CN108021916A - Deep learning diabetic retinopathy sorting technique based on notice mechanism - Google Patents
Deep learning diabetic retinopathy sorting technique based on notice mechanism Download PDFInfo
- Publication number
- CN108021916A CN108021916A CN201711497342.9A CN201711497342A CN108021916A CN 108021916 A CN108021916 A CN 108021916A CN 201711497342 A CN201711497342 A CN 201711497342A CN 108021916 A CN108021916 A CN 108021916A
- Authority
- CN
- China
- Prior art keywords
- network
- diabetic retinopathy
- notice
- parameter
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010012689 Diabetic retinopathy Diseases 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000013135 deep learning Methods 0.000 title claims abstract description 16
- 238000012549 training Methods 0.000 claims abstract description 37
- 230000003902 lesion Effects 0.000 claims abstract description 27
- 238000012360 testing method Methods 0.000 claims abstract description 6
- 230000007935 neutral effect Effects 0.000 claims abstract 15
- 238000000926 separation method Methods 0.000 claims abstract 3
- 238000013528 artificial neural network Methods 0.000 claims description 22
- 238000013527 convolutional neural network Methods 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 11
- 238000003062 neural network model Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- 238000013434 data augmentation Methods 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims description 2
- 238000013526 transfer learning Methods 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims 1
- 210000005036 nerve Anatomy 0.000 claims 1
- 210000004218 nerve net Anatomy 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 238000005070 sampling Methods 0.000 claims 1
- 230000000717 retained effect Effects 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 3
- 210000000416 exudates and transudate Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 206010002329 Aneurysm Diseases 0.000 description 2
- 208000009857 Microaneurysm Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 206010038862 Retinal exudates Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 201000007917 background diabetic retinopathy Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000004195 computer-aided diagnosis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 201000007914 proliferative diabetic retinopathy Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Radiology & Medical Imaging (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Quality & Reliability (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及基于注意力机制的深度学习糖尿病视网膜病变分类方法,属于医学图像处理领域。The invention relates to a deep learning diabetic retinopathy classification method based on an attention mechanism, and belongs to the field of medical image processing.
背景技术Background technique
目前临床上医生对于糖尿病视网膜病变的诊断是通过观察并分析视网膜眼底图像上的早期病理特征如微动脉瘤、硬性渗出物以及出血等症状进行的。实际中,糖尿病视网膜病变病变种类多,病灶多样、病患严重程度不一,致使眼科医生诊断困难。因此,在大规模的糖尿病视网膜病变疾病筛查中,计算机辅助诊断技术可以大大减轻医生的负担,并快速、有效地辅助医生实现分类诊断。At present, clinical doctors diagnose diabetic retinopathy by observing and analyzing early pathological features on retinal fundus images, such as microaneurysms, hard exudates, and hemorrhages. In practice, there are many types of diabetic retinopathy, various lesions, and varying degrees of severity, making it difficult for ophthalmologists to diagnose. Therefore, in large-scale screening of diabetic retinopathy, computer-aided diagnosis technology can greatly reduce the burden on doctors, and quickly and effectively assist doctors to achieve classified diagnosis.
当前大部分自动诊断算法中,对于糖尿病视网膜病变眼底图像的分类主要基于传统手工方法来设计提取特征,再进行分类器的构建。例如使用包括形状,颜色,亮度和先验知识等手工特征进行糖尿病视网膜病变检测,这些方法只能在小的数据集上能取得较好的结果,由于人工特征提取过程繁琐,在大数据集的情况下效率低且鲁棒性差。随着人工智能算法的发展,目前已经有研究者提出了直接基于深度学习的糖尿病视网膜病变分类诊断方法,例如将卷积神经网络直接连接眼底图像进行糖尿病视网膜病变的分类任务,此类方法是针对所有糖尿病视网膜病变类型而设计的,仅仅将卷积神经网络看成一个黑盒子,并没有把与诊断密切相关的病灶分布信息考虑进去,缺乏有效而直观的解释。In most of the current automatic diagnosis algorithms, the classification of fundus images of diabetic retinopathy is mainly based on traditional manual methods to design and extract features, and then construct a classifier. For example, using manual features including shape, color, brightness and prior knowledge for diabetic retinopathy detection, these methods can only achieve better results on small data sets, due to the cumbersome manual feature extraction process, in large data sets low efficiency and poor robustness. With the development of artificial intelligence algorithms, some researchers have proposed a method for the classification and diagnosis of diabetic retinopathy directly based on deep learning. For example, the convolutional neural network is directly connected to fundus images for the classification task of diabetic retinopathy. Designed for all types of diabetic retinopathy, it only regards the convolutional neural network as a black box, and does not take into account the lesion distribution information closely related to the diagnosis, and lacks an effective and intuitive explanation.
发明内容Contents of the invention
发明目的:本发明目的在于针对现有技术的不足,提供一种基于注意力机制的深度学习糖尿病视网膜病变分类方法,该方法在深度卷积网络中引入了注意力机制,将注意力网络嵌入到深度网络中,并使用专家标注的糖尿病视网膜病变区域数据集对其进行训练,注意力网络能够引入专家知识,生成包含候选病变区域位置的病变感兴趣区域,该方法可以在保留网络原始特征的同时对病变区域的信息特征进行增强。Purpose of the invention: The purpose of the present invention is to address the deficiencies of the prior art and provide a deep learning diabetic retinopathy classification method based on the attention mechanism. This method introduces the attention mechanism into the deep convolutional network and embeds the attention network into In the deep network, it is trained with the diabetic retinopathy region dataset marked by experts. The attention network can introduce expert knowledge and generate a lesion region of interest containing the location of the candidate lesion region. This method can preserve the original characteristics of the network while Enhance the information features of the lesion area.
技术方案:本发明所述基于注意力机制的深度学习糖尿病视网膜病变分类方法,其特征在于,包括如下步骤:Technical solution: The deep learning diabetic retinopathy classification method based on the attention mechanism of the present invention is characterized in that it comprises the following steps:
(1)分别选取EyePACS数据集、DiaretDB1数据集、Messidor数据集中一系列眼底图像作为原始数据样本,对眼底图像进行归一化预处理,预处理后进行裁剪保证尺寸相同,将裁剪后的眼底图像分为训练集和测试集;(1) A series of fundus images in EyePACS dataset, DiaretDB1 dataset and Messidor dataset were respectively selected as the original data samples, and the fundus images were normalized and preprocessed, and then cropped to ensure the same size, and the cropped fundus images were Divided into training set and test set;
(2)构建卷积神经网络模型,所述卷积神经网络模型包括主神经网络和注意力网络;采用ImageNet参数单独对主神经网络进行训练,通过训练得到的参数对主神经网络进行微调并保存主神经网络模型参数;在保存的主神经网络模型参数中,选取糖尿病视网膜病变等级分类最好的主神经网络模型参数来初始化卷积神经网络中的主神经网络参数部分,余下参数随机初始化;(2) Build a convolutional neural network model, which includes a main neural network and an attention network; use ImageNet parameters to train the main neural network separately, and fine-tune and save the main neural network by the parameters obtained through training Main neural network model parameters; among the saved main neural network model parameters, select the best main neural network model parameters for diabetic retinopathy grade classification to initialize the main neural network parameter part in the convolutional neural network, and initialize the remaining parameters randomly;
(3)将EyePACS数据集中的训练集图像输入至主神经网络进行训练,生成特征图;固定主神经网络的参数,采用DiaretDB1数据集中的训练集图像训练注意力网络,注意力网络输出一张病变候选区域灰度图;(3) Input the training set images in the EyePACS data set to the main neural network for training to generate feature maps; fix the parameters of the main neural network, use the training set images in the DiaretDB1 data set to train the attention network, and the attention network outputs a lesion Candidate region grayscale image;
(4)将注意力网络生成的病变候选区域灰度图进行归一化得到注意力图,并将注意力图与主神经网路输出的特征图进行元素点乘,乘积得到注意力机制;(4) Normalize the grayscale image of the lesion candidate region generated by the attention network to obtain the attention map, and perform element point multiplication between the attention map and the feature map output by the main neural network, and the product obtains the attention mechanism;
(5)将注意力机制求得结果输入主神经网络中,采用EyePACS数据集中的训练集图像继续训练,训练时按照设定的学习率调整主神经网络的参数,最终可以得到糖尿病视网膜病变等级分类模型。(5) Input the results obtained by the attention mechanism into the main neural network, continue training using the training set images in the EyePACS dataset, adjust the parameters of the main neural network according to the set learning rate during training, and finally obtain the grade classification of diabetic retinopathy Model.
用EyePACs数据集进行DR 5分类的训练集,DiaretDB1数据集是专家标注的DR病变区域的数据集,用来训练注意力网络部分,Messidor数据集是另一个DR分类的数据集,用来验证网络的鲁棒性。The EyePACs dataset is used as a training set for DR 5 classification. The DiaretDB1 dataset is a dataset of DR lesion areas marked by experts, which is used to train the attention network part. The Messidor dataset is another dataset of DR classification, which is used to verify the network. robustness.
进一步完善上述技术方案,所述步骤(1)的预处理操作为:提取原始数据样本中图像的前景区域,采用下式对进行归一化预处理,Further improve the above-mentioned technical scheme, the preprocessing operation of the step (1) is: extract the foreground area of the image in the original data sample, and adopt the following formula to carry out normalized preprocessing,
Ic(x,y)=αI(x,y)+βGaussion(x,y,ρ)*I(x,y)+γI c (x,y)=αI(x,y)+βGaussion(x,y,ρ)*I(x,y)+γ
其中,I为输入图像,*表示卷积操作,Gaussion(x,y,ρ)表示标准差为ρ的高斯滤波器,参数α,β,γ和ρ根据经验设置为α=4,β=-4,以眼底图像中心为圆心,腐蚀到眼底图边缘5%的区域;Among them, I is the input image, * indicates the convolution operation, Gaussion(x,y,ρ) indicates the Gaussian filter with standard deviation ρ, and the parameters α, β, γ and ρ are empirically set to α=4, β=- 4. Taking the center of the fundus image as the center, corrode to 5% of the edge of the fundus image;
将预处理后的图像裁剪为720×720,并且将划分为训练集的图像进行随机旋转0°/90°/180°/270°以实现图像数据增广。The preprocessed image is cropped to 720×720, and the images divided into the training set are randomly rotated 0°/90°/180°/270° to achieve image data augmentation.
进一步地,所述步骤(2)中采用迁移学习的方法,把ImageNet上训练得到的参数对主神经网络进行微调,选出糖尿病视网膜病变等级分类最好的主神经网络模型参数对卷积神经网络中主神经网络进行初始化,并随机初始化余下参数。Further, the method of transfer learning is adopted in the step (2), and the parameters trained on ImageNet are fine-tuned to the main neural network, and the best main neural network model parameters of the diabetic retinopathy grade classification are selected for the convolutional neural network. The main neural network is initialized, and the remaining parameters are randomly initialized.
进一步地,将所述步骤(4)中注意力网络的输出归一化后进行加1操作,所得结果与主神经网络特定层的特征图进行点乘操作,然后输入至主神经网络中进行后续的训练。特征层为conv2d_2b_3x3卷积层,特征图为Feature map M。Further, after normalizing the output of the attention network in the step (4), add 1 operation, the obtained result and the feature map of a specific layer of the main neural network are subjected to a dot multiplication operation, and then input into the main neural network for subsequent training. The feature layer is a conv2d_2b_3x3 convolutional layer, and the feature map is Feature map M.
进一步地,所述注意力网络为一个对称的全卷积网络,包括下采样过程的5个卷积层和上采样过程的5个解卷积层。Further, the attention network is a symmetrical fully convolutional network, including 5 convolutional layers in the downsampling process and 5 deconvolutional layers in the upsampling process.
进一步地,所述主神经网络采用inception-resnet-v2,集成残差学习结构和感知结构两种模块。Further, the main neural network adopts inception-resnet-v2, which integrates two modules of residual learning structure and perceptual structure.
所述步骤(3)至(5)中采用Nesterov Momentum算法作为卷积神经网络的优化算法,使用的动量优化因子为0.9更新所有权重;在网络的每一次迭代训练中,采用均方误差作为糖尿病视网膜病变等级分类的损失函数训练各级神经网络,在误差值反向传播过程中,使用Nesterov Momentum算法计算梯度值,并利用计算得到的梯度值更新网络的参数,对网络的所有参数使用L2正则化项,权重衰减因子为0.0005;根据注意力网络的损失函数,利用Nesterov Momentum算法计算梯度值,更新注意力网络的参数完成网络的依次迭代过程。In described steps (3) to (5), Nesterov Momentum algorithm is adopted as the optimization algorithm of convolutional neural network, and the momentum optimization factor used is 0.9 to update all weights; The loss function of grade classification of retinal lesions trains neural networks at all levels. In the process of error value backpropagation, the gradient value is calculated using the Nesterov Momentum algorithm, and the parameters of the network are updated by using the calculated gradient value. L2 regularization is used for all parameters of the network The weight decay factor is 0.0005; according to the loss function of the attention network, the Nesterov Momentum algorithm is used to calculate the gradient value, and the parameters of the attention network are updated to complete the iterative process of the network.
本发明使用Nesterov Momentum算法(是随机梯度算法的一种)作优化算法,同时使用均方误差(Mean Squared Error,MSD)作为损失函数训练各级神经网络,对网络中参数使用L2Weight Decay规则化,并在网络中使用batch-normlization方法。优化算法应用到网络的训练过程中,用于网络权重的更新,在网络的误差反向传播过程中计算梯度,更新网络参数。The present invention uses Nesterov Momentum algorithm (a kind of stochastic gradient algorithm) as optimization algorithm, uses mean square error (Mean Squared Error, MSD) as loss function training neural network at all levels at the same time, uses L2Weight Decay regularization to the parameter in the network, And use the batch-normlization method in the network. The optimization algorithm is applied to the training process of the network to update the network weight, calculate the gradient in the error backpropagation process of the network, and update the network parameters.
有益效果:1、在深度卷积网络中引入注意力机制,将注意力网络嵌入到深度网络中,并使用专家标注的糖尿病视网膜病变区域数据集对其进行训练,注意力网络能够引入专家知识,生成包含候选病变区域位置的病变感兴趣区域。Beneficial effects: 1. Introduce the attention mechanism in the deep convolutional network, embed the attention network into the deep network, and use the diabetic retinopathy area data set marked by experts to train it. The attention network can introduce expert knowledge, A lesion region of interest is generated containing the location of the candidate lesion region.
2、使用基于残差感知结构的深度网络,并在网络的训练中使用特征增强方法将注意力网络生成的病变候选区域知识引入到糖尿病视网膜病变分类任务中。该方法在保留原始特征信息的基础上对感兴趣区域对应的特征信息进行增强。2. Use a deep network based on the residual perceptual structure, and use the feature enhancement method in the training of the network to introduce the lesion candidate region knowledge generated by the attention network into the diabetic retinopathy classification task. This method enhances the feature information corresponding to the region of interest on the basis of retaining the original feature information.
3、在网络模型中使用基于均方误差的损失函数提高糖尿病视网膜病变诊断结果。该模型是一种多任务学习模型,在利用专家知识提升分类性能同时可以对眼底图像的病灶区进行粗定位,具有良好的鲁棒性。3. Using the mean square error-based loss function in the network model to improve the diagnostic results of diabetic retinopathy. This model is a multi-task learning model, which can use expert knowledge to improve the classification performance, and at the same time, it can roughly locate the lesion area in the fundus image, and has good robustness.
附图说明Description of drawings
图1:本发明的实现流程框架图Fig. 1: Realization flow frame diagram of the present invention
图2:注意力模块结构图Figure 2: Attention module structure diagram
图3:眼底图像归一化前后对比图Figure 3: Comparison of fundus images before and after normalization
图4:注意力结构网络产生的病变候选区域与实际专家标注区域对比图。Figure 4: Comparison of the lesion candidate regions generated by the attention structure network and the actual expert-labeled regions.
具体实施方式Detailed ways
下面通过附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings, but the protection scope of the present invention is not limited to the embodiments.
实施例1:本发明提供的基于注意力机制的深度学习糖尿病视网膜病变等级分类方法对糖尿病视网膜病变等级进行检测识别,具体操作按如下步骤进行:Embodiment 1: The attention mechanism-based deep learning diabetic retinopathy grade classification method provided by the present invention detects and recognizes the grade of diabetic retinopathy, and the specific operation is carried out as follows:
1、选取数据集;1. Select the data set;
(1)EyePACS数据集(1) EyePACS dataset
该糖尿病视网膜病变疾病等级五分类数据集包含来自44315个患者的88702张彩色眼底图像,图像的分辨率在到之间。该数据集分成两部分:训练集35126张(来自17563个患者),测试集53576张(来自26788个患者)。每张眼底图像的DR严重等级由医生根据ETDRS表进行标注:‘0’表示没有糖尿病视网膜病变,‘1’表示轻度非增值性糖尿病视网膜病变,‘2’表示中度糖尿病视网膜病变,‘3’表示重度糖尿病视网膜病变,‘4’表示增值性糖尿病视网膜病变。EyePACS数据集有如下特点:(1)如表1所示,该数据集的类别分布严重不平衡,其中类别0的数据占比为79%,类别3和4的数据占比分别为2%和2%;(2)由于该数据集的采集来自不同的眼底照相机,图像的分辨率以及图像质量有较大的差异性。The diabetic retinopathy five-category dataset contains 88,702 color fundus images from 44,315 patients, and the resolution of the images is between 1 and 2. The data set is divided into two parts: training set 35126 (from 17563 patients), test set 53576 (from 26788 patients). The DR severity level of each fundus image is marked by the doctor according to the ETDRS table: '0' means no diabetic retinopathy, '1' means mild non-proliferative diabetic retinopathy, '2' means moderate diabetic retinopathy, '3 'Indicates severe diabetic retinopathy,'4'indicates proliferative diabetic retinopathy. The EyePACS dataset has the following characteristics: (1) As shown in Table 1, the category distribution of the dataset is seriously unbalanced, in which category 0 accounts for 79%, category 3 and category 4 account for 2% and 4% respectively. 2%; (2) Since the collection of this data set comes from different fundus cameras, the resolution and image quality of the images are quite different.
表1EyePACS数据分布Table 1 EyePACS data distribution
(2)DiaretDB1数据集(2) DiaretDB1 data set
该数据集共有89张彩色眼底图像,每张眼底图像由4名医学专家手动标注出潜在的病灶区域,包括微动脉瘤、硬性渗出物、出血及棉絮斑点这些病变区域。该数据集中有5张图片是没有糖尿病视网膜病变,另外84张图像中,每张眼底图中至少包含一种病变区域。标注的标签图像保存为0-255的灰度图像,其中灰度值越大表示该区域病变越严重。The data set has a total of 89 color fundus images, and each fundus image is manually marked by 4 medical experts with potential lesion areas, including microaneurysms, hard exudates, hemorrhages, and cotton wool spots. There are 5 images in this data set without diabetic retinopathy, and in the other 84 images, each fundus image contains at least one lesion area. The annotated label image is saved as a grayscale image of 0-255, where the larger the grayscale value, the more serious the lesion in the area.
(3)Messidor数据集(3) Messidor dataset
该数据集共有1200张彩色眼底图像,其中540张正常图像660张患病图像,包含三种分辨率:1440x960、2240x1488和2304x1536,图像为TIF格式。根据微血管瘤、出血、硬性渗出物等病变对每张图像标注从0到3的DR病变等级,其中标签‘0’图像有546张占总数据量的46%,标签‘1’图像有154张占总数据量的12.75%,标签‘2’图像有247张占总数据量的20.58%,标签‘3’图像有253张占总数据量的21.67%。The data set has a total of 1200 color fundus images, including 540 normal images and 660 diseased images, including three resolutions: 1440x960, 2240x1488 and 2304x1536, and the images are in TIF format. According to microangioma, hemorrhage, hard exudate and other lesions, each image is marked with DR lesion grade from 0 to 3, among which there are 546 images with label '0' accounting for 46% of the total data volume, and 154 images with label '1' There are 247 images with label '2' accounting for 20.58% of the total data volume, and 253 images with label '3' accounting for 21.67% of the total data volume.
2、数据预处理2. Data preprocessing
由于在眼底图像中,除去对于检测诊断有用的感兴趣区域外,图像中还包含了大量的背景区域,因此在进行诊断之前,我们首先对感兴趣内容提取前景区域。Because in the fundus image, apart from the region of interest that is useful for detection and diagnosis, the image also contains a large number of background regions, so before making a diagnosis, we first extract the foreground region for the content of interest.
Ic(x,y)=αI(x,y)+βGaussion(x,y,ρ)*I(x,y)+γI c (x,y)=αI(x,y)+βGaussion(x,y,ρ)*I(x,y)+γ
根据上式进行眼底图像归一化,得到预处理的归一化图像。其中,I为输入图像,*表示卷积操作,Gaussion(x,y,ρ)表示标准差为ρ的高斯滤波器,参数α,β,γ和ρ根据经验设置为α=4,β=-4。由于视野中,眼底图的边缘部分通常会出现光晕现象,以眼底图像中心为圆心,腐蚀到眼底图边缘5%的区域。得到归一化后眼底图像如图3所示。The fundus image is normalized according to the above formula to obtain a preprocessed normalized image. Among them, I is the input image, * indicates the convolution operation, Gaussion(x,y,ρ) indicates the Gaussian filter with standard deviation ρ, and the parameters α, β, γ and ρ are empirically set to α=4, β=- 4. In the visual field, the edge of the fundus map usually has a halo phenomenon, with the center of the fundus image as the center, corroding to 5% of the edge of the fundus map. The normalized fundus image is shown in Figure 3.
本方法中,使用的输入图像尺寸选取为720×720,并且在训练集上通过随机旋转(0°/90°/180°/270°)和随机翻转对经过预处理的数据集进行数据增广。In this method, the size of the input image used is selected as 720×720, and the preprocessed data set is augmented by random rotation (0 ° /90 ° /180 ° /270 ° ) and random flipping on the training set .
3、训练卷积神经网络模型3. Training Convolutional Neural Network Model
在网络训练过程,数据分批次输入到网络,一批次数据包含两个队列:DiaretDB1数据集和EyePACS数据集,在网络的每一次迭代训练中:DiaretDB1数据集送入卷积神经网络,通过注意力网络产生病变候选区域灰度图,通过MSE损失函数计算注意力网络的误差;EyePACS数据送入卷积神经网络,通过注意力网络生成对应的病变候选区域信息,注意力网络的输出归一化后进行加1操作,所得结果与主神经网络特定层conv2d_2b_3x3的特征图Feature Map M进行点乘操作,然后输入至主神经网络中进行后续的训练;利用均方误差(mean-square error,MSE)作为计算糖尿病视网膜病变(diabetic retinopathy,DR)等级分类的损失函数训练各级神经网络。根据注意力网络损失函数,更新注意力网络的参数;根据DR等级分类损失函数,更新主神经网络对应部分参数,完成网络的依次迭代过程。During the network training process, the data is input to the network in batches. One batch of data contains two queues: the DiaretDB1 data set and the EyePACS data set. In each iterative training of the network: the DiaretDB1 data set is sent to the convolutional neural network. The attention network generates the grayscale image of the lesion candidate area, and the error of the attention network is calculated through the MSE loss function; the EyePACS data is sent to the convolutional neural network, and the corresponding lesion candidate area information is generated through the attention network, and the output of the attention network is normalized After conversion, add 1, and the obtained result is multiplied with the feature map Feature Map M of the specific layer conv2d_2b_3x3 of the main neural network, and then input into the main neural network for subsequent training; using mean-square error (mean-square error, MSE ) as a loss function for calculating the grade classification of diabetic retinopathy (DR) to train neural networks at all levels. According to the attention network loss function, update the parameters of the attention network; according to the DR level classification loss function, update the corresponding part of the main neural network parameters, and complete the sequential iteration process of the network.
注意力网络的训练将DiaretDB1数据集产生的病变区域候选图与临床信息进行融合,该方法能够把专家知识引入到网络中提高分类性能。图4为注意力结构网络产生的病变候选区域与实际专家标注区域的对比示例。The training of the attention network fuses the lesion region candidate map generated by the DiaretDB1 dataset with clinical information. This method can introduce expert knowledge into the network to improve classification performance. Figure 4 is an example of the comparison between the lesion candidate regions generated by the attention structure network and the actual expert-labeled regions.
在训练过程中,本发明采用基于mini-batch的随机梯度下降法(StochasticGradient Descent,SGD)进行优化,使用动量优化因子为0.9的SGD更新所有权重。网络采用基于MSE作为损失函数,并对网络中的各参数使用L2正则化项,权重衰减因子为0.0005。During the training process, the present invention uses the mini-batch-based stochastic gradient descent method (Stochastic Gradient Descent, SGD) for optimization, and uses SGD with a momentum optimization factor of 0.9 to update all weights. The network uses MSE as the loss function, and uses the L2 regularization term for each parameter in the network, and the weight attenuation factor is 0.0005.
4、处理结果分析4. Analysis of processing results
本方法使用以下四种性能度量来量化处理结果,分别为:分类精确度(accuracy,ACC)、特异性(specificity,SPE)、敏感性(sensitivity,SEN)和AUC(the area under ROCcurve)值。对于分类结果,添加使用基于二次加权的kappa值作为另一个性能度量,它可以衡量预测值与实际标签直接的一致性。kappa值计算方式如下:This method uses the following four performance metrics to quantify the processing results, namely: classification accuracy (accuracy, ACC), specificity (specificity, SPE), sensitivity (sensitivity, SEN) and AUC (the area under ROCcurve) value. For the classification results, we added the use of quadratically weighted kappa values as another performance measure, which measures the direct agreement between the predicted value and the actual label. The kappa value is calculated as follows:
对图像预测标签构造一个N×N的混淆矩阵O,Oi,j对应于下标为(i,j)的图像数量,加权矩阵表示为:Construct an N×N confusion matrix O for the image prediction label, O i,j corresponds to the number of images subscripted as (i,j), and the weighting matrix is expressed as:
EN×N表示图像真实标签构造的混淆矩阵,假设预测标签和真实标签之间没有相关性,则二次加权kappa值如下:EN N×N represents the confusion matrix constructed by the real label of the image. Assuming that there is no correlation between the predicted label and the real label, the twice weighted kappa value is as follows:
本方法在所用EyePACS数据集上的处理结果在验证集上拥有0.840的kappa值,测试集上拥有0.835的kappa值。在Messidor数据集上对我们的方法进行进一步的验证。本方法在正确率、AUC值的各项指标上都取得了极好的结果。具体的,本方法在referable/non-referable任务上取得了91.6%的准确率,90.3%的敏感性,95.2%的特异性以及0.963的AUC值。The processing result of this method on the EyePACS dataset used has a kappa value of 0.840 on the validation set and a kappa value of 0.835 on the test set. Our method is further validated on the Messidor dataset. This method has achieved excellent results in various indicators of accuracy rate and AUC value. Specifically, this method achieved an accuracy rate of 91.6%, a sensitivity of 90.3%, a specificity of 95.2% and an AUC value of 0.963 on the referable/non-referable task.
在本实施例中采用了超过三万张经过专业人员标识的眼底图像进行训练,在五万多张的测试数据集上达到了82%的准确率。大量实验表明,本发明提出的基于注意力机制的深度学习方法具有较高的分类性能。采用以上基于注意力机制的深度学习糖尿病视网膜病变分类方法所建立的分类模型可以对糖尿病视网膜病变进行自动化分级,且在类别分布不均衡的数据上具有很好的鲁棒性,这在医学领域上具有很重要的意义。In this embodiment, more than 30,000 fundus images marked by professionals are used for training, and an accuracy rate of 82% is achieved on more than 50,000 test data sets. A large number of experiments show that the deep learning method based on the attention mechanism proposed by the present invention has higher classification performance. The classification model established by the above-mentioned deep learning diabetic retinopathy classification method based on the attention mechanism can automatically grade diabetic retinopathy, and has good robustness on data with unbalanced category distribution, which is very popular in the medical field. is of great significance.
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。As stated above, while the invention has been shown and described with reference to certain preferred embodiments, this should not be construed as limiting the invention itself. Various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711497342.9A CN108021916B (en) | 2017-12-31 | 2017-12-31 | Deep learning diabetic retinopathy sorting technique based on attention mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711497342.9A CN108021916B (en) | 2017-12-31 | 2017-12-31 | Deep learning diabetic retinopathy sorting technique based on attention mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108021916A true CN108021916A (en) | 2018-05-11 |
CN108021916B CN108021916B (en) | 2018-11-06 |
Family
ID=62071224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711497342.9A Active CN108021916B (en) | 2017-12-31 | 2017-12-31 | Deep learning diabetic retinopathy sorting technique based on attention mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108021916B (en) |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108734290A (en) * | 2018-05-16 | 2018-11-02 | 湖北工业大学 | It is a kind of based on the convolutional neural networks construction method of attention mechanism and application |
CN108734138A (en) * | 2018-05-24 | 2018-11-02 | 浙江工业大学 | A kind of melanoma skin disease image classification method based on integrated study |
CN108765422A (en) * | 2018-06-13 | 2018-11-06 | 云南大学 | A kind of retinal images blood vessel automatic division method |
CN108876775A (en) * | 2018-06-12 | 2018-11-23 | 广州图灵人工智能技术有限公司 | The rapid detection method of diabetic retinopathy |
CN108876776A (en) * | 2018-06-13 | 2018-11-23 | 东软集团股份有限公司 | A kind of method of generating classification model, eye fundus image classification method and device |
CN108898175A (en) * | 2018-06-26 | 2018-11-27 | 北京工业大学 | Area of computer aided model building method based on deep learning gastric cancer pathological section |
CN108960260A (en) * | 2018-07-12 | 2018-12-07 | 东软集团股份有限公司 | A kind of method of generating classification model, medical image image classification method and device |
CN108960257A (en) * | 2018-07-06 | 2018-12-07 | 东北大学 | A kind of diabetic retinopathy grade stage division based on deep learning |
CN109003264A (en) * | 2018-07-05 | 2018-12-14 | 腾讯科技(深圳)有限公司 | A kind of retinopathy image type recognition methods, device and storage medium |
CN109034196A (en) * | 2018-06-21 | 2018-12-18 | 北京健康有益科技有限公司 | Model generating method and device, food recognition methods and device |
CN109102502A (en) * | 2018-08-03 | 2018-12-28 | 西北工业大学 | Pulmonary nodule detection method based on Three dimensional convolution neural network |
CN109325398A (en) * | 2018-06-30 | 2019-02-12 | 东南大学 | A face attribute analysis method based on transfer learning |
CN109344920A (en) * | 2018-12-14 | 2019-02-15 | 汇纳科技股份有限公司 | Customer attributes prediction technique, storage medium, system and equipment |
CN109376767A (en) * | 2018-09-20 | 2019-02-22 | 中国科学技术大学 | Classification of retinal OCT images based on deep learning |
CN109543529A (en) * | 2018-10-19 | 2019-03-29 | 北京陌上花科技有限公司 | Biopsy method and device |
CN109685819A (en) * | 2018-12-11 | 2019-04-26 | 厦门大学 | A kind of three-dimensional medical image segmentation method based on feature enhancing |
CN109754404A (en) * | 2019-01-02 | 2019-05-14 | 清华大学深圳研究生院 | A kind of lesion segmentation approach end to end based on more attention mechanism |
CN109858429A (en) * | 2019-01-28 | 2019-06-07 | 北京航空航天大学 | A kind of identification of eye fundus image lesion degree and visualization system based on convolutional neural networks |
CN109919915A (en) * | 2019-02-18 | 2019-06-21 | 广州视源电子科技股份有限公司 | Retina fundus image abnormal region detection method and device based on deep learning |
CN109919831A (en) * | 2019-02-13 | 2019-06-21 | 广州视源电子科技股份有限公司 | Method, electronic device and computer-readable storage medium for migrating retinal fundus images in different image domains |
CN109934823A (en) * | 2019-03-25 | 2019-06-25 | 天津工业大学 | A deep learning-based classification method for macular edema in DR fundus images |
CN109948719A (en) * | 2019-03-26 | 2019-06-28 | 天津工业大学 | An automatic classification method of fundus image quality based on residual dense module network structure |
CN109949302A (en) * | 2019-03-27 | 2019-06-28 | 天津工业大学 | Pixel-based segmentation method of retinal feature structure |
CN110084803A (en) * | 2019-04-29 | 2019-08-02 | 南京星程智能科技有限公司 | Eye fundus image method for evaluating quality based on human visual system |
CN110084252A (en) * | 2019-04-29 | 2019-08-02 | 南京星程智能科技有限公司 | Diabetic retinopathy image labeling method based on deep learning |
CN110097545A (en) * | 2019-04-29 | 2019-08-06 | 南京星程智能科技有限公司 | Eye fundus image generation method based on deep learning |
CN110097559A (en) * | 2019-04-29 | 2019-08-06 | 南京星程智能科技有限公司 | Eye fundus image focal area mask method based on deep learning |
CN110136096A (en) * | 2019-04-02 | 2019-08-16 | 成都真实维度科技有限公司 | A Method for Lesion Region Segmentation Based on Tomographic Dataset |
CN110189334A (en) * | 2019-05-28 | 2019-08-30 | 南京邮电大学 | Medical Image Segmentation Method Based on Residual Fully Convolutional Neural Network Based on Attention Mechanism |
CN110211685A (en) * | 2019-06-10 | 2019-09-06 | 珠海上工医信科技有限公司 | Sugar network screening network structure model based on complete attention mechanism |
CN110210570A (en) * | 2019-06-10 | 2019-09-06 | 上海延华大数据科技有限公司 | The more classification methods of diabetic retinopathy image based on deep learning |
CN110223291A (en) * | 2019-06-20 | 2019-09-10 | 南开大学 | A kind of training retinopathy height segmentation network method based on loss function |
CN110236483A (en) * | 2019-06-17 | 2019-09-17 | 杭州电子科技大学 | A Method for Diabetic Retinopathy Detection Based on Deep Residual Network |
CN110458249A (en) * | 2019-10-10 | 2019-11-15 | 点内(上海)生物科技有限公司 | A kind of lesion categorizing system based on deep learning Yu probability image group |
CN110459303A (en) * | 2019-06-27 | 2019-11-15 | 浙江工业大学 | Anomaly detection device for medical images based on depth migration |
CN110598582A (en) * | 2019-08-26 | 2019-12-20 | 深圳大学 | Eye image processing model construction method and device |
CN110648303A (en) * | 2018-06-08 | 2020-01-03 | 上海市第六人民医院 | Fundus image analysis method, computer device, and storage medium |
CN110689089A (en) * | 2019-10-12 | 2020-01-14 | 电子科技大学 | Active Incremental Training Method for Deep Learning Multi-Class Medical Image Classification |
CN110728312A (en) * | 2019-09-29 | 2020-01-24 | 浙江大学 | A dry eye classification system based on regional adaptive attention network |
CN110796249A (en) * | 2019-09-29 | 2020-02-14 | 中山大学孙逸仙纪念医院 | In-ear endoscope image neural network model construction method based on deep learning and intelligent classification processing method |
CN110796166A (en) * | 2019-09-25 | 2020-02-14 | 浙江大学 | Attention mechanism-based multitask image processing method |
CN110837803A (en) * | 2019-11-07 | 2020-02-25 | 复旦大学 | Diabetic retinopathy grading method based on depth map network |
CN110929807A (en) * | 2019-12-06 | 2020-03-27 | 腾讯科技(深圳)有限公司 | Training method of image classification model, and image classification method and device |
CN110929836A (en) * | 2018-09-20 | 2020-03-27 | 北京市商汤科技开发有限公司 | Neural network training and image processing method and device, electronic device and medium |
CN110969191A (en) * | 2019-11-07 | 2020-04-07 | 吉林大学 | Prediction method of glaucoma prevalence probability based on similarity-preserving metric learning method |
CN110992364A (en) * | 2019-12-31 | 2020-04-10 | 重庆艾可立安医疗器械有限公司 | Retina image recognition method and device, computer equipment and storage medium |
CN111242168A (en) * | 2019-12-31 | 2020-06-05 | 浙江工业大学 | A Human Skin Image Lesion Classification Method Based on Multi-scale Attention Features |
CN111259982A (en) * | 2020-02-13 | 2020-06-09 | 苏州大学 | Premature infant retina image classification method and device based on attention mechanism |
CN111275714A (en) * | 2020-01-13 | 2020-06-12 | 武汉大学 | Prostate MR image segmentation method based on attention mechanism 3D convolutional neural network |
CN111369506A (en) * | 2020-02-26 | 2020-07-03 | 四川大学 | Lens turbidity grading method based on eye B-ultrasonic image |
CN111445440A (en) * | 2020-02-20 | 2020-07-24 | 上海联影智能医疗科技有限公司 | Medical image analysis method, equipment and storage medium |
WO2020151307A1 (en) * | 2019-01-23 | 2020-07-30 | 平安科技(深圳)有限公司 | Automatic lesion recognition method and device, and computer-readable storage medium |
CN111476312A (en) * | 2020-04-24 | 2020-07-31 | 南京图格医疗科技有限公司 | Method for classifying lesion images based on convolutional neural network |
CN111507932A (en) * | 2019-01-31 | 2020-08-07 | 福州依影健康科技有限公司 | High-specificity diabetic retinopathy characteristic detection method and storage equipment |
CN111507952A (en) * | 2020-04-13 | 2020-08-07 | 上海泗科智能科技有限公司 | Embedded-end diabetic retinopathy screening solution |
CN111753862A (en) * | 2019-03-29 | 2020-10-09 | 北京地平线机器人技术研发有限公司 | Method and device for training neural network model and image recognition method |
CN111767929A (en) * | 2019-03-14 | 2020-10-13 | 上海市第一人民医院 | Construction method and system of submacular neovascularization model |
CN111816308A (en) * | 2020-07-13 | 2020-10-23 | 中国医学科学院阜外医院 | A system for predicting the risk of coronary heart disease through facial image analysis |
CN111882551A (en) * | 2020-07-31 | 2020-11-03 | 北京小白世纪网络科技有限公司 | Pathological image cell counting method, system and device |
CN111932486A (en) * | 2019-05-13 | 2020-11-13 | 四川大学 | Brain glioma segmentation method based on 3D convolutional neural network |
CN111938569A (en) * | 2020-09-17 | 2020-11-17 | 南京航空航天大学 | Detection method of fundus multi-disease classification based on deep learning |
CN112016626A (en) * | 2020-08-31 | 2020-12-01 | 南京泰明生物科技有限公司 | Diabetic retinopathy classification system based on uncertainty |
CN112101424A (en) * | 2020-08-24 | 2020-12-18 | 深圳大学 | Generation method, identification device and equipment of retinopathy identification model |
CN112185523A (en) * | 2020-09-30 | 2021-01-05 | 南京大学 | Diabetic retinopathy classification method based on multi-scale convolution neural network |
CN112184697A (en) * | 2020-10-15 | 2021-01-05 | 桂林电子科技大学 | Diabetic retinopathy grading deep learning method based on drosophila optimization algorithm |
CN112215239A (en) * | 2020-09-15 | 2021-01-12 | 浙江工业大学 | Method and device for fine-grained grading of retinopathy |
CN112308830A (en) * | 2020-10-27 | 2021-02-02 | 苏州大学 | Attention mechanism and deep supervision strategy-based automatic division identification method for retinopathy of prematurity |
CN112365535A (en) * | 2019-07-26 | 2021-02-12 | 长佳智能股份有限公司 | Retinal lesion evaluation model establishing method and system |
CN112364979A (en) * | 2020-11-05 | 2021-02-12 | 哈尔滨工业大学 | GoogLeNet-based infrared image identification method |
CN112381821A (en) * | 2020-12-08 | 2021-02-19 | 北京青燕祥云科技有限公司 | Intelligent handheld fundus camera and image analysis method |
CN112508919A (en) * | 2020-12-11 | 2021-03-16 | 北京大恒普信医疗技术有限公司 | Image processing method and device, electronic equipment and readable storage medium |
US10963757B2 (en) | 2018-12-14 | 2021-03-30 | Industrial Technology Research Institute | Neural network model fusion method and electronic device using the same |
CN112819797A (en) * | 2021-02-06 | 2021-05-18 | 国药集团基因科技有限公司 | Diabetic retinopathy analysis method, device, system and storage medium |
CN112862746A (en) * | 2019-11-28 | 2021-05-28 | 深圳硅基智控科技有限公司 | Tissue lesion identification method and system based on artificial neural network |
CN112869697A (en) * | 2021-01-20 | 2021-06-01 | 深圳硅基智能科技有限公司 | Judgment method for simultaneously identifying stage and pathological change characteristics of diabetic retinopathy |
CN113011362A (en) * | 2021-03-29 | 2021-06-22 | 吉林大学 | Fine-grained fundus image grading algorithm based on bilinear pooling and attention mechanism |
CN113298083A (en) * | 2021-02-25 | 2021-08-24 | 阿里巴巴集团控股有限公司 | A data processing method and device |
CN113378984A (en) * | 2021-07-05 | 2021-09-10 | 国药(武汉)医学实验室有限公司 | Medical image classification method, system, terminal and storage medium |
CN113537395A (en) * | 2021-08-09 | 2021-10-22 | 同济大学 | Diabetic retinopathy image identification method based on fundus images |
CN113538349A (en) * | 2021-06-29 | 2021-10-22 | 山东师范大学 | Small sample diabetic retinopathy classification system based on model independent meta-learning |
KR20210127529A (en) * | 2020-04-14 | 2021-10-22 | 충북대학교 산학협력단 | The method for classifying diabetic macular edema and the device thereof |
CN113592780A (en) * | 2021-07-06 | 2021-11-02 | 南方科技大学 | Fundus image classification method, device, equipment and storage medium |
CN113887662A (en) * | 2021-10-26 | 2022-01-04 | 北京理工大学重庆创新中心 | Image classification method, device, equipment and medium based on residual error network |
CN114021630A (en) * | 2021-10-28 | 2022-02-08 | 同济大学 | An Ordinal Regression Problem Solving for Class Imbalanced Datasets |
CN114581366A (en) * | 2021-12-30 | 2022-06-03 | 山东师范大学 | Retinal vein occlusion dazzle color image classification system based on attention mechanism |
CN114693961A (en) * | 2020-12-11 | 2022-07-01 | 北京航空航天大学 | Fundus photo classification method, fundus image processing method and system |
CN114898172A (en) * | 2022-04-08 | 2022-08-12 | 辽宁师范大学 | Classification and modeling method of diabetic retinopathy based on multi-feature DAG network |
CN115587979A (en) * | 2022-10-10 | 2023-01-10 | 山东财经大学 | A three-stage attention network-based method for grading diabetic retinopathy |
CN115605910A (en) * | 2020-05-14 | 2023-01-13 | 奥普托斯股份有限公司(Gb) | Retinal image processing |
CN116503385A (en) * | 2023-06-25 | 2023-07-28 | 吉林大学 | Sugar mesh fundus image grading method and device based on virtual global agent |
CN118136200A (en) * | 2024-05-08 | 2024-06-04 | 北京大学第三医院(北京大学第三临床医学院) | Diagnostic report generation method, device and medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106934798A (en) * | 2017-02-20 | 2017-07-07 | 苏州体素信息科技有限公司 | Diabetic retinopathy classification stage division based on deep learning |
CN107239446A (en) * | 2017-05-27 | 2017-10-10 | 中国矿业大学 | A kind of intelligence relationship extracting method based on neutral net Yu notice mechanism |
CN107291945A (en) * | 2017-07-12 | 2017-10-24 | 上海交通大学 | The high-precision image of clothing search method and system of view-based access control model attention model |
US20170308770A1 (en) * | 2016-04-26 | 2017-10-26 | Xerox Corporation | End-to-end saliency mapping via probability distribution prediction |
CN107358606A (en) * | 2017-05-04 | 2017-11-17 | 深圳硅基智能科技有限公司 | For identifying the artificial neural network and system of diabetic retinopathy |
-
2017
- 2017-12-31 CN CN201711497342.9A patent/CN108021916B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170308770A1 (en) * | 2016-04-26 | 2017-10-26 | Xerox Corporation | End-to-end saliency mapping via probability distribution prediction |
CN106934798A (en) * | 2017-02-20 | 2017-07-07 | 苏州体素信息科技有限公司 | Diabetic retinopathy classification stage division based on deep learning |
CN107358606A (en) * | 2017-05-04 | 2017-11-17 | 深圳硅基智能科技有限公司 | For identifying the artificial neural network and system of diabetic retinopathy |
CN107239446A (en) * | 2017-05-27 | 2017-10-10 | 中国矿业大学 | A kind of intelligence relationship extracting method based on neutral net Yu notice mechanism |
CN107291945A (en) * | 2017-07-12 | 2017-10-24 | 上海交通大学 | The high-precision image of clothing search method and system of view-based access control model attention model |
Non-Patent Citations (1)
Title |
---|
R GARGEYA等: ""Automated Identification of Diabetic Retinopathy Using Deep Learning"", 《OPHTHALMOLOGY》 * |
Cited By (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108734290B (en) * | 2018-05-16 | 2021-05-18 | 湖北工业大学 | A Convolutional Neural Network Construction Method and Application Based on Attention Mechanism |
CN108734290A (en) * | 2018-05-16 | 2018-11-02 | 湖北工业大学 | It is a kind of based on the convolutional neural networks construction method of attention mechanism and application |
CN108734138A (en) * | 2018-05-24 | 2018-11-02 | 浙江工业大学 | A kind of melanoma skin disease image classification method based on integrated study |
CN110648303A (en) * | 2018-06-08 | 2020-01-03 | 上海市第六人民医院 | Fundus image analysis method, computer device, and storage medium |
US11315241B2 (en) | 2018-06-08 | 2022-04-26 | Shanghai Sixth People's Hospital | Method, computer device and storage medium of fundus oculi image analysis |
CN110648303B (en) * | 2018-06-08 | 2022-07-26 | 上海市第六人民医院 | Fundus image analysis method, computer device, and storage medium |
CN108876775A (en) * | 2018-06-12 | 2018-11-23 | 广州图灵人工智能技术有限公司 | The rapid detection method of diabetic retinopathy |
CN108876776A (en) * | 2018-06-13 | 2018-11-23 | 东软集团股份有限公司 | A kind of method of generating classification model, eye fundus image classification method and device |
CN108765422A (en) * | 2018-06-13 | 2018-11-06 | 云南大学 | A kind of retinal images blood vessel automatic division method |
CN108876776B (en) * | 2018-06-13 | 2021-08-24 | 东软集团股份有限公司 | Classification model generation method, fundus image classification method and device |
CN109034196A (en) * | 2018-06-21 | 2018-12-18 | 北京健康有益科技有限公司 | Model generating method and device, food recognition methods and device |
CN108898175A (en) * | 2018-06-26 | 2018-11-27 | 北京工业大学 | Area of computer aided model building method based on deep learning gastric cancer pathological section |
CN108898175B (en) * | 2018-06-26 | 2020-11-20 | 北京工业大学 | A computer-aided model construction method based on deep learning for gastric cancer pathological slices |
CN109325398A (en) * | 2018-06-30 | 2019-02-12 | 东南大学 | A face attribute analysis method based on transfer learning |
CN109325398B (en) * | 2018-06-30 | 2020-10-09 | 东南大学 | Human face attribute analysis method based on transfer learning |
CN109003264A (en) * | 2018-07-05 | 2018-12-14 | 腾讯科技(深圳)有限公司 | A kind of retinopathy image type recognition methods, device and storage medium |
CN109003264B (en) * | 2018-07-05 | 2022-05-06 | 腾讯医疗健康(深圳)有限公司 | Retinopathy image type identification method and device and storage medium |
CN108960257A (en) * | 2018-07-06 | 2018-12-07 | 东北大学 | A kind of diabetic retinopathy grade stage division based on deep learning |
CN108960260B (en) * | 2018-07-12 | 2020-12-29 | 东软集团股份有限公司 | Classification model generation method, medical image classification method and medical image classification device |
CN108960260A (en) * | 2018-07-12 | 2018-12-07 | 东软集团股份有限公司 | A kind of method of generating classification model, medical image image classification method and device |
CN109102502A (en) * | 2018-08-03 | 2018-12-28 | 西北工业大学 | Pulmonary nodule detection method based on Three dimensional convolution neural network |
CN109102502B (en) * | 2018-08-03 | 2021-07-23 | 西北工业大学 | Pulmonary nodule detection method based on three-dimensional convolutional neural network |
CN110929836B (en) * | 2018-09-20 | 2023-10-31 | 北京市商汤科技开发有限公司 | Neural network training and image processing method and device, electronic equipment and medium |
CN109376767B (en) * | 2018-09-20 | 2021-07-13 | 中国科学技术大学 | Classification of retinal OCT images based on deep learning |
CN110929836A (en) * | 2018-09-20 | 2020-03-27 | 北京市商汤科技开发有限公司 | Neural network training and image processing method and device, electronic device and medium |
CN109376767A (en) * | 2018-09-20 | 2019-02-22 | 中国科学技术大学 | Classification of retinal OCT images based on deep learning |
CN109543529A (en) * | 2018-10-19 | 2019-03-29 | 北京陌上花科技有限公司 | Biopsy method and device |
CN109685819A (en) * | 2018-12-11 | 2019-04-26 | 厦门大学 | A kind of three-dimensional medical image segmentation method based on feature enhancing |
CN109344920A (en) * | 2018-12-14 | 2019-02-15 | 汇纳科技股份有限公司 | Customer attributes prediction technique, storage medium, system and equipment |
CN109344920B (en) * | 2018-12-14 | 2021-02-02 | 汇纳科技股份有限公司 | Customer attribute prediction method, storage medium, system and device |
US10963757B2 (en) | 2018-12-14 | 2021-03-30 | Industrial Technology Research Institute | Neural network model fusion method and electronic device using the same |
CN109754404A (en) * | 2019-01-02 | 2019-05-14 | 清华大学深圳研究生院 | A kind of lesion segmentation approach end to end based on more attention mechanism |
WO2020151307A1 (en) * | 2019-01-23 | 2020-07-30 | 平安科技(深圳)有限公司 | Automatic lesion recognition method and device, and computer-readable storage medium |
CN109858429A (en) * | 2019-01-28 | 2019-06-07 | 北京航空航天大学 | A kind of identification of eye fundus image lesion degree and visualization system based on convolutional neural networks |
CN109858429B (en) * | 2019-01-28 | 2021-01-19 | 北京航空航天大学 | Eye ground image lesion degree identification and visualization system based on convolutional neural network |
CN111507932B (en) * | 2019-01-31 | 2023-05-09 | 福州依影健康科技有限公司 | High-specificity diabetic retinopathy characteristic detection method and storage device |
CN111507932A (en) * | 2019-01-31 | 2020-08-07 | 福州依影健康科技有限公司 | High-specificity diabetic retinopathy characteristic detection method and storage equipment |
CN109919831B (en) * | 2019-02-13 | 2023-08-25 | 广州视源电子科技股份有限公司 | Method, electronic device and computer readable storage medium for migrating retinal fundus images in different image domains |
CN109919831A (en) * | 2019-02-13 | 2019-06-21 | 广州视源电子科技股份有限公司 | Method, electronic device and computer-readable storage medium for migrating retinal fundus images in different image domains |
CN109919915A (en) * | 2019-02-18 | 2019-06-21 | 广州视源电子科技股份有限公司 | Retina fundus image abnormal region detection method and device based on deep learning |
CN111767929A (en) * | 2019-03-14 | 2020-10-13 | 上海市第一人民医院 | Construction method and system of submacular neovascularization model |
CN109934823A (en) * | 2019-03-25 | 2019-06-25 | 天津工业大学 | A deep learning-based classification method for macular edema in DR fundus images |
CN109948719A (en) * | 2019-03-26 | 2019-06-28 | 天津工业大学 | An automatic classification method of fundus image quality based on residual dense module network structure |
CN109948719B (en) * | 2019-03-26 | 2023-04-18 | 天津工业大学 | Automatic fundus image quality classification method based on residual dense module network structure |
CN109949302A (en) * | 2019-03-27 | 2019-06-28 | 天津工业大学 | Pixel-based segmentation method of retinal feature structure |
CN111753862A (en) * | 2019-03-29 | 2020-10-09 | 北京地平线机器人技术研发有限公司 | Method and device for training neural network model and image recognition method |
CN110136096A (en) * | 2019-04-02 | 2019-08-16 | 成都真实维度科技有限公司 | A Method for Lesion Region Segmentation Based on Tomographic Dataset |
CN110084803B (en) * | 2019-04-29 | 2024-02-23 | 靖松 | Fundus image quality evaluation method based on human visual system |
CN110097545A (en) * | 2019-04-29 | 2019-08-06 | 南京星程智能科技有限公司 | Eye fundus image generation method based on deep learning |
CN110084252A (en) * | 2019-04-29 | 2019-08-02 | 南京星程智能科技有限公司 | Diabetic retinopathy image labeling method based on deep learning |
CN110084803A (en) * | 2019-04-29 | 2019-08-02 | 南京星程智能科技有限公司 | Eye fundus image method for evaluating quality based on human visual system |
CN110097559A (en) * | 2019-04-29 | 2019-08-06 | 南京星程智能科技有限公司 | Eye fundus image focal area mask method based on deep learning |
CN110084252B (en) * | 2019-04-29 | 2023-09-29 | 上海科锐克医药科技有限公司 | Deep learning-based diabetic retinopathy image labeling method |
CN110097559B (en) * | 2019-04-29 | 2024-02-23 | 李洪刚 | Fundus image focus region labeling method based on deep learning |
CN111932486A (en) * | 2019-05-13 | 2020-11-13 | 四川大学 | Brain glioma segmentation method based on 3D convolutional neural network |
CN110189334A (en) * | 2019-05-28 | 2019-08-30 | 南京邮电大学 | Medical Image Segmentation Method Based on Residual Fully Convolutional Neural Network Based on Attention Mechanism |
CN110189334B (en) * | 2019-05-28 | 2022-08-09 | 南京邮电大学 | Medical image segmentation method of residual error type full convolution neural network based on attention mechanism |
CN110211685B (en) * | 2019-06-10 | 2020-08-28 | 珠海上工医信科技有限公司 | Sugar network screening network structure model based on complete attention mechanism |
CN110211685A (en) * | 2019-06-10 | 2019-09-06 | 珠海上工医信科技有限公司 | Sugar network screening network structure model based on complete attention mechanism |
CN110210570A (en) * | 2019-06-10 | 2019-09-06 | 上海延华大数据科技有限公司 | The more classification methods of diabetic retinopathy image based on deep learning |
CN110236483A (en) * | 2019-06-17 | 2019-09-17 | 杭州电子科技大学 | A Method for Diabetic Retinopathy Detection Based on Deep Residual Network |
CN110236483B (en) * | 2019-06-17 | 2021-09-28 | 杭州电子科技大学 | Method for detecting diabetic retinopathy based on depth residual error network |
CN110223291B (en) * | 2019-06-20 | 2021-03-19 | 南开大学 | A method of training fundus lesion segmentation network based on loss function |
CN110223291A (en) * | 2019-06-20 | 2019-09-10 | 南开大学 | A kind of training retinopathy height segmentation network method based on loss function |
CN110459303A (en) * | 2019-06-27 | 2019-11-15 | 浙江工业大学 | Anomaly detection device for medical images based on depth migration |
CN112365535A (en) * | 2019-07-26 | 2021-02-12 | 长佳智能股份有限公司 | Retinal lesion evaluation model establishing method and system |
CN110598582A (en) * | 2019-08-26 | 2019-12-20 | 深圳大学 | Eye image processing model construction method and device |
CN110796166A (en) * | 2019-09-25 | 2020-02-14 | 浙江大学 | Attention mechanism-based multitask image processing method |
CN110796166B (en) * | 2019-09-25 | 2022-07-26 | 浙江大学 | A multi-task image processing method based on attention mechanism |
CN110796249B (en) * | 2019-09-29 | 2024-01-05 | 中山大学孙逸仙纪念医院 | Ear endoscope image neural network model construction method and classification processing method |
CN110728312B (en) * | 2019-09-29 | 2022-04-29 | 浙江大学 | A dry eye classification system based on regional adaptive attention network |
CN110728312A (en) * | 2019-09-29 | 2020-01-24 | 浙江大学 | A dry eye classification system based on regional adaptive attention network |
CN110796249A (en) * | 2019-09-29 | 2020-02-14 | 中山大学孙逸仙纪念医院 | In-ear endoscope image neural network model construction method based on deep learning and intelligent classification processing method |
CN110458249A (en) * | 2019-10-10 | 2019-11-15 | 点内(上海)生物科技有限公司 | A kind of lesion categorizing system based on deep learning Yu probability image group |
CN110458249B (en) * | 2019-10-10 | 2020-01-07 | 点内(上海)生物科技有限公司 | Focus classification system based on deep learning and probabilistic imaging omics |
CN110689089A (en) * | 2019-10-12 | 2020-01-14 | 电子科技大学 | Active Incremental Training Method for Deep Learning Multi-Class Medical Image Classification |
CN110837803B (en) * | 2019-11-07 | 2022-11-29 | 复旦大学 | Diabetic retinopathy grading method based on deep graph network |
CN110969191B (en) * | 2019-11-07 | 2022-10-25 | 吉林大学 | Glaucoma prevalence probability prediction method based on similarity maintenance metric learning method |
CN110837803A (en) * | 2019-11-07 | 2020-02-25 | 复旦大学 | Diabetic retinopathy grading method based on depth map network |
CN110969191A (en) * | 2019-11-07 | 2020-04-07 | 吉林大学 | Prediction method of glaucoma prevalence probability based on similarity-preserving metric learning method |
CN112862746B (en) * | 2019-11-28 | 2022-09-02 | 深圳硅基智控科技有限公司 | Tissue lesion identification method and system based on artificial neural network |
CN112862746A (en) * | 2019-11-28 | 2021-05-28 | 深圳硅基智控科技有限公司 | Tissue lesion identification method and system based on artificial neural network |
CN112862745A (en) * | 2019-11-28 | 2021-05-28 | 深圳硅基智控科技有限公司 | Training method and training system for tissue lesion recognition based on artificial neural network |
CN112862745B (en) * | 2019-11-28 | 2022-06-14 | 深圳硅基智控科技有限公司 | Training method and training system for tissue lesion recognition based on artificial neural network |
CN110929807A (en) * | 2019-12-06 | 2020-03-27 | 腾讯科技(深圳)有限公司 | Training method of image classification model, and image classification method and device |
CN111242168B (en) * | 2019-12-31 | 2023-07-21 | 浙江工业大学 | A Lesion Classification Method for Human Skin Images Based on Multi-Scale Attention Features |
CN110992364A (en) * | 2019-12-31 | 2020-04-10 | 重庆艾可立安医疗器械有限公司 | Retina image recognition method and device, computer equipment and storage medium |
CN110992364B (en) * | 2019-12-31 | 2023-11-28 | 重庆艾可立安医疗器械有限公司 | Retina image recognition method, retina image recognition device, computer equipment and storage medium |
CN111242168A (en) * | 2019-12-31 | 2020-06-05 | 浙江工业大学 | A Human Skin Image Lesion Classification Method Based on Multi-scale Attention Features |
CN111275714B (en) * | 2020-01-13 | 2022-02-01 | 武汉大学 | Prostate MR image segmentation method based on attention mechanism 3D convolutional neural network |
CN111275714A (en) * | 2020-01-13 | 2020-06-12 | 武汉大学 | Prostate MR image segmentation method based on attention mechanism 3D convolutional neural network |
CN111259982B (en) * | 2020-02-13 | 2023-05-12 | 苏州大学 | A method and device for retinal image classification of premature infants based on attention mechanism |
CN111259982A (en) * | 2020-02-13 | 2020-06-09 | 苏州大学 | Premature infant retina image classification method and device based on attention mechanism |
CN111445440A (en) * | 2020-02-20 | 2020-07-24 | 上海联影智能医疗科技有限公司 | Medical image analysis method, equipment and storage medium |
CN111445440B (en) * | 2020-02-20 | 2023-10-31 | 上海联影智能医疗科技有限公司 | Medical image analysis method, device and storage medium |
CN111369506A (en) * | 2020-02-26 | 2020-07-03 | 四川大学 | Lens turbidity grading method based on eye B-ultrasonic image |
CN111369506B (en) * | 2020-02-26 | 2022-08-02 | 四川大学 | A method for grading lens opacity based on ocular B-ultrasound images |
CN111507952A (en) * | 2020-04-13 | 2020-08-07 | 上海泗科智能科技有限公司 | Embedded-end diabetic retinopathy screening solution |
KR20210127529A (en) * | 2020-04-14 | 2021-10-22 | 충북대학교 산학협력단 | The method for classifying diabetic macular edema and the device thereof |
KR102438659B1 (en) * | 2020-04-14 | 2022-08-30 | 충북대학교 산학협력단 | The method for classifying diabetic macular edema and the device thereof |
CN111476312A (en) * | 2020-04-24 | 2020-07-31 | 南京图格医疗科技有限公司 | Method for classifying lesion images based on convolutional neural network |
CN111476312B (en) * | 2020-04-24 | 2022-04-19 | 南京图格医疗科技有限公司 | Method for classifying lesion images based on convolutional neural network |
CN115605910A (en) * | 2020-05-14 | 2023-01-13 | 奥普托斯股份有限公司(Gb) | Retinal image processing |
CN111816308A (en) * | 2020-07-13 | 2020-10-23 | 中国医学科学院阜外医院 | A system for predicting the risk of coronary heart disease through facial image analysis |
CN111816308B (en) * | 2020-07-13 | 2023-09-29 | 中国医学科学院阜外医院 | System for predicting coronary heart disease onset risk through facial image analysis |
CN111882551A (en) * | 2020-07-31 | 2020-11-03 | 北京小白世纪网络科技有限公司 | Pathological image cell counting method, system and device |
CN111882551B (en) * | 2020-07-31 | 2024-04-05 | 北京小白世纪网络科技有限公司 | Pathological image cell counting method, system and device |
CN112101424B (en) * | 2020-08-24 | 2023-08-04 | 深圳大学 | Method, device and equipment for generating retinopathy identification model |
CN112101424A (en) * | 2020-08-24 | 2020-12-18 | 深圳大学 | Generation method, identification device and equipment of retinopathy identification model |
CN112016626A (en) * | 2020-08-31 | 2020-12-01 | 南京泰明生物科技有限公司 | Diabetic retinopathy classification system based on uncertainty |
CN112016626B (en) * | 2020-08-31 | 2023-12-01 | 中科泰明(南京)科技有限公司 | Uncertainty-based diabetic retinopathy classification system |
CN112215239A (en) * | 2020-09-15 | 2021-01-12 | 浙江工业大学 | Method and device for fine-grained grading of retinopathy |
CN111938569A (en) * | 2020-09-17 | 2020-11-17 | 南京航空航天大学 | Detection method of fundus multi-disease classification based on deep learning |
CN112185523A (en) * | 2020-09-30 | 2021-01-05 | 南京大学 | Diabetic retinopathy classification method based on multi-scale convolution neural network |
CN112185523B (en) * | 2020-09-30 | 2023-09-08 | 南京大学 | Diabetic retinopathy classification method based on multi-scale convolutional neural network |
CN112184697B (en) * | 2020-10-15 | 2022-10-04 | 桂林电子科技大学 | Diabetic retinopathy grading deep learning method based on drosophila optimization algorithm |
CN112184697A (en) * | 2020-10-15 | 2021-01-05 | 桂林电子科技大学 | Diabetic retinopathy grading deep learning method based on drosophila optimization algorithm |
CN112308830B (en) * | 2020-10-27 | 2024-11-08 | 苏州比格威医疗科技有限公司 | An automatic partitioning and recognition method for retinopathy of prematurity based on attention mechanism and deep supervision strategy |
CN112308830A (en) * | 2020-10-27 | 2021-02-02 | 苏州大学 | Attention mechanism and deep supervision strategy-based automatic division identification method for retinopathy of prematurity |
CN112364979A (en) * | 2020-11-05 | 2021-02-12 | 哈尔滨工业大学 | GoogLeNet-based infrared image identification method |
CN112381821A (en) * | 2020-12-08 | 2021-02-19 | 北京青燕祥云科技有限公司 | Intelligent handheld fundus camera and image analysis method |
CN112508919A (en) * | 2020-12-11 | 2021-03-16 | 北京大恒普信医疗技术有限公司 | Image processing method and device, electronic equipment and readable storage medium |
CN114693961A (en) * | 2020-12-11 | 2022-07-01 | 北京航空航天大学 | Fundus photo classification method, fundus image processing method and system |
CN114693961B (en) * | 2020-12-11 | 2024-05-14 | 北京航空航天大学 | Fundus photo classification method, fundus image processing method and fundus image processing system |
CN112869697A (en) * | 2021-01-20 | 2021-06-01 | 深圳硅基智能科技有限公司 | Judgment method for simultaneously identifying stage and pathological change characteristics of diabetic retinopathy |
CN112819797B (en) * | 2021-02-06 | 2023-09-19 | 国药集团基因科技有限公司 | Method, device, system and storage medium for analyzing diabetic retinopathy |
CN112819797A (en) * | 2021-02-06 | 2021-05-18 | 国药集团基因科技有限公司 | Diabetic retinopathy analysis method, device, system and storage medium |
WO2022179424A1 (en) * | 2021-02-25 | 2022-09-01 | 阿里巴巴集团控股有限公司 | Data processing method and apparatus |
CN113298083A (en) * | 2021-02-25 | 2021-08-24 | 阿里巴巴集团控股有限公司 | A data processing method and device |
CN113011362A (en) * | 2021-03-29 | 2021-06-22 | 吉林大学 | Fine-grained fundus image grading algorithm based on bilinear pooling and attention mechanism |
CN113538349A (en) * | 2021-06-29 | 2021-10-22 | 山东师范大学 | Small sample diabetic retinopathy classification system based on model independent meta-learning |
CN113378984A (en) * | 2021-07-05 | 2021-09-10 | 国药(武汉)医学实验室有限公司 | Medical image classification method, system, terminal and storage medium |
CN113592780A (en) * | 2021-07-06 | 2021-11-02 | 南方科技大学 | Fundus image classification method, device, equipment and storage medium |
CN113537395A (en) * | 2021-08-09 | 2021-10-22 | 同济大学 | Diabetic retinopathy image identification method based on fundus images |
CN113537395B (en) * | 2021-08-09 | 2022-07-08 | 同济大学 | An image recognition method for diabetic retinopathy based on fundus images |
CN113887662B (en) * | 2021-10-26 | 2024-11-08 | 北京理工大学重庆创新中心 | Image classification method, device, equipment and medium based on residual network |
CN113887662A (en) * | 2021-10-26 | 2022-01-04 | 北京理工大学重庆创新中心 | Image classification method, device, equipment and medium based on residual error network |
CN114021630A (en) * | 2021-10-28 | 2022-02-08 | 同济大学 | An Ordinal Regression Problem Solving for Class Imbalanced Datasets |
CN114581366A (en) * | 2021-12-30 | 2022-06-03 | 山东师范大学 | Retinal vein occlusion dazzle color image classification system based on attention mechanism |
CN114898172B (en) * | 2022-04-08 | 2024-04-02 | 辽宁师范大学 | Diabetic retinopathy classification modeling method based on multi-feature DAG network |
CN114898172A (en) * | 2022-04-08 | 2022-08-12 | 辽宁师范大学 | Classification and modeling method of diabetic retinopathy based on multi-feature DAG network |
CN115587979A (en) * | 2022-10-10 | 2023-01-10 | 山东财经大学 | A three-stage attention network-based method for grading diabetic retinopathy |
CN115587979B (en) * | 2022-10-10 | 2023-08-15 | 山东财经大学 | Three-stage attention network-based diabetic retinopathy grading method |
CN116503385B (en) * | 2023-06-25 | 2023-09-01 | 吉林大学 | Sugar mesh bottom image grading method and equipment based on virtual global agent |
CN116503385A (en) * | 2023-06-25 | 2023-07-28 | 吉林大学 | Sugar mesh fundus image grading method and device based on virtual global agent |
CN118136200A (en) * | 2024-05-08 | 2024-06-04 | 北京大学第三医院(北京大学第三临床医学院) | Diagnostic report generation method, device and medium |
CN118136200B (en) * | 2024-05-08 | 2024-07-05 | 北京大学第三医院(北京大学第三临床医学院) | Diagnostic report generation method, device and medium |
Also Published As
Publication number | Publication date |
---|---|
CN108021916B (en) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108021916B (en) | Deep learning diabetic retinopathy sorting technique based on attention mechanism | |
Wang et al. | Simultaneous diagnosis of severity and features of diabetic retinopathy in fundus photography using deep learning | |
CN110992382B (en) | Fundus image optic cup optic disc segmentation method and system for assisting glaucoma screening | |
CN110930418B (en) | Retina blood vessel segmentation method fusing W-net and conditional generation confrontation network | |
CN110837803B (en) | Diabetic retinopathy grading method based on deep graph network | |
Peng et al. | Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy | |
Wu et al. | U-GAN: generative adversarial networks with U-Net for retinal vessel segmentation | |
CN110276745B (en) | Pathological image detection algorithm based on generation countermeasure network | |
CN111938569A (en) | Detection method of fundus multi-disease classification based on deep learning | |
CN110766643A (en) | Microaneurysm detection method facing fundus images | |
CN106296699A (en) | Cerebral tumor dividing method based on deep neural network and multi-modal MRI image | |
CN108960257A (en) | A kind of diabetic retinopathy grade stage division based on deep learning | |
CN114287878A (en) | Diabetic retinopathy focus image identification method based on attention model | |
CN112926652B (en) | Fish fine granularity image recognition method based on deep learning | |
CN111275686B (en) | Method and device for generating medical image data for artificial neural network training | |
CN111524144A (en) | An intelligent diagnosis method for pulmonary nodules based on GAN and Unet network | |
CN113012163A (en) | Retina blood vessel segmentation method, equipment and storage medium based on multi-scale attention network | |
CN117078697B (en) | Fundus disease seed detection method based on cascade model fusion | |
Miao et al. | Classification of diabetic retinopathy based on multiscale hybrid attention mechanism and residual algorithm | |
Du et al. | Densely connected U‐Net retinal vessel segmentation algorithm based on multi‐scale feature convolution extraction | |
Fu et al. | Automatic grading of Diabetic macular edema based on end-to-end network | |
CN114140437B (en) | A deep learning-based method for segmenting fundus hard exudates | |
Xia et al. | Retinal vessel segmentation via a coarse-to-fine convolutional neural network | |
CN114649092A (en) | Auxiliary diagnosis method and device based on semi-supervised learning and multi-scale feature fusion | |
CN112215239B (en) | A method and device for fine-grained grading of retinal lesions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |