Nothing Special   »   [go: up one dir, main page]

CN108017403A - 一种高温相变复合储热陶瓷基材料及其制备方法 - Google Patents

一种高温相变复合储热陶瓷基材料及其制备方法 Download PDF

Info

Publication number
CN108017403A
CN108017403A CN201711322736.0A CN201711322736A CN108017403A CN 108017403 A CN108017403 A CN 108017403A CN 201711322736 A CN201711322736 A CN 201711322736A CN 108017403 A CN108017403 A CN 108017403A
Authority
CN
China
Prior art keywords
parts
based material
heat accumulation
change
temperature phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711322736.0A
Other languages
English (en)
Inventor
唐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Qizhen Energy Saving Technology Co Ltd
Original Assignee
Tianjin Qizhen Energy Saving Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Qizhen Energy Saving Technology Co Ltd filed Critical Tianjin Qizhen Energy Saving Technology Co Ltd
Priority to CN201711322736.0A priority Critical patent/CN108017403A/zh
Publication of CN108017403A publication Critical patent/CN108017403A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于储热材料技术领域,具体公开了一种高温相变复合储热陶瓷基材料及其制备方法。以重量份计,该材料由以下原料制备得到:陶瓷基质10~15份、碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份、高导热碳纤维1~2份、掺杂石墨1~2份。本发明制备的高温相变复合储热陶瓷基材料,具有相变潜热大、高温稳定性强、毒性小、腐蚀性小等优点,可作为相变储热材料使用,提高了能量转换效率;导热性能更高,吸热放热速度更快;在相变时不会改变其外形,可以有效防止泄露。

Description

一种高温相变复合储热陶瓷基材料及其制备方法
技术领域
本发明属于储热材料技术领域,具体涉及一种高温相变复合储热陶瓷基材料及其制备方法。
背景技术
节能与环保是能源利用领域的一个重要课题,利用相变储热材料的相变潜热储存能量是一种新型的节能技术。储热材料在相变过程中,吸收周围环境的热量,并在周围环境温度降低时,向周围环境释放热量,从而达到控制周围环境温度和节能的目的。它在太阳能利用、热能回收、空调制冷、建筑节能、航空航天等领域都有广泛的应用前景。
目前的储热材料普遍存在导热性能差的缺点,因此制成的相变储热部件由于导热性差,无法充分发挥储热材料的储热功能。其次,储热材料发生固一液相变时,会导致泄漏问题。
发明内容
本发明所要解决的第一个技术问题是提供一种高温相变复合储热陶瓷基材料,以重量份计,该材料由以下原料制备得到:陶瓷基质10~15份、碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份、高导热碳纤维1~2份、掺杂石墨1~2份。
优选的,上述高温相变复合储热陶瓷基材料,以重量份计,该材料由以下原料制备得到:陶瓷基质15份、碳酸锂25份、碳酸钾25份、碳酸钠40份、高导热碳纤维1份、掺杂石墨2份。
其中,上述高温相变复合储热陶瓷基材料中,所述陶瓷基质为SiC、SiO2、或者MgO。
其中,上述高温相变复合储热陶瓷基材料中,所述掺杂石墨为氮掺杂石墨或者硼掺杂石墨。
本发明所要解决的第二个技术问题是提供上述高温相变复合储热陶瓷基材料的制备方法,该方法具体包括以下步骤:
(1)将碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份和陶瓷基质10~15份混合,进行研磨混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维1~2份、掺杂石墨1~2份在500~600℃惰性气体中加热15min,然后加入到上述无机盐陶瓷基质体系中,通过研磨混合均匀,形成复合体系;
(3)上述复合体系经加压成型后,于700~760℃烧结20~30min,烧结完成后降温至常温,得到高温相变复合储热陶瓷基材料。
其中,上述高温相变复合储热陶瓷基材料的制备方法,步骤(1)和步骤(2)中研磨至粒径在400~500目之间。
其中,上述高温相变复合储热陶瓷基材料的制备方法,步骤(3)中所述加压的条件为:压力2.4~2.8MPa,加压时间2~2.5min。
其中,上述高温相变复合储热陶瓷基材料的制备方法,步骤(3)中所述烧结时的升温速率为3~5℃/min,所述降温时的降温速率为10℃/min。
与现有技术相比,本发明的有益效果是:本发明制备的高温相变复合储热陶瓷基材料,具有相变潜热大、高温稳定性强、毒性小、腐蚀性小等优点,可作为相变储热材料使用,提高了能量转换效率;导热性能更高,吸热放热速度更快;在相变时不会改变其外形,可以有效防止泄露。
具体实施方式
本发明提供了一种高温相变复合储热陶瓷基材料,以重量份计,该材料由以下原料制备得到:陶瓷基质10~15份、碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份、高导热碳纤维1~2份、掺杂石墨1~2份;
所述陶瓷基质为SiC、SiO2、或者MgO,所述掺杂石墨为氮掺杂石墨或者硼掺杂石墨。
优选的,上述高温相变复合储热陶瓷基材料,以重量份计,该材料由以下原料制备得到:陶瓷基质15份、碳酸锂25份、碳酸钾25份、碳酸钠40份、高导热碳纤维1份、掺杂石墨2份。
进一步的,本发明还提供了上述高温相变复合储热陶瓷基材料的制备方法,该方法具体包括以下步骤:
(1)将碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份和陶瓷基质10~15份混合,进行研磨至400~500目混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维1~2份、掺杂石墨1~2份在500~600℃惰性气体中加热15min,然后加入到上述无机盐陶瓷基质体系中,通过研磨至400~500目混合均匀,形成复合体系;
(3)上述复合体系经加压成型后,加压压力2.4~2.8MPa,加压时间2~2.5min,于700~760℃烧结20~30min,烧结完成后降温至常温,得到高温相变复合储热陶瓷基材料。
其中,上述高温相变复合储热陶瓷基材料的制备方法,步骤(3)中所述烧结时的升温速率为3~5℃/min,所述降温时的降温速率为10℃/min。
以下结合具体的实施例对本发明作进一步的解释和说明,但并不因此限制本发明的保护范围。
实施例1
高温相变复合储热陶瓷基材料的制备方法,该方法具体包括以下步骤:
(1)将碳酸锂25份、碳酸钾25份、碳酸钠40份和SiC陶瓷基质15份混合,进行研磨至400目混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维1份、氮掺杂石墨2份在520℃惰性气体中加热15min,然后加入到无机盐陶瓷基质体系中,通过研磨至400目混合均匀,形成复合体系;
(3)复合体系经加压成型后,加压压力2.8MPa,加压时间2min,于760℃烧结20min,烧结时的升温速率为5℃/min,烧结完成后降温至常温,降温时的降温速率为10℃/min,得到高温相变复合储热陶瓷基材料。
实施例2
高温相变复合储热陶瓷基材料的制备方法,该方法具体包括以下步骤:
(1)将碳酸锂20份、碳酸钾30份、碳酸钠30份和MgO陶瓷基质10份混合,进行研磨至500目混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维2份、氮掺杂石墨1份在600℃惰性气体中加热15min,然后加入到无机盐陶瓷基质体系中,通过研磨至500目混合均匀,形成复合体系;
(3)复合体系经加压成型后,加压压力2.4MPa,加压时间2.5min,于700℃烧结30min,烧结时的升温速率为3℃/min,烧结完成后降温至常温,降温时的降温速率为10℃/min,得到高温相变复合储热陶瓷基材料。
实施例3
高温相变复合储热陶瓷基材料的制备方法,该方法具体包括以下步骤:
(1)将碳酸锂30份、碳酸钾20份、碳酸钠35份和SiO2陶瓷基质12份混合,进行研磨至450目混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维1.5份、硼掺杂石墨1.5份在560℃惰性气体中加热15min,然后加入到无机盐陶瓷基质体系中,通过研磨至460目混合均匀,形成复合体系;
(3)复合体系经加压成型后,加压压力2.6MPa,加压时间2min,于740℃烧结25min,烧结时的升温速率为3℃/min,烧结完成后降温至常温,降温时的降温速率为10℃/min,得到高温相变复合储热陶瓷基材料。

Claims (8)

1.一种高温相变复合储热陶瓷基材料,其特征在于,以重量份计,该材料由以下原料制备得到:陶瓷基质10~15份、碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份、高导热碳纤维1~2份、掺杂石墨1~2份。
2.根据权利要求1所述的一种高温相变复合储热陶瓷基材料,其特征在于,以重量份计,该材料由以下原料制备得到:陶瓷基质15份、碳酸锂25份、碳酸钾25份、碳酸钠40份、高导热碳纤维1份、掺杂石墨2份。
3.根据权利要求1或2所述的一种高温相变复合储热陶瓷基材料,其特征在于,所述陶瓷基质为SiC、SiO2、或者MgO。
4.根据权利要求1或2所述的一种高温相变复合储热陶瓷基材料,其特征在于,所述掺杂石墨为氮掺杂石墨或者硼掺杂石墨。
5.权利要求1~4任一项所述高温相变复合储热陶瓷基材料的制备方法,其特征在于,该方法具体包括以下步骤:
(1)将碳酸锂20~30份、碳酸钾20~30份、碳酸钠30~40份和陶瓷基质10~15份混合,进行研磨混合均匀,得到无机盐陶瓷基质体系;
(2)将高导热碳纤维1~2份、掺杂石墨1~2份在500~600℃惰性气体中加热15min,然后加入到上述无机盐陶瓷基质体系中,通过研磨混合均匀,形成复合体系;
(3)上述复合体系经加压成型后,于700~760℃烧结20~30min,烧结完成后降温至常温,得到高温相变复合储热陶瓷基材料。
6.根据权利要求5所述高温相变复合储热陶瓷基材料的制备方法,其特征在于,步骤(1)和步骤(2)中研磨至粒径在400~500目之间。
7.根据权利要求5所述高温相变复合储热陶瓷基材料的制备方法,其特征在于,步骤(3)中所述加压的条件为:压力2.4~2.8MPa,加压时间2~2.5min。
8.根据权利要求5所述高温相变复合储热陶瓷基材料的制备方法,其特征在于,步骤(3)中所述烧结时的升温速率为3~5℃/min,所述降温时的降温速率为10℃/min。
CN201711322736.0A 2017-12-12 2017-12-12 一种高温相变复合储热陶瓷基材料及其制备方法 Pending CN108017403A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711322736.0A CN108017403A (zh) 2017-12-12 2017-12-12 一种高温相变复合储热陶瓷基材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711322736.0A CN108017403A (zh) 2017-12-12 2017-12-12 一种高温相变复合储热陶瓷基材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108017403A true CN108017403A (zh) 2018-05-11

Family

ID=62073139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711322736.0A Pending CN108017403A (zh) 2017-12-12 2017-12-12 一种高温相变复合储热陶瓷基材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108017403A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624294A (zh) * 2018-06-08 2018-10-09 华北电力大学 一种基于煤矸石的中高温相变储热材料及制备方法
CN108675822A (zh) * 2018-07-09 2018-10-19 合肥连森裕腾新材料科技开发有限公司 一种储热陶瓷基材料及其制备方法
CN108865079A (zh) * 2018-08-22 2018-11-23 北京科技大学 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
CN109135684A (zh) * 2018-09-21 2019-01-04 贵州梅岭电源有限公司 一种热电池用复合相变材料及其制备方法
CN109320212A (zh) * 2018-10-22 2019-02-12 全球能源互联网研究院有限公司 一种相变储热材料、相变储热砖及其制备方法
CN113429940A (zh) * 2021-07-12 2021-09-24 华中科技大学 一种纳米碳化硅强化蓄热的复合相变储热材料及制备方法
US11740031B1 (en) 2022-03-04 2023-08-29 Battelle Savannah River Alliance, Llc High temperature thermochemical energy storage materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
CN101239798A (zh) * 2008-01-04 2008-08-13 华南理工大学 有机物/膨胀石墨复合相变储热建筑材料及其制备方法
CN102585775A (zh) * 2012-01-20 2012-07-18 中国科学院过程工程研究所 一种高温复合相变储热材料及其制备方法
US20130000488A1 (en) * 2011-06-30 2013-01-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Composite hollow ceramic fibers, precursors for, methods of making the same, and methods of using the same
CN104591767A (zh) * 2015-01-15 2015-05-06 中国建筑材料科学研究总院 高温相变隔热材料及其制备方法
CN107337436A (zh) * 2017-05-18 2017-11-10 全球能源互联网研究院 一种相变储热材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
CN101239798A (zh) * 2008-01-04 2008-08-13 华南理工大学 有机物/膨胀石墨复合相变储热建筑材料及其制备方法
US20130000488A1 (en) * 2011-06-30 2013-01-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Composite hollow ceramic fibers, precursors for, methods of making the same, and methods of using the same
CN102585775A (zh) * 2012-01-20 2012-07-18 中国科学院过程工程研究所 一种高温复合相变储热材料及其制备方法
CN104591767A (zh) * 2015-01-15 2015-05-06 中国建筑材料科学研究总院 高温相变隔热材料及其制备方法
CN107337436A (zh) * 2017-05-18 2017-11-10 全球能源互联网研究院 一种相变储热材料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624294A (zh) * 2018-06-08 2018-10-09 华北电力大学 一种基于煤矸石的中高温相变储热材料及制备方法
CN108675822A (zh) * 2018-07-09 2018-10-19 合肥连森裕腾新材料科技开发有限公司 一种储热陶瓷基材料及其制备方法
CN108865079A (zh) * 2018-08-22 2018-11-23 北京科技大学 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
CN108865079B (zh) * 2018-08-22 2020-12-22 北京科技大学 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
CN109135684A (zh) * 2018-09-21 2019-01-04 贵州梅岭电源有限公司 一种热电池用复合相变材料及其制备方法
CN109320212A (zh) * 2018-10-22 2019-02-12 全球能源互联网研究院有限公司 一种相变储热材料、相变储热砖及其制备方法
CN109320212B (zh) * 2018-10-22 2021-07-13 全球能源互联网研究院有限公司 一种相变储热材料、相变储热砖及其制备方法
CN113429940A (zh) * 2021-07-12 2021-09-24 华中科技大学 一种纳米碳化硅强化蓄热的复合相变储热材料及制备方法
CN113429940B (zh) * 2021-07-12 2022-05-20 华中科技大学 一种纳米碳化硅强化蓄热的复合相变储热材料及制备方法
US11740031B1 (en) 2022-03-04 2023-08-29 Battelle Savannah River Alliance, Llc High temperature thermochemical energy storage materials

Similar Documents

Publication Publication Date Title
CN108017403A (zh) 一种高温相变复合储热陶瓷基材料及其制备方法
CN103570311A (zh) 一种石蜡/膨胀珍珠岩相变保温砂浆的制备方法
CN106118610B (zh) 聚乙二醇/石墨烯定型相变材料的制备方法
CN105154021A (zh) 一种高导热相变储热材料及其制备方法
CN106986662B (zh) 一种太阳能吸热陶瓷材料及其制备方法
CN105295847A (zh) 一种新型金属基材定型储热材料及其制备方法
WO2019205759A1 (zh) 一种太阳能光热发电传热蓄热介质及其制备方法
CN104162661B (zh) 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法
CN108675822A (zh) 一种储热陶瓷基材料及其制备方法
CN111548167B (zh) 一种陶瓷基高导热复合相变储热材料及制备方法
CN104388054A (zh) 一种新型复合有机储热材料及其制备方法
CN104357023A (zh) 一种无机水合盐储热材料及其制备方法
CN105154022A (zh) 一种金属基材高导热储热材料及其制备方法
CN105154017A (zh) 一种高导热定型相变储热材料及其制备方法
CN104910871A (zh) 一种建筑用复合储热材料及其制备方法
CN107010962B (zh) 一种低成本太阳能吸热陶瓷材料及其制备方法
CN108467712A (zh) 一种熔盐储热材料
CN104164218A (zh) 一种储热材料及其制备方法
CN104357022A (zh) 一种无机相变储热材料及其制备方法
CN105154019A (zh) 一种无机定型相变储热材料及其制备方法
CN105131909A (zh) 一种无机复合高导热相变储热材料及其制备方法
CN102557675A (zh) 一种轻质耐火砖
CN115341680A (zh) 一种相变蓄热调温抗裂墙体
CN107167013B (zh) 一种蓄能换热装置
CN106854456A (zh) 一种具有调温节能作用的定形复合相变材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180511