CN108254309B - Adhesive force automatic detection device and method for excimer laser micromachining device - Google Patents
Adhesive force automatic detection device and method for excimer laser micromachining device Download PDFInfo
- Publication number
- CN108254309B CN108254309B CN201810197403.8A CN201810197403A CN108254309B CN 108254309 B CN108254309 B CN 108254309B CN 201810197403 A CN201810197403 A CN 201810197403A CN 108254309 B CN108254309 B CN 108254309B
- Authority
- CN
- China
- Prior art keywords
- pin
- module
- tension
- stepping motor
- excimer laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005459 micromachining Methods 0.000 title claims abstract description 16
- 238000001514 detection method Methods 0.000 title claims abstract description 11
- 239000000853 adhesive Substances 0.000 title abstract description 13
- 230000001070 adhesive effect Effects 0.000 title abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 67
- 238000012360 testing method Methods 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims abstract description 27
- 238000002474 experimental method Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 13
- 230000006854 communication Effects 0.000 claims description 35
- 238000004891 communication Methods 0.000 claims description 35
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 238000009864 tensile test Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 2
- 230000007175 bidirectional communication Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 14
- 230000007246 mechanism Effects 0.000 abstract description 8
- 239000003292 glue Substances 0.000 abstract description 7
- 238000010924 continuous production Methods 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 3
- 238000006073 displacement reaction Methods 0.000 abstract description 3
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004154 testing of material Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010504 bond cleavage reaction Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005542 laser surface treatment Methods 0.000 description 2
- 238000013532 laser treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000013031 physical testing Methods 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- -1 wire and cable Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/04—Measuring adhesive force between materials, e.g. of sealing tape, of coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了面向准分子激光微加工器件的粘结力自动检测装置及方法,属于物理学和力学检测领域。该装置利用电子拉力传感器技术和机器视觉技术,并采用嵌入式微控制器,进行材料的粘结强度测试,获得在以粘结材料分离距离为横坐标,以力学数据为纵坐标的拉力和位移的关系曲线走势图。在使用透明胶时,获得胶和材料分离下的不同的显微图像,为研究各种材料的准分子激光前处理对粘结强度的规律性和激光微加工机理,提供实验的连续过程原始数据资料。本发明主要适用于准分子激光加工后的各种非脆性粘结材料在相同或是不同胶粘剂粘结下,对其粘结强度做出多物理量变化规律性解释的测试。
The invention discloses a cohesive force automatic detection device and method for excimer laser micro-processing devices, and belongs to the fields of physics and mechanics detection. The device uses electronic tension sensor technology and machine vision technology, and adopts embedded microcontroller to test the bonding strength of materials, and obtains the tensile force and displacement with the separation distance of the bonding material as the abscissa and the mechanical data as the ordinate. Relationship curve chart. When using transparent glue, different microscopic images under the separation of glue and material can be obtained, in order to study the regularity of bonding strength and laser micromachining mechanism by excimer laser pretreatment of various materials, and provide the original data of the continuous process of the experiment material. The invention is mainly suitable for the test of the regularity interpretation of the multi-physical quantity change of the bonding strength of various non-brittle bonding materials after excimer laser processing under the same or different adhesives.
Description
技术领域technical field
本发明涉及一种粘结力自动检测分析装置,属于物理学和力学检测领域,尤其涉及粘结。The invention relates to an automatic detection and analysis device for bonding force, belonging to the field of physical and mechanical detection, and in particular to bonding.
背景技术Background technique
粘结现象与许多科学技术领域相关,近年来已经成为一个重要的研究领域。粘结材料能够应用的合适表面处理方法对胶粘剂的质量与数量有很大作用。要获得各种粘结材料优良的耐久性及粘结强度,粘结前表面准备(粘结件预处理)是必要的。表面处理除去弱的边缘层,清洁表面,改变表面能(主要通过氧化作用),改善表面微观形态的特征。这些变化的最后效果是增强表面结合、粘结件机械互锁和抵抗水分和湿度引起降解的能力。The adhesion phenomenon is related to many fields of science and technology and has become an important research field in recent years. Appropriate surface treatment to which the bonding material can be applied has a large effect on the quality and quantity of the adhesive. To obtain excellent durability and bond strength of various bonding materials, surface preparation before bonding (bonding part pretreatment) is necessary. Surface treatment removes weak edge layers, cleans the surface, alters the surface energy (mainly through oxidation), and improves the characteristics of the surface microscopic morphology. The net effect of these changes is enhanced surface bonding, mechanical interlocking of bonds, and resistance to moisture and humidity-induced degradation.
自从1975年准分子激光发明以来,随着技术进步,准分子激光已广泛用于工业领域。激光用于改变材料表面的特征,适应包括粘结性能在内的多种工业应用。激光处理对许多材料都是高效的,并且控制非常精准,仅表面受到影响,对本体没有不利影响。激光处理聚合物具有很高的定域性和精准性,其中粘结件在处理和粘结或涂敷应用之间可放置很长时间,并且在室温和空气中处理,不需特殊环境。准分子激光紫外(UV)辐照提供了一种新的粘结前表面处理和表面改性技术,能处理各种材料和粘结件,这种技术可替代对生态不友好的常规化学蚀刻和研磨处理方法。许多实验结果表明,紫外激光表面处理和改性极大的改善了粘结的剪切、拉伸及剥离强度,同时也改善了强度、磨损、传导性能及外观。Since the invention of the excimer laser in 1975, with the advancement of technology, the excimer laser has been widely used in the industrial field. Lasers are used to alter the characteristics of material surfaces for a variety of industrial applications including bonding properties. Laser processing is efficient for many materials and the control is so precise that only the surface is affected, with no detrimental effects on the bulk. Laser-treated polymers are highly localized and precise, where the bond can be placed for long periods of time between handling and bonding or coating applications, and can be processed at room temperature and in air without special environments. Excimer laser ultraviolet (UV) irradiation offers a new pre-bonding surface treatment and surface modification technology capable of processing a wide variety of materials and bonded parts, an alternative to conventional eco-friendly chemical etching and Grinding method. Numerous experimental results showed that UV laser surface treatment and modification greatly improved the shear, tensile and peel strength of the bond, as well as improved strength, wear, conductivity and appearance.
从200-150nm的电磁波定义为远紫外辐射。狭窄波段(从200-180nm)是聚合物光化学改性可行和高效的区域;光的能量超过大多数典型的有机聚合物化学键的强度,因此能非常有效地产生光化学反应。几乎所有有机化合物(饱和的脂肪族碳氢化合物和碳氟化合物除外)在这区域内有强的吸收。现已确定,这种辐射在穿透有机聚合物约300nm时吸收强度达到95%。聚合物对光子的吸收遵守比尔定律。结果表明,辐照范围内有大量的化学键断裂。一般地,在这段波长范围内有机分子辐照寿命是兆分之一秒级。聚合物链的断裂常伴随着再结合过程,因此反映最后结果是失去小的气体分子(CO,CO2,H2)和聚合物线性结构的断裂产生的降解。通过UV激光对材料的表面改性,要获得最佳的粘结力激光处理参数,需要对其进行针对性的胶结拉力测试。Electromagnetic waves from 200-150nm are defined as far ultraviolet radiation. The narrow wavelength band (from 200-180 nm) is the region where photochemical modification of polymers is feasible and efficient; the energy of light exceeds the strength of chemical bonds in most typical organic polymers, and thus can generate photochemical reactions very efficiently. Almost all organic compounds (except saturated aliphatic hydrocarbons and fluorocarbons) have strong absorption in this region. It has been determined that this radiation absorbs 95% of the intensity when it penetrates organic polymers at about 300 nm. The absorption of photons by polymers obeys Beer's law. The results show that a large number of chemical bonds are broken in the irradiation range. Generally, the irradiation lifetime of organic molecules in this wavelength range is on the order of one trillionth of a second. The scission of polymer chains is often accompanied by a recombination process, thus reflecting the net result is the loss of small gas molecules (CO, CO2, H2) and degradation resulting from the scission of the linear structure of the polymer. The surface modification of the material by UV laser, in order to obtain the best cohesive force laser treatment parameters, it is necessary to carry out a targeted adhesive tension test.
目前,在做物理学和力学拉力试验时使用的是拉力试验机又名万能材料试验机。万能试验机是用来针对各种材料进行仪器设备静载、拉伸、压缩、弯曲、剪切、撕裂、剥离等力学性能试验用的机械加力的试验机,适用于塑料板材、管材、异型材,塑料薄膜及橡胶、电线电缆、钢材、玻纤维等材料的各种物理机械性能测试为材料开发,为物理性试验、教学研究和质量控制等不可缺少的检测设备。At present, the tensile testing machine, also known as the universal material testing machine, is used in the physical and mechanical tensile tests. The universal testing machine is a mechanical force testing machine used to perform static load, tensile, compressive, bending, shearing, tearing, peeling and other mechanical properties tests for various materials. It is suitable for plastic sheets, pipes, Various physical and mechanical properties testing of profiled material, plastic film, rubber, wire and cable, steel, glass fiber and other materials is an indispensable testing equipment for material development, physical testing, teaching research and quality control.
但是,在以研究各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理为前提下,在上述万能材料试验机实验时,有以下缺点:However, under the premise of studying the regularity of the influence of the excimer laser pretreatment of various materials on the bonding strength and the laser micromachining mechanism, the above-mentioned universal material testing machine experiment has the following shortcomings:
1.在上述万能材料试验机实验时,只能获得分离瞬间力学单个数据,对过程并没有详细的数据记录。特别是在粘结材料分离距离和分离时间为横坐标时,无法获得以力学数据为纵坐标的连续过程数据,因此,这严重地阻碍了研究各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理。1. During the above-mentioned experiment of the universal material testing machine, only a single data of the instantaneous mechanics of separation can be obtained, and there is no detailed data record of the process. Especially when the separation distance and separation time of the bonding materials are the abscissa, the continuous process data with the mechanical data as the ordinate cannot be obtained. Therefore, this seriously hinders the study of the effect of excimer laser pretreatment on the bonding strength of various materials. Influence regularity and laser micromachining mechanism.
2.在材料使用透明胶粘结后检测粘结力实验时,也无法显微直观看到胶和材料分离状态的不同和区别。这也从图像显微角度阻碍了研究各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理。2. When the adhesive force is tested after the material is bonded with transparent glue, the difference and difference between the separation state of the glue and the material cannot be visually observed. This also hinders the study of the regularity of the effect of excimer laser pretreatment on bonding strength of various materials and the mechanism of laser micromachining from the perspective of image microscopy.
最佳UV激光处理处理参数(强度、循环速率、脉冲数量)与基体材料及其化学特性有关。为了实现粘结破坏过程中显微观察,和UV激光处理参数的定性分析提供可视化的数据,本实验装置采用了机器视觉技术。The optimal UV laser treatment process parameters (intensity, cycle rate, number of pulses) are related to the matrix material and its chemical properties. In order to realize the microscopic observation in the process of bond failure, and to provide visual data for the qualitative analysis of UV laser processing parameters, machine vision technology was adopted in this experimental device.
机器视觉是利用计算机图像处理技术和现代感光技术相结合,将感光显微图像处理技术用于色彩识别,轮廓提取,位置测量和图像显微等方面,是人工智能领域中的一类先进技术。为解决上述问题,本发明提出一种全新的基于机器视觉的显微粘结力实验装置。该装置在使用电子拉力传感器和嵌入式微处理器基础上,利用机器视觉技术,可以克服上述通用拉力试验机的缺点,为各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理研究,提供实验的连续过程原始数据和规律性曲线以及粘结分离模式的显微图像资料,从而促经了粘结力实验装置的现代化先进性发展。Machine vision is a combination of computer image processing technology and modern photosensitive technology, and photosensitive microscopic image processing technology is used for color recognition, contour extraction, position measurement and image microscopy. It is a kind of advanced technology in the field of artificial intelligence. In order to solve the above problems, the present invention proposes a brand-new machine vision-based microscopic adhesive force experiment device. Based on the use of electronic tension sensors and embedded microprocessors, the device can overcome the shortcomings of the above-mentioned general-purpose tensile testing machines by using machine vision technology, and can provide the regularity of the influence of excimer laser pretreatment of various materials on the bonding strength and the laser microstructure. The research on processing mechanism provides the original data and regular curve of the continuous process of the experiment and the microscopic image data of the bonding separation mode, thus promoting the modern and advanced development of the bonding force experimental device.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决在实验中准分子激光对器件表面进行微加工处理,需要对器件的粘结力进行针对性地检测和分析。该装置利用电子拉力传感器技术和机器视觉技术,并采用嵌入式微控制器,进行材料的粘结强度测试,获得在以粘结材料分离距离为横坐标,以力学数据为纵坐标的拉力和位移的关系曲线走势图。在使用透明胶时,获得胶和材料分离下的不同的显微图像,为研究各种材料的准分子激光前处理对粘结强度的规律性和激光微加工机理,提供实验的连续过程原始数据资料。The purpose of the present invention is to solve the need for targeted detection and analysis of the cohesive force of the device when the excimer laser performs micromachining on the surface of the device in the experiment. The device uses electronic tension sensor technology and machine vision technology, and adopts embedded microcontroller to test the bonding strength of materials, and obtains the tensile force and displacement with the separation distance of the bonding material as the abscissa and the mechanical data as the ordinate. Relationship curve chart. When using transparent glue, different microscopic images under the separation of glue and material can be obtained, in order to study the regularity of bonding strength and laser micromachining mechanism by excimer laser pretreatment of various materials, and provide the original data of the continuous process of the experiment material.
本发明主要适用于准分子激光加工后的各种非脆性粘结材料在相同或是不同胶粘剂粘结下,对其粘结强度做出多物理量变化规律性解释的测试,包括粘结材料被拉开分离过程中粘结材料的位移和拉力之间相互依赖关系的检测、粘结强度,及其破坏的显微过程。The invention is mainly suitable for the test of the regularity of the multi-physical quantity change of the bonding strength of various non-brittle bonding materials after excimer laser processing under the same or different adhesive bonding, including the bonding material being pulled Detection of the interdependence between the displacement and tensile force of the bonding material during the separation process, the bond strength, and the microscopic process of its failure.
为了实现上述目的,本发明采用的技术方案为如下。In order to achieve the above objects, the technical solutions adopted in the present invention are as follows.
面向准分子激光微加工器件粘结力自动检测装置,其特征在于:该装置包括拉力机(3)、步进电机驱动器模块(10)、控制器模块(7)、通信模块(8)和图像显微模块,步进电机驱动器模块(10)包括步进电机驱动器(4)和L298驱动模块(5)。拉力机(3)的步进电机(2-13)的供电线和控制线与步进电机驱动器(4)连接;步进电机驱动器(4)的控制线和L298驱动模块(5)连接;控制器模块(7)的控制线和L298驱动模块(5)连接;控制器模块(7)的串口通信线和通信模块(8)连接;通信模块(8)和PH拉力计(2-4)的232通信线连接;图像显微模块包括电脑(1)和CCD摄像头(2),电脑(1)和CCD摄像头(2)通过数据线连接。CCD摄像头(2)与反射镜(2-17)相对应。控制器模块(7)的中间安装有TFT液晶屏(6)。An automatic detection device for adhesion force of excimer laser microfabricated devices, characterized in that: the device comprises a tension machine (3), a stepping motor driver module (10), a controller module (7), a communication module (8) and an image Microscopic module, the stepping motor driver module (10) includes a stepping motor driver (4) and an L298 driving module (5). The power supply line and the control line of the stepper motor (2-13) of the tension machine (3) are connected with the stepper motor driver (4); the control line of the stepper motor driver (4) is connected with the L298 drive module (5); the control line The control line of the controller module (7) is connected to the L298 drive module (5); the serial communication line of the controller module (7) is connected to the communication module (8); the communication module (8) is connected to the PH tension gauge (2-4) 232 communication line connection; the image microscope module includes a computer (1) and a CCD camera (2), and the computer (1) and the CCD camera (2) are connected through a data line. The CCD camera (2) corresponds to the reflector (2-17). A TFT liquid crystal screen (6) is installed in the middle of the controller module (7).
拉力机(3)包括钢板底座(2-1)、材料夹具A(2-2)、材料夹具B(2-3)和PH拉力计(2-4);材料夹具A(2-2)安装在钢板底座(2-1)上,材料夹具B(2-3)安装在PH拉力计(2-4)上;PH拉力计(2-4)安装在固定横向梁(2-9)上,圆柱梁A(2-6)和圆柱梁B(2-8)均安装在钢板底座(2-1)上,圆柱梁A(2-6)和圆柱梁B(2-8)和固定横向梁(2-9)通孔能够滑动;步进电机(2-13)连通联轴器(2-5)带动丝杠套组(2-7)中的丝杠转动;上平台钢板A(2-12)通过四个小支柱(2-10)固定在上平台钢板B(2-24)上,上平台钢板B(2-24)固定在顶横梁(2-11),顶横梁(2-11)和圆柱梁A(2-6)和圆柱梁B(2-8)连接固定。当采用大力距高精度的步进电机转动时,能够带动丝杠套组(2-7)中的丝杠转动,丝杠转动带动固定横向梁(2-9)的移动,进而带动PH拉力计(2-4)整体移动,为粘结力分离实验提供电动匀速动力,能够代替人力并弥补人力的不稳定性。铁条(2-14)固定在上平台钢板B(2-24)上,上行程限位开关(2-15)和下行程限位开关(2-16)安置在铁条(2-14)上,以防止丝杆转动到行程尽头时,PH拉力计(2-4)产生机械碰撞,确保粘结力测试装置的安全运行。The tension machine (3) includes a steel plate base (2-1), a material fixture A (2-2), a material fixture B (2-3) and a PH tension gauge (2-4); the material fixture A (2-2) is installed On the steel plate base (2-1), the material fixture B (2-3) is installed on the PH tension gauge (2-4); the PH tension gauge (2-4) is installed on the fixed transverse beam (2-9), Cylindrical beam A (2-6) and cylindrical beam B (2-8) are installed on the steel plate base (2-1), cylindrical beam A (2-6) and cylindrical beam B (2-8) and fixed transverse beam (2-9) The through hole can slide; the stepping motor (2-13) communicates with the coupling (2-5) to drive the lead screw in the lead screw set (2-7) to rotate; the upper platform steel plate A (2- 12) Fix on the upper platform steel plate B (2-24) through four small pillars (2-10), the upper platform steel plate B (2-24) is fixed on the top beam (2-11), the top beam (2-11) ) and cylindrical beam A (2-6) and cylindrical beam B (2-8) are connected and fixed. When the stepping motor with high force and high precision is used to rotate, it can drive the lead screw in the lead screw set (2-7) to rotate, and the lead screw rotates to drive the movement of the fixed transverse beam (2-9), which in turn drives the PH tension gauge. (2-4) The overall movement provides electric uniform power for the cohesive force separation experiment, which can replace the manpower and make up for the instability of the manpower. The iron bar (2-14) is fixed on the upper platform steel plate B (2-24), and the upper travel limit switch (2-15) and the lower travel limit switch (2-16) are placed on the iron bar (2-14) to prevent the mechanical collision of the PH tension gauge (2-4) when the lead screw rotates to the end of its stroke, so as to ensure the safe operation of the adhesive force testing device.
控制器模块(7)的MCU的PA8引脚输出PWM,经过实验得出当PWM的参数为8K频率占空比为50%时分离速度效果最佳且不会出现丟步情况,PA8引脚和L298驱动模块(5)的IN1引脚连接;控制器模块(7)输出控制步进电机(2-13)正反转信号由PA4引脚和PA5引脚控制,PA4引脚和PA5引脚分别和L298驱动模块(5)的IN2和IN3引脚连接;L298驱动模块(5)实现电平放大和驱动电流的放大,使得步进电机驱动器(4)和控制器模块(7)的控制信号电平匹配;L298驱动模块(5)的OUT1引脚和步进电机驱动器(4)的PUL-引脚连接,步进电机驱动器(4)的PUL+引脚接高电平,步进电机驱动器(4)的DIR+引脚和L298驱动模块(5)的OUT2引脚连接,步进电机驱动器(4)的DIR-引脚和L298驱动模块(5)的OUT3引脚连接;然后再将步进电机驱动器(4)和步进电机(2-13)控制信号和四相信号线连接。The PA8 pin of the MCU of the controller module (7) outputs PWM. Through experiments, it is found that when the PWM parameter is 8K and the frequency duty cycle is 50%, the separation speed is the best and there will be no loss of steps. The PA8 pin and The IN1 pin of the L298 driver module (5) is connected; the output of the controller module (7) controls the stepper motor (2-13) The forward and reverse signals are controlled by the PA4 pin and the PA5 pin, and the PA4 pin and the PA5 pin are respectively It is connected with the IN2 and IN3 pins of the L298 driver module (5); the L298 driver module (5) realizes level amplification and driving current amplification, so that the control signals of the stepper motor driver (4) and the controller module (7) are electrically Flat matching; the OUT1 pin of the L298 driver module (5) is connected to the PUL- pin of the stepper motor driver (4), the PUL+ pin of the stepper motor driver (4) is connected to a high level, and the stepper motor driver (4) ) of the DIR+ pin is connected to the OUT2 pin of the L298 driver module (5), and the DIR- pin of the stepper motor driver (4) is connected to the OUT3 pin of the L298 driver module (5); then connect the stepper motor driver (4) Connect with the stepper motor (2-13) control signal and four-phase signal line.
步进电机(3)是86全闭环高速恒扭矩步进伺服电机。The stepping motor (3) is an 86 full-closed-loop high-speed constant-torque stepping servo motor.
控制器模块(7)的MCU是STM32F103RCT6;The MCU of the controller module (7) is STM32F103RCT6;
步进电机驱动器(4)是闭环驱动器HBS86H。The stepper motor driver (4) is a closed loop driver HBS86H.
通信模块(8)为RS232转TTL模块。The communication module (8) is an RS232 to TTL module.
通信模块(8)能够实现控制器模块(7)和PH拉力计(2-4)的双向的通信,控制器模块(7)的MCU的PA9引脚接通信模块(8)的RXD引脚,MCU的PA10引脚接通信模块(8)的TXD引脚,通信模块(8)的另一端接九针公口,再和PH拉力计(2-4)连接。The communication module (8) can realize two-way communication between the controller module (7) and the PH force gauge (2-4), and the PA9 pin of the MCU of the controller module (7) is connected to the RXD pin of the communication module (8), The PA10 pin of the MCU is connected to the TXD pin of the communication module (8), the other end of the communication module (8) is connected to the nine-pin male port, and then connected to the PH tension gauge (2-4).
图像显微模块采用一个的连续变倍物镜(2-18),连续变倍物镜(2-18)的调节范围为3~30×;齿轮环A(2-19)固定在连续变倍物镜(2-18)上,并在直流微控电机(2-22)的转轴上固定一个齿轮B(2-23),通过控制直流微控电机(2-22)转动实现自动变倍。连续变倍物镜(2-18)和CCD相机(2-20)将粘结材料的分离过程通过45度安放的反射镜(2-17)能够显微成像;CCD相机(2-20)和直流微控电机(2-22)固定在支架板(2-21)上。CCD相机(2-20)和直流微控电机(2-22)再通过数据线传到计算机(1)中显示以便观察分析,计算机(1)将得到的信息进行分析,同时将聚焦信息反馈给控制器模块(7),控制器模块(7)控制直流微控电机(2-22)转动调焦形成闭环自动调焦功能。The image microscope module adopts a continuous zoom objective (2-18), and the adjustment range of the continuous zoom objective (2-18) is 3 to 30×; the gear ring A (2-19) is fixed on the continuous zoom objective (2-19). 2-18), and fix a gear B (2-23) on the rotating shaft of the DC micro-control motor (2-22), and realize automatic zooming by controlling the rotation of the DC micro-control motor (2-22). The continuously variable magnification objective (2-18) and CCD camera (2-20) can image the separation process of the bonding material through a mirror (2-17) placed at 45 degrees; CCD camera (2-20) and DC The micro-control motor (2-22) is fixed on the support plate (2-21). The CCD camera (2-20) and the DC micro-control motor (2-22) are then transmitted to the computer (1) through the data line for observation and analysis. The computer (1) analyzes the obtained information and feeds back the focusing information to the A controller module (7), the controller module (7) controls the DC micro-control motor (2-22) to rotate and focus to form a closed-loop automatic focus function.
连续变倍物镜(2-18)的工作距离293mm,放大倍数为0.7×。The working distance of the continuously variable magnification objective lens (2-18) is 293mm, and the magnification is 0.7×.
面向准分子激光微加工器件粘结力自动检测方法,其特征在于:An automatic detection method for the adhesion force of excimer laser micromachining devices, characterized in that:
首先对拉力计进行嵌入式芯片功能进行初始化配置,要进行拉力测试时,通过手动按键控制丝杆的转动,移动到开始位置,用材料夹具A(2-2)和材料夹具B((2-3)夹紧被测材料进行拉力测试;然后输入被测材料的激光处理的参数参数包括激光的扫描速度、准分子激光的脉冲个数、激光辐照能量强度,根据信息输出推荐的步进电机转速,并且该步进电机转度能够根据测试情况进行更改,以此获得最佳的测试效果。然后,达到限位开关或达到峰值拉力时电机拉力测试,即关闭定时器中断。然后在主程序循环中,用串口获得计算机关于物镜聚焦信息,再控制直流微控电机调焦,形成闭环调节变倍物镜调焦。然后,定时器中断是20ms一次的中断响应服务。在中断响应服务当中,进行的工作是完成嵌入式芯片对PH拉力计数据的读取,并把通信内容进行数据格式处理并对拉力值关键信息提取,再将提取的拉力值和根据驱动频率计算得到的拉开距离,实时绘制到TFT液晶屏上成曲线走势图,再输出拉力和激光参数的实时变比,为粘结力分离实验提供参考。最后在嵌入式芯片STM32F103RCT6当中配置PWM让引脚PA8输出PWM,为HBS86H全数字式闭环步进驱动器提供脉冲频率,驱动电机工作。如此循环进行每次拉力测试工作。First, initialize and configure the embedded chip function of the tension meter. When the tension test is to be performed, control the rotation of the screw by the manual button, move to the starting position, and use the material fixture A (2-2) and material fixture B ((2- 3) Clamp the material to be tested for tensile test; then input the parameters of the laser processing of the material to be tested, including the scanning speed of the laser, the number of pulses of the excimer laser, and the energy intensity of the laser irradiation, and output the recommended stepping motor according to the information The rotation speed of the stepper motor can be changed according to the test situation, so as to obtain the best test effect. Then, when the limit switch is reached or the peak pulling force is reached, the motor pull test is to close the timer interrupt. Then in the main program In the loop, use the serial port to obtain the focusing information of the objective lens from the computer, and then control the DC micro-control motor to adjust the focus to form a closed-loop adjustment of the zoom objective lens. Then, the timer interrupt is an interrupt response service every 20ms. In the interrupt response service, the The job is to complete the reading of the PH tension meter data by the embedded chip, process the data format of the communication content and extract the key information of the tension value, and then extract the extracted tension value and the distance calculated according to the driving frequency, in real time. Draw it on the TFT LCD screen to form a curve chart, and then output the real-time ratio of tensile force and laser parameters, which provides a reference for the adhesive force separation experiment. Finally, configure PWM in the embedded chip STM32F103RCT6 to let pin PA8 output PWM, which is the full output of HBS86H. The digital closed-loop stepper driver provides pulse frequency to drive the motor to work. This cycle is performed for each tensile test work.
计算机(1)实时利用CCD镜头采集被测材料的分离过程,获得其过程显微图像,然后通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等,最终得到需要的各项检测数据和显微图像,为粘结力测试提供分析数据。The computer (1) uses the CCD lens to collect the separation process of the tested material in real time, and obtains its process microscopic image, and then uses the computer to remove noise, enhance, restore, segment, and extract features from the image, and finally obtain the required inspection data. and micrographs to provide analytical data for adhesion testing.
该装置可以克服通用拉力试验机的缺点,为各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理研究,提供实验的连续过程原始数据和规律性曲线以及粘结分离模式的显微图像资料,从而促进了粘结力实验装置的现代化先进性发展。The device can overcome the shortcomings of the general tensile testing machine, and provide the original data and regularity curve of the continuous process of the experiment and the bond separation for the study of the influence of excimer laser pretreatment on the bond strength of various materials and the mechanism of laser micromachining. The microscopic image data of the mode, thus promoting the modern and advanced development of the adhesive force experimental device.
与现有技术相比较,1.本设计清晰的记录了粘结强度的测试过程及结果,不仅可以观察并拍摄拉开瞬间照片,分析材料与胶分离时的微观变化,而且还可以记录拉开过程中拉力的数值变化;Compared with the prior art, 1. This design clearly records the test process and results of the bond strength, not only can observe and take pictures of the moment of pulling apart, analyze the microscopic changes when the material is separated from the glue, but also record the pulling apart. The numerical change of the tensile force during the process;
2.本装置同样可以用于测试不同胶粘剂的粘结强度或不同粘结表面处理技术下材料的粘结强度,对实验过程进行记录,实时测量拉力及拉开程度。2. The device can also be used to test the bonding strength of different adhesives or the bonding strength of materials under different bonding surface treatment technologies, record the experimental process, and measure the pulling force and the degree of pulling apart in real time.
3.为分析得到最佳准分子激光表面处理的处理参数(强度、循环速率、脉冲数量)与基体材料改性后粘结力相对应的关系提供有力的原始数据。3. Provide powerful raw data for analyzing the relationship between the treatment parameters (intensity, cycle rate, pulse number) of the optimal excimer laser surface treatment and the bonding force after the modification of the matrix material.
附图说明Description of drawings
图1是本发明的整体装置结构图。FIG. 1 is an overall device configuration diagram of the present invention.
图2是本发明的拉力仪。Fig. 2 is a tension meter of the present invention.
图3是本发明的工作流程图。Figure 3 is a flow chart of the work of the present invention.
图中:1、电脑,2、CCD摄像头,3、拉力机,4、步进电机驱动器,5、L298驱动模块,6、TFT液晶屏,7、控制器模块,8、RS232转TTL模块,9、拉力仪,10、步进电机驱动器模块,2-1、钢板底座,2-2、材料夹具A,2-3、材料夹具B,2-4、PH拉力计,2-5、联轴器,2-6、圆柱梁A,2-7、丝杠套组,2-8、圆柱梁B,2-9、固定横向梁,2-10、小支柱,2-11、顶横梁,2-12、上平台钢板A,2-13、步进电机,2-14、铁条,2-15、上行程限位开关,2-16、下行程限位开关,2-17、反射镜,2-18、连续变倍物镜,2-19、齿轮环A,2-20、CCD相机,2-21、支架板,2-22、直流微控电机,2-23、齿轮B,2-24、平台钢板B。In the picture: 1. Computer, 2. CCD camera, 3. Tensile machine, 4. Stepper motor driver, 5. L298 driver module, 6. TFT LCD screen, 7. Controller module, 8. RS232 to TTL module, 9 , Tensile force meter, 10, Stepper motor driver module, 2-1, Steel plate base, 2-2, Material fixture A, 2-3, Material fixture B, 2-4, PH force meter, 2-5, Coupling , 2-6, cylindrical beam A, 2-7, screw set, 2-8, cylindrical beam B, 2-9, fixed transverse beam, 2-10, small pillar, 2-11, top beam, 2- 12. Upper platform steel plate A, 2-13, stepper motor, 2-14, iron bar, 2-15, upper travel limit switch, 2-16, lower travel limit switch, 2-17, mirror, 2 -18. Continuous zoom objective lens, 2-19, gear ring A, 2-20, CCD camera, 2-21, bracket plate, 2-22, DC micro-control motor, 2-23, gear B, 2-24, Platform steel plate B.
具体实施方式Detailed ways
以下结合附图具体的说明本发明的实施方式,图1为拉力机整体装置结构图。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a structural diagram of an overall device of a tensile machine.
如图1和图2所示,面向准分子激光微加工器件粘结力自动检测装置,该装置包括拉力机(3)、步进电机驱动器模块(10)、控制器模块(7)、通信模块(8)和图像显微模块,步进电机驱动器模块(10)包括步进电机驱动器(4)和L298驱动模块(5)。拉力机(3)的步进电机(2-13)的供电线和控制线与步进电机驱动器(4)连接;步进电机驱动器(4)的控制线和L298驱动模块(5)连接;控制器模块(7)的控制线和L298驱动模块(5)连接;控制器模块(7)的串口通信线和通信模块(8)连接;通信模块(8)和PH拉力计(2-4)的232通信线连接;图像显微模块包括电脑(1)和CCD摄像头(2),电脑(1)和CCD摄像头(2)通过数据线连接。CCD摄像头(2)与反射镜(2-17)相对应。控制器模块(7)的中间安装有TFT液晶屏(6)。As shown in FIG. 1 and FIG. 2 , an automatic detection device for adhesive force of excimer laser microfabricated devices, the device includes a tension machine (3), a stepping motor driver module (10), a controller module (7), and a communication module (8) and the image microscope module, the stepping motor driver module (10) includes a stepping motor driver (4) and an L298 driving module (5). The power supply line and the control line of the stepper motor (2-13) of the tension machine (3) are connected with the stepper motor driver (4); the control line of the stepper motor driver (4) is connected with the L298 drive module (5); the control line The control line of the controller module (7) is connected to the L298 drive module (5); the serial communication line of the controller module (7) is connected to the communication module (8); the communication module (8) is connected to the PH tension gauge (2-4) 232 communication line connection; the image microscope module includes a computer (1) and a CCD camera (2), and the computer (1) and the CCD camera (2) are connected through a data line. The CCD camera (2) corresponds to the reflector (2-17). A TFT liquid crystal screen (6) is installed in the middle of the controller module (7).
拉力机(3)包括钢板底座(2-1)、材料夹具A(2-2)、材料夹具B(2-3)和PH拉力计(2-4);材料夹具A(2-2)安装在钢板底座(2-1)上,材料夹具B(2-3)安装在PH拉力计(2-4)上;PH拉力计(2-4)安装在固定横向梁(2-9)上,圆柱梁A(2-6)和圆柱梁B(2-8)均安装在钢板底座(2-1)上,圆柱梁A(2-6)和圆柱梁B(2-8)和固定横向梁(2-9)通孔能够滑动;步进电机(2-13)连通联轴器(2-5)带动丝杠套组(2-7)中的丝杠转动;上平台钢板A(2-12)通过四个小支柱(2-10)固定在上平台钢板B(2-24)上,上平台钢板B(2-24)固定在顶横梁(2-11),顶横梁(2-11)和圆柱梁A(2-6)和圆柱梁B(2-8)连接固定。当采用大力距高精度的步进电机转动时,能够带动丝杠套组(2-7)中的丝杠转动,丝杠转动带动固定横向梁(2-9)的移动,进而带动PH拉力计(2-4)整体移动,为粘结力分离实验提供电动匀速动力,能够代替人力并弥补人力的不稳定性。铁条(2-14)固定在上平台钢板B(2-24)上,上行程限位开关(2-15)和下行程限位开关(2-16)安置在铁条(2-14)上,以防止丝杆转动到行程尽头时,PH拉力计(2-4)产生机械碰撞,确保粘结力测试装置的安全运行。The tension machine (3) includes a steel plate base (2-1), a material fixture A (2-2), a material fixture B (2-3) and a PH tension gauge (2-4); the material fixture A (2-2) is installed On the steel plate base (2-1), the material fixture B (2-3) is installed on the PH tension gauge (2-4); the PH tension gauge (2-4) is installed on the fixed transverse beam (2-9), Cylindrical beam A (2-6) and cylindrical beam B (2-8) are installed on the steel plate base (2-1), cylindrical beam A (2-6) and cylindrical beam B (2-8) and fixed transverse beam (2-9) The through hole can slide; the stepping motor (2-13) communicates with the coupling (2-5) to drive the lead screw in the lead screw set (2-7) to rotate; the upper platform steel plate A (2- 12) Fix on the upper platform steel plate B (2-24) through four small pillars (2-10), the upper platform steel plate B (2-24) is fixed on the top beam (2-11), the top beam (2-11) ) and cylindrical beam A (2-6) and cylindrical beam B (2-8) are connected and fixed. When the stepping motor with high force and high precision is used to rotate, it can drive the lead screw in the lead screw set (2-7) to rotate, and the lead screw rotates to drive the movement of the fixed transverse beam (2-9), which in turn drives the PH tension gauge. (2-4) The overall movement provides electric uniform power for the cohesive force separation experiment, which can replace the manpower and make up for the instability of the manpower. The iron bar (2-14) is fixed on the upper platform steel plate B (2-24), and the upper travel limit switch (2-15) and the lower travel limit switch (2-16) are placed on the iron bar (2-14) to prevent the mechanical collision of the PH tension gauge (2-4) when the lead screw rotates to the end of its stroke, so as to ensure the safe operation of the adhesive force testing device.
控制器模块(7)的MCU的PA8引脚输出PWM,经过实验得出当PWM的参数为8K频率占空比为50%时分离速度效果最佳且不会出现丟步情况,PA8引脚和L298驱动模块(5)的IN1引脚连接;控制器模块(7)输出控制步进电机(2-13)正反转信号由PA4引脚和PA5引脚控制,PA4引脚和PA5引脚分别和L298驱动模块(5)的IN2和IN3引脚连接;L298驱动模块(5)实现电平放大和驱动电流的放大,使得步进电机驱动器(4)和控制器模块(7)的控制信号电平匹配;L298驱动模块(5)的OUT1引脚和步进电机驱动器(4)的PUL-引脚连接,步进电机驱动器(4)的PUL+引脚接高电平,步进电机驱动器(4)的DIR+引脚和L298驱动模块(5)的OUT2引脚连接,步进电机驱动器(4)的DIR-引脚和L298驱动模块(5)的OUT3引脚连接;然后再将步进电机驱动器(4)和步进电机(2-13)控制信号和四相信号线连接。The PA8 pin of the MCU of the controller module (7) outputs PWM. Through experiments, it is found that when the PWM parameter is 8K and the frequency duty cycle is 50%, the separation speed is the best and there will be no loss of steps. The PA8 pin and The IN1 pin of the L298 driver module (5) is connected; the output of the controller module (7) controls the stepper motor (2-13) The forward and reverse signals are controlled by the PA4 pin and the PA5 pin, and the PA4 pin and the PA5 pin are respectively It is connected with the IN2 and IN3 pins of the L298 driver module (5); the L298 driver module (5) realizes level amplification and driving current amplification, so that the control signals of the stepper motor driver (4) and the controller module (7) are electrically Flat matching; the OUT1 pin of the L298 driver module (5) is connected to the PUL- pin of the stepper motor driver (4), the PUL+ pin of the stepper motor driver (4) is connected to a high level, and the stepper motor driver (4) ) of the DIR+ pin is connected to the OUT2 pin of the L298 driver module (5), and the DIR- pin of the stepper motor driver (4) is connected to the OUT3 pin of the L298 driver module (5); then connect the stepper motor driver (4) Connect with the stepper motor (2-13) control signal and four-phase signal line.
步进电机(3)是86全闭环高速恒扭矩步进伺服电机。The stepping motor (3) is an 86 full-closed-loop high-speed constant-torque stepping servo motor.
控制器模块(7)的MCU是STM32F103RCT6;The MCU of the controller module (7) is STM32F103RCT6;
步进电机驱动器(4)是闭环驱动器HBS86H。The stepper motor driver (4) is a closed loop driver HBS86H.
通信模块(8)为RS232转TTL模块。The communication module (8) is an RS232 to TTL module.
通信模块(8)能够实现控制器模块(7)和PH拉力计(2-4)的双向的通信,控制器模块(7)的MCU的PA9引脚接通信模块(8)的RXD引脚,MCU的PA10引脚接通信模块(8)的TXD引脚,通信模块(8)的另一端接九针公口,再和PH拉力计(2-4)连接。The communication module (8) can realize two-way communication between the controller module (7) and the PH force gauge (2-4), and the PA9 pin of the MCU of the controller module (7) is connected to the RXD pin of the communication module (8), The PA10 pin of the MCU is connected to the TXD pin of the communication module (8), the other end of the communication module (8) is connected to the nine-pin male port, and then connected to the PH tension gauge (2-4).
图像显微模块采用一个的连续变倍物镜(2-18),连续变倍物镜(2-18)的调节范围为3~30×;齿轮环A(2-19)固定在连续变倍物镜(2-18)上,并在直流微控电机(2-22)的转轴上固定一个齿轮B(2-23),通过控制直流微控电机(2-22)转动实现自动变倍。连续变倍物镜(2-18)和CCD相机(2-20)将粘结材料的分离过程通过45度安放的反射镜(2-17)能够显微成像;CCD相机(2-20)和直流微控电机(2-22)固定在支架板(2-21)上。CCD相机(2-20)和直流微控电机(2-22)再通过数据线传到计算机(1)中显示以便观察分析,计算机(1)将得到的信息进行分析,同时将聚焦信息反馈给控制器模块(7),控制器模块(7)控制直流微控电机(2-22)转动调焦形成闭环自动调焦功能。The image microscope module adopts a continuous zoom objective (2-18), and the adjustment range of the continuous zoom objective (2-18) is 3 to 30×; the gear ring A (2-19) is fixed on the continuous zoom objective (2-19). 2-18), and fix a gear B (2-23) on the rotating shaft of the DC micro-control motor (2-22), and realize automatic zooming by controlling the rotation of the DC micro-control motor (2-22). The continuously variable magnification objective (2-18) and CCD camera (2-20) can image the separation process of the bonding material through a mirror (2-17) placed at 45 degrees; CCD camera (2-20) and DC The micro-control motor (2-22) is fixed on the support plate (2-21). The CCD camera (2-20) and the DC micro-control motor (2-22) are then transmitted to the computer (1) through the data line for observation and analysis. The computer (1) analyzes the obtained information and feeds back the focusing information to the A controller module (7), the controller module (7) controls the DC micro-control motor (2-22) to rotate and focus to form a closed-loop automatic focus function.
连续变倍物镜(2-18)的工作距离293mm,放大倍数为0.7×。The working distance of the continuously variable magnification objective lens (2-18) is 293mm, and the magnification is 0.7×.
如图3所示,首先对拉力计进行嵌入式芯片功能进行初始化配置,要进行拉力测试时,通过手动按键控制丝杆的转动,移动到开始位置,用材料夹具A(2-2)和材料夹具B((2-3)夹紧被测材料进行拉力测试;然后输入被测材料的激光处理的参数参数包括激光的扫描速度、准分子激光的脉冲个数、激光辐照能量强度,根据信息输出推荐的步进电机转速,并且该步进电机转度能够根据测试情况进行更改,以此获得最佳的测试效果。然后,达到限位开关或达到峰值拉力时电机拉力测试,即关闭定时器中断。然后在主程序循环中,用串口获得计算机关于物镜聚焦信息,再控制直流微控电机调焦,形成闭环调节变倍物镜调焦。然后,定时器中断是20ms一次的中断响应服务。在中断响应服务当中,进行的工作是完成嵌入式芯片对PH拉力计数据的读取,并把通信内容进行数据格式处理并对拉力值关键信息提取,再将提取的拉力值和根据驱动频率计算得到的拉开距离,实时绘制到TFT液晶屏上成曲线走势图,再输出拉力和激光参数的实时变比,为粘结力分离实验提供参考。最后在嵌入式芯片STM32F103RCT6当中配置PWM让引脚PA8输出PWM,为HBS86H全数字式闭环步进驱动器提供脉冲频率,驱动电机工作。如此循环进行拉力测试工作。As shown in Figure 3, firstly, initialize and configure the embedded chip function of the tension meter. When the tension test is to be performed, control the rotation of the screw rod by the manual button, move it to the starting position, and use the material fixture A (2-2) and the material Fixture B ((2-3) clamps the material to be tested for tensile test; then input the parameters of the laser processing of the material to be tested, including the scanning speed of the laser, the number of pulses of the excimer laser, and the energy intensity of the laser irradiation, according to the information Output the recommended stepper motor speed, and the stepper motor speed can be changed according to the test situation, so as to obtain the best test effect. Then, when the limit switch or the peak pull force is reached, the motor pull force test is to close the timer. Interrupt. Then in the main program loop, use the serial port to obtain the focusing information of the objective lens from the computer, and then control the DC micro-control motor to adjust the focus to form a closed-loop adjustment of the zoom objective lens. Then, the timer interrupt is a 20ms interrupt response service. In In the interrupt response service, the work carried out is to complete the reading of the PH tension meter data by the embedded chip, process the data format of the communication content and extract the key information of the tension value, and then calculate the extracted tension value and the driving frequency according to the driving frequency. The distance is drawn, and it is drawn on the TFT LCD screen in real time to form a curve diagram, and then the real-time ratio of the pulling force and the laser parameters is output to provide a reference for the adhesion separation experiment. Finally, configure the PWM in the embedded chip STM32F103RCT6 to make the pin PA8 Output PWM, provide pulse frequency for HBS86H all-digital closed-loop stepper driver, and drive the motor to work. In this way, the tensile test work is carried out in a cycle.
计算机(1)实时利用CCD镜头采集被测材料的分离过程,获得其过程显微图像,然后通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等,最终得到需要的各项检测数据和显微图像,为粘结力测试提供分析数据。The computer (1) uses the CCD lens to collect the separation process of the tested material in real time, and obtains its process microscopic image, and then uses the computer to remove noise, enhance, restore, segment, and extract features from the image, and finally obtain the required inspection data. and micrographs to provide analytical data for adhesion testing.
该装置可以克服通用拉力试验机的缺点,为各种材料的准分子激光前处理对粘结强度影响规律性和激光微加工机理研究,提供实验的连续过程原始数据和规律性曲线以及粘结分离模式的显微图像资料,从而促进了粘结力实验装置的现代化先进性发展。The device can overcome the shortcomings of the general tensile testing machine, and provide the original data and regularity curve of the continuous process of the experiment and the bond separation for the study of the influence of excimer laser pretreatment on the bond strength of various materials and the mechanism of laser micromachining. The microscopic image data of the mode, thus promoting the modern and advanced development of the adhesive force experimental device.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810197403.8A CN108254309B (en) | 2018-03-11 | 2018-03-11 | Adhesive force automatic detection device and method for excimer laser micromachining device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810197403.8A CN108254309B (en) | 2018-03-11 | 2018-03-11 | Adhesive force automatic detection device and method for excimer laser micromachining device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108254309A CN108254309A (en) | 2018-07-06 |
CN108254309B true CN108254309B (en) | 2020-11-20 |
Family
ID=62746516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810197403.8A Active CN108254309B (en) | 2018-03-11 | 2018-03-11 | Adhesive force automatic detection device and method for excimer laser micromachining device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108254309B (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2519268Y (en) * | 2001-11-30 | 2002-10-30 | 江苏大学 | Interface bonding strength laser impact quantitative determination device |
JP4684958B2 (en) * | 2006-06-28 | 2011-05-18 | キヤノン株式会社 | Sheet material information detection apparatus and sheet material processing apparatus |
CN101441154B (en) * | 2008-12-23 | 2011-05-25 | 华东理工大学 | A high-precision micro-fatigue testing machine |
CN103728183B (en) * | 2013-10-08 | 2016-02-10 | 广东石油化工学院 | A kind of fragmentation test device based on machine vision and control method thereof |
CN103512804B (en) * | 2013-10-18 | 2015-09-23 | 徐州工程学院 | Compact tensile testing machine autocontrol method |
CN204116156U (en) * | 2014-06-05 | 2015-01-21 | 中国建材检验认证集团股份有限公司 | The at the uniform velocity even afterburning tensile and compression testing machine of plane multiple spot |
CN205091243U (en) * | 2015-11-19 | 2016-03-16 | 哈尔滨理工大学 | Ice of simply taking counter shaft function adheres strength test device |
CN207036654U (en) * | 2017-04-28 | 2018-02-23 | 华侨大学 | A device for measuring the interfacial bonding strength of ultrafine abrasives and matrix materials |
CN106970022A (en) * | 2017-04-28 | 2017-07-21 | 华侨大学 | A kind of interface bond strength measurement apparatus of ultra-fine abrasive material and matrix material |
CN107238541B (en) * | 2017-05-08 | 2019-12-10 | 华南理工大学 | An accelerated loading device and method for indoor testing of pavement materials |
-
2018
- 2018-03-11 CN CN201810197403.8A patent/CN108254309B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108254309A (en) | 2018-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202928905U (en) | A polymer film material stretching device for in-situ structure detection | |
CN111160158B (en) | Rock image intelligent identification system and method under polarizing microscope | |
CN106525571B (en) | A microscope stretcher adapted to an optical microscope | |
CN107607410A (en) | Portable alternating temperature original position tension/compression testing device | |
CN201387407Y (en) | A metal wire tensile strength testing device | |
CN103063689B (en) | Constant width film stretching device combined with X-ray scattering, and experimental method thereof | |
WO2013174112A1 (en) | Polarizing plate attachment precision detection device and method | |
CN103264385B (en) | Automatic microoperation device | |
CN102426144A (en) | Automatic detection machine for bidirectional drawing force of precision casing | |
CN108254309B (en) | Adhesive force automatic detection device and method for excimer laser micromachining device | |
WO2017181334A1 (en) | Pre-processing device for integrating optical fibers | |
CN207280869U (en) | A kind of thin film stretching device | |
CN103091181A (en) | Miniature stretching rheological device for in-situ structure detection of polymer film material, and experimental method thereof | |
CN105382421A (en) | Full-automatic integrated SMT template cutting and detecting device | |
CN102162877A (en) | Device and method for manufacturing full-optical-fiber ultra-small probes | |
CN103512804B (en) | Compact tensile testing machine autocontrol method | |
CN101074878A (en) | Video inspecting device for composite material spreading | |
CN203479762U (en) | A-B axis motorized fine adjustment mechanism of six-degree-of-freedom ultrasonic imaging device | |
CN118443455B (en) | Tensile property detection equipment and method applied to composite hose | |
CN118500650B (en) | Detection device and detection method for production of glass observation window of washing machine | |
CN212780638U (en) | Magnetic particle inspection automatic detection device based on machine vision | |
CN101051107A (en) | Automatic alignment method for coupling light cone and CCD | |
CN202862594U (en) | Polymer micro-fluidic chip bonding device | |
CN107727280B (en) | Single-drive biaxial tension test device and manufacturing method of flexible stress sensor | |
CN213321688U (en) | Transverse drawing machine for producing thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |