益表示为:After the first voltage-controlled switch SW1 and the second voltage-controlled switch SW2 are turned off, the upper plate voltages of the fourth capacitor C LN and the fifth capacitor C LP are the negative-phase output voltage and the positive-phase output voltage of the amplified dynamic amplifier, and It will not change until the next reset, and the corresponding gain of the dynamic amplifier is expressed as:
上式中Vcm为输入差分信号Vip和Vin的共模电平,当Vip和Vin的差值较小时,增益表达式可以简化为:In the above formula, V cm is the common-mode level of input differential signals V ip and V in . When the difference between V ip and V in is small, the gain expression can be simplified as:
通过上述的一系列操作可以发现,该动态放大器的增益在电源电压波动下保持不变,需要说明的是基准电压输出缓冲模块402的正相输入端为该模块外部产生的不随电压变化的基准电压Vref,通过基准电压输出缓冲模块402得到的Vrefbuf可以通过设计结构和设计参数的不同进行调节(本实施例中设计Vrefbuf=Vref)。Through the above series of operations, it can be found that the gain of the dynamic amplifier remains unchanged under the fluctuation of the power supply voltage. It should be noted that the non-inverting input terminal of the reference voltage output buffer module 402 is a reference voltage generated outside the module that does not change with the voltage. V ref , the V refbuf obtained by the reference voltage output buffer module 402 can be adjusted through different design structures and design parameters (design V refbuf =V ref in this embodiment).
综上所述,本实施例中电压检测及控制电路401代替了传统动态放大器中的共模检测器CMD,通过电压运算模块403检测电源电压的变化并得到不同的比较信号Vdet的值,通过比较器模块404与动态放大器相应操作的结合,改变动态放大器的放大时间,校正电源电压波动下动态放大器的放大倍数,从而获得了具有电压波动下增益稳定特性的动态放大器,克服了传统动态放大器电源电压的变化和波动对增益的影响,在一定程度上优化了该动态放大器的性能,扩展了该动态放大器的应用范围。To sum up, in this embodiment, the voltage detection and control circuit 401 replaces the common mode detector CMD in the traditional dynamic amplifier, detects the change of the power supply voltage through the voltage operation module 403 and obtains different values of the comparison signal V det, and obtains different values of the comparison signal V det through The combination of the comparator module 404 and the corresponding operation of the dynamic amplifier changes the amplification time of the dynamic amplifier and corrects the amplification factor of the dynamic amplifier under power supply voltage fluctuations, thus obtaining a dynamic amplifier with stable gain characteristics under voltage fluctuations, which overcomes the traditional dynamic amplifier power supply The influence of voltage variation and fluctuation on the gain optimizes the performance of the dynamic amplifier to a certain extent and expands the application range of the dynamic amplifier.
值得说明的是,本发明提供的电压检测及控制电路不止可以用于动态放大器中稳定动态放大器的增益,还可以用于其他合适的场景,用于检测电压并根据需要提供控制信号。如图8所示为实施例中将本发明应用到电压监测领域,基准电压输出缓冲模块的输入端连接一个外部基准电压Vref2,其输出端连接电压运算模块的第二输入端;电压运算模块的第一输入端连接另一个外部基准电压Vref1,其时钟信号输入端连接外部时钟信号clk;比较器模块的正向输入端连接电压运算模块的输出端,其负向输入端连接外部待检测电压Vi。It is worth noting that the voltage detection and control circuit provided by the present invention can not only be used in the dynamic amplifier to stabilize the gain of the dynamic amplifier, but also can be used in other suitable scenarios for detecting voltage and providing control signals as required. As shown in Figure 8, the present invention is applied to the field of voltage monitoring in the embodiment. The input end of the reference voltage output buffer module is connected to an external reference voltage V ref2 , and its output end is connected to the second input end of the voltage operation module; the voltage operation module The first input terminal of the comparator module is connected to another external reference voltage V ref1 , and its clock signal input terminal is connected to the external clock signal clk; the positive input terminal of the comparator module is connected to the output terminal of the voltage operation module, and its negative input terminal is connected to the external to-be-detected voltage V i .
当外部时钟信号clk为低电平时,本实施例中的电压检测及控制电路处于复位状态,电压运算模块的输出信号Vdet=0,此时可以根据实际需要自行选择外部基准电压Vref1和Vref2的值,选定后待其稳定,将外部时钟信号clk设置为高电平,监测功能开启,那么通过电压运算模块处理得到的Vdet=Vref1-Vref2,此时该电路的基本功能可以表述为:在正常情况下Vi>Vdet,输出控制信号Vctrl为高电平,一旦在监测期间发生Vi<Vdet,输出控制信号Vctrl变为低电平,该输出可以作为判断Vi与Vdet大小关系的标志信号配合外围电路实现电压监测的基本功能。When the external clock signal clk is low level, the voltage detection and control circuit in the present embodiment is in the reset state, and the output signal V det =0 of the voltage operation module, the external reference voltage V ref1 and V can be selected voluntarily according to actual needs. After selecting the value of ref2 , wait until it is stable, set the external clock signal clk to high level, and enable the monitoring function, then V det obtained through the processing of the voltage operation module = V ref1 -V ref2 , at this time the basic function of the circuit It can be expressed as: under normal circumstances V i >V det , the output control signal V ctrl is high level, once V i <V det occurs during the monitoring period, the output control signal V ctrl becomes low level, the output can be used as The flag signal to judge the relationship between V i and V det cooperates with the peripheral circuit to realize the basic function of voltage monitoring.
上述实施例的带增益校正模块的动态放大器结构适用于各类集成电路(IC)系统中,也可以作为独立的知识产权IP(Intellectual Property)。The dynamic amplifier structure with a gain correction module in the above embodiments is applicable to various integrated circuit (IC) systems, and can also be used as an independent intellectual property IP (Intellectual Property).
虽然本发明的一种抗电压波动的动态放大器增益校正电路内容已经以实例的形式公开如上,然而并非用以限定本发明,如果本领域技术人员,在不脱离本发明的精神所做的非实质性改变或改进,都应该属于本发明权利要求保护范围内。Although the content of a dynamic amplifier gain correction circuit against voltage fluctuations of the present invention has been disclosed as an example, it is not intended to limit the present invention. If those skilled in the art do not depart from the spirit of the present invention, it is not essential Any changes or improvements should fall within the protection scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810199958.6A CN108270402B (en) | 2018-03-12 | 2018-03-12 | Voltage detection and control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810199958.6A CN108270402B (en) | 2018-03-12 | 2018-03-12 | Voltage detection and control circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108270402A true CN108270402A (en) | 2018-07-10 |
CN108270402B CN108270402B (en) | 2021-02-12 |
Family
ID=62774976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810199958.6A Active CN108270402B (en) | 2018-03-12 | 2018-03-12 | Voltage detection and control circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108270402B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917176A (en) * | 2019-04-04 | 2019-06-21 | 上海东软载波微电子有限公司 | Drive over-current detection circuit |
CN112782453A (en) * | 2020-12-29 | 2021-05-11 | 广东高云半导体科技股份有限公司 | Voltage sensor, chip and electronic equipment |
CN112953420A (en) * | 2021-03-22 | 2021-06-11 | 电子科技大学 | Dynamic operational amplifier circuit with input tube in linear region |
CN113884747A (en) * | 2021-09-07 | 2022-01-04 | 中国电力科学研究院有限公司 | Overvoltage measuring device of electronic transformer |
CN116185119A (en) * | 2023-04-23 | 2023-05-30 | 深圳市九天睿芯科技有限公司 | CIM-based voltage regulating circuit, chip and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004015830A (en) * | 2003-09-09 | 2004-01-15 | Innotech Corp | Solid-state imaging device and driving method thereof |
CN1636315A (en) * | 2002-02-21 | 2005-07-06 | 艾利森公司 | Current modulator with dynamic amplifier impedance compensation |
CN101040441A (en) * | 2004-10-12 | 2007-09-19 | 索尼株式会社 | Sample hold circuit, and pipeline ad converter using the circuit |
CN106999715A (en) * | 2014-10-10 | 2017-08-01 | 鲁斯技术有限公司 | Implantable cardiac defibrillator (ICD), Endermic implantating defibrillator (SICD) and wave type energy control system |
CN107085132A (en) * | 2017-05-18 | 2017-08-22 | 东南大学 | A High Precision Negative Voltage Detection Circuit under Positive Voltage Power Supply |
US20170302237A1 (en) * | 2016-04-13 | 2017-10-19 | Broadcom Corporation | Linearized dynamic amplifier |
-
2018
- 2018-03-12 CN CN201810199958.6A patent/CN108270402B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1636315A (en) * | 2002-02-21 | 2005-07-06 | 艾利森公司 | Current modulator with dynamic amplifier impedance compensation |
JP2004015830A (en) * | 2003-09-09 | 2004-01-15 | Innotech Corp | Solid-state imaging device and driving method thereof |
CN101040441A (en) * | 2004-10-12 | 2007-09-19 | 索尼株式会社 | Sample hold circuit, and pipeline ad converter using the circuit |
CN106999715A (en) * | 2014-10-10 | 2017-08-01 | 鲁斯技术有限公司 | Implantable cardiac defibrillator (ICD), Endermic implantating defibrillator (SICD) and wave type energy control system |
US20170302237A1 (en) * | 2016-04-13 | 2017-10-19 | Broadcom Corporation | Linearized dynamic amplifier |
CN107085132A (en) * | 2017-05-18 | 2017-08-22 | 东南大学 | A High Precision Negative Voltage Detection Circuit under Positive Voltage Power Supply |
Non-Patent Citations (2)
Title |
---|
HE-GONG WEI等: "A process- and temperature- insensitive current-controlled delay generator for sampled-data systems", 《2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS》 * |
MINGLEI ZHANG等: "A Temperature Compensation Technique for a Dynamic", 《IEEE SOLID-STATE CIRCUITS LETTERS》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109917176A (en) * | 2019-04-04 | 2019-06-21 | 上海东软载波微电子有限公司 | Drive over-current detection circuit |
CN109917176B (en) * | 2019-04-04 | 2023-12-15 | 上海东软载波微电子有限公司 | Drive overcurrent detection circuit |
CN112782453A (en) * | 2020-12-29 | 2021-05-11 | 广东高云半导体科技股份有限公司 | Voltage sensor, chip and electronic equipment |
CN112953420A (en) * | 2021-03-22 | 2021-06-11 | 电子科技大学 | Dynamic operational amplifier circuit with input tube in linear region |
CN112953420B (en) * | 2021-03-22 | 2022-09-09 | 电子科技大学 | A dynamic operational amplifier circuit with input tube in linear region |
CN113884747A (en) * | 2021-09-07 | 2022-01-04 | 中国电力科学研究院有限公司 | Overvoltage measuring device of electronic transformer |
CN113884747B (en) * | 2021-09-07 | 2023-12-26 | 中国电力科学研究院有限公司 | Overvoltage measuring device of electronic transformer |
CN116185119A (en) * | 2023-04-23 | 2023-05-30 | 深圳市九天睿芯科技有限公司 | CIM-based voltage regulating circuit, chip and electronic equipment |
CN116185119B (en) * | 2023-04-23 | 2023-07-21 | 深圳市九天睿芯科技有限公司 | CIM-based voltage regulating circuit, chip and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN108270402B (en) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108270402A (en) | Voltage detecting and control circuit | |
US7292499B2 (en) | Semiconductor device including duty cycle correction circuit | |
CN101621292B (en) | Switch-capacitor integrator | |
KR100771887B1 (en) | Duty detector and duty detection / correction circuit having the same | |
CN106330193B (en) | Duty ratio adjusting circuit and analog-to-digital conversion system | |
KR20080082460A (en) | Constant voltage circuit and its operation control method | |
US11050386B2 (en) | Inverse pseudo fully-differential amplifier having common-mode feedback control circuit | |
US7586349B2 (en) | CMOS integrated circuit for correction of duty cycle of clock signal | |
CN101807893A (en) | Large-bandwidth continuous time common-mode feedback circuit and design method thereof | |
CN115395906B (en) | Low-power consumption broadband common mode signal detection circuit suitable for ultralow voltage | |
US7560991B2 (en) | Dynamically compensated operational amplifier | |
CN101944886A (en) | Adaptive micro-current amplifier | |
CN107370461A (en) | A kind of collocation structure applied to trans-impedance amplifier | |
KR20030069514A (en) | On-chip reference current and voltage generating circuits | |
JP2007074670A (en) | Differential amplifier circuit and semiconductor device | |
CN108880495A (en) | A kind of dynamic residual amplifier circuit of high-gain high linearity | |
Toprak et al. | High accuracy potentiostat with wide dynamic range and linearity | |
US9178499B2 (en) | Low-power offset-stored latch | |
US8471630B2 (en) | Fast settling reference voltage buffer and method thereof | |
Solis et al. | High resolution low power 0.6 µm CMOS 40MHz dynamic latch comparator | |
JP2008085588A (en) | Light receiving circuit | |
TW202145713A (en) | Peak comparator circuitry | |
CN210639478U (en) | Dynamic zero compensation low dropout linear regulator and low voltage electronic equipment | |
Pahlavanzadeh et al. | A common-mode insensitive thyristor-based latch regenerative comparator for low supply voltage applications | |
JP2012104948A (en) | Amplification circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |