Nothing Special   »   [go: up one dir, main page]

CN107895063A - One kind compression EO-1 hyperion mask optimization method - Google Patents

One kind compression EO-1 hyperion mask optimization method Download PDF

Info

Publication number
CN107895063A
CN107895063A CN201710960143.0A CN201710960143A CN107895063A CN 107895063 A CN107895063 A CN 107895063A CN 201710960143 A CN201710960143 A CN 201710960143A CN 107895063 A CN107895063 A CN 107895063A
Authority
CN
China
Prior art keywords
mrow
msub
msup
matrix
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710960143.0A
Other languages
Chinese (zh)
Inventor
吕彬彬
颜成钢
吴嘉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201710960143.0A priority Critical patent/CN107895063A/en
Publication of CN107895063A publication Critical patent/CN107895063A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses one kind to compress EO-1 hyperion mask optimization method.Step of the present invention is as follows:Step (1) utilizes geometric optics by the position of mask in systems, obtains initial projections matrix P0, P0It is the matrix of a p × n in real number field, i.e.,Initial cycle iteration count variable q=0 is set;Step (2) is by matrix PqD enters ranks standardization, obtains effectively dictionaryStep (3) constructs Gram matrixesStep (4) shrinks Gram matrixes Gq, that is, update Gram matrixes:Step (5) is decomposed the Gram matrixes after contraction using SVDOrder be reduced to p;Step (6) solves Gram matrixesSquare root SqSo thatStep (7) finds Pq+1So that errorMinimum, q=q+1.The property consistent with each other of mask after present invention optimization is significantly lower than the property consistent with each other of random mask, and the signal to noise ratio of reconstruction image is also significantly improved.

Description

一种压缩高光谱掩膜优化方法A Method for Optimizing Compressed Hyperspectral Masks

技术领域technical field

本发明涉及高光谱成像技术与压缩高光谱掩膜的优化,具体的说涉及应用压缩高光谱成像时,提供一种压缩高光谱掩膜优化方法。The invention relates to hyperspectral imaging technology and the optimization of compressed hyperspectral masks, in particular to providing a compression hyperspectral mask optimization method when applying compressed hyperspectral imaging.

背景技术Background technique

高光谱成像是当今的一大研究热点。如何实现快速的高光谱采集始终是一个亟待解决的问题。在本文中,主要针对于在传感器前放置掩膜实现压缩高光谱成像的方法,进行进一步优化和展开。结合优化投影矩阵的相关知识以及矩阵课上所学包括矩阵微分,投影分析等相关内容对于该实际问题实现掩膜的优化。Hyperspectral imaging is a major research hotspot today. How to achieve fast hyperspectral acquisition is always an urgent problem to be solved. In this paper, the method of placing a mask in front of the sensor to realize compressed hyperspectral imaging is further optimized and expanded. Combining the relevant knowledge of optimizing the projection matrix and the relevant content learned in the matrix class, including matrix differentiation, projection analysis, etc., the optimization of the mask for this practical problem is realized.

高光谱成像技术是将传统的二维成像技术与光谱技术结合,在从紫外到近红外的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像,在获得物体空间特征成像的同时,也获得了被测物体的光谱信息,在遥感、监控以及光谱学等广泛的领域有着重要的应用。高光谱成像最主要的任务就是有效采集得到一个由二维空间和一维光谱空间变化的三维数据立方体。最常用的方法是利用机械扫描或者时序扫描的方法一次记录一个或几个数据点。快照成像的方法通过一次单独成像采集到完整的三维数据,这点在采集动态场景或者航拍时比扫描的方法具有明显的优势。快照成像通过将高维信号复用到二维CCD传感器来实现,因此牺牲了图像分辨率。快照成像方法的样例包括四维成像光谱仪(4DIS)以及计算断层扫描成像光谱仪(CTIS)等。最近一种编码光圈快照光谱仪(CASSI)通过应用计算压缩重建来编码光信号。这种计算成像方法能够克服获得的空间成像和光谱成像分辨率的折中。CASSI系统可以通过采集在压电工作台不断翻转的编码掩膜对应的多次成像得到改进。一种更加灵活的选择是利用数字微镜器件(DMD)连拍光谱成像系统(DMD-SSI)。通过光学编码记录数据通过压缩计算重建数据的趋势已经非常明显,然而所有的压缩光谱成像的方法编码颜色时都基于空间均匀的假设,这本质上限制了带有压缩压缩稀疏性约束的压缩重建算法的质量。所以我们在之前的工作中提出了在传感器前面放置掩膜编码,实现空间不一致的调制,而获得了空间不一致的调制之后需要做的就是进行稀疏重建。如何使得采集到的信息最有利于稀疏重建,即是如何优化投影矩阵的问题。而对于压缩高光谱成像而言,这一问题始终未曾被详细研究过。所以我们在压缩高光谱成像的基础上,进一步利用矩阵分析的相关知识,包括矩阵微分,投影分析,矩阵分解的知识,提出一种掩膜的优化算法,以此来实现掩膜的最优化,使得重建结果达到最好。为了验证所提出优化算法的可行性,我们进行了一些仿真试验来佐证和展示算法的优化效果。Hyperspectral imaging technology is a combination of traditional two-dimensional imaging technology and spectral technology. In the spectral range from ultraviolet to near-infrared, using imaging spectrometer, dozens or hundreds of spectral bands within the spectral coverage range can continuously detect the target object. Imaging, while obtaining the spatial feature imaging of the object, also obtains the spectral information of the measured object, and has important applications in a wide range of fields such as remote sensing, monitoring, and spectroscopy. The main task of hyperspectral imaging is to effectively acquire a three-dimensional data cube that varies from two-dimensional space and one-dimensional spectral space. The most commonly used method is to record one or several data points at a time by means of mechanical scanning or sequential scanning. The snapshot imaging method acquires complete 3D data through a single imaging, which has obvious advantages over the scanning method when capturing dynamic scenes or aerial photography. Snapshot imaging is achieved by multiplexing high-dimensional signals to a two-dimensional CCD sensor, thus sacrificing image resolution. Examples of snapshot imaging methods include four-dimensional imaging spectrometer (4DIS) and computed tomography imaging spectrometer (CTIS), among others. A recent Coded Aperture Snapshot Spectrometer (CASSI) encodes optical signals by applying computational compression reconstruction. This computational imaging approach is able to overcome the trade-off in the obtained spatial and spectral imaging resolutions. The CASSI system can be improved by acquiring multiple images corresponding to an encoded mask that is constantly flipped on the piezoelectric stage. A more flexible option is to utilize a digital micromirror device (DMD) continuous-shot spectral imaging system (DMD-SSI). The trend of optically encoding recorded data and reconstructing data through compressive calculations has been very obvious, however, all methods of compressive spectral imaging encode color based on the assumption of spatial uniformity, which inherently limits compressive reconstruction algorithms with compressive sparsity constraints. the quality of. Therefore, in our previous work, we proposed to place a mask code in front of the sensor to achieve spatially inconsistent modulation, and what needs to be done after obtaining spatially inconsistent modulation is to perform sparse reconstruction. How to make the collected information most conducive to sparse reconstruction is how to optimize the projection matrix. For compressed hyperspectral imaging, however, this problem has not been studied in detail. Therefore, on the basis of compressed hyperspectral imaging, we further use the relevant knowledge of matrix analysis, including matrix differentiation, projection analysis, and matrix decomposition knowledge, to propose a mask optimization algorithm to achieve mask optimization. to achieve the best reconstruction results. In order to verify the feasibility of the proposed optimization algorithm, we conducted some simulation experiments to prove and demonstrate the optimization effect of the algorithm.

发明内容Contents of the invention

本发明所要解决的技术问题是:为了使得采集到的信息最有利于稀疏重建,需要确定一种判断压缩高光谱成像中投影矩阵优劣的评价标准,并且以此为基础,通过提出的掩膜优化算法来实现提高稀疏重建质量的目的。The technical problem to be solved by the present invention is: in order to make the collected information most conducive to sparse reconstruction, it is necessary to determine an evaluation standard for judging the quality of the projection matrix in compressed hyperspectral imaging, and based on this, through the proposed mask Optimize the algorithm to achieve the purpose of improving the quality of sparse reconstruction.

本发明中掩膜为一个100×1的向量,由其构造一个3100×100的投影矩阵P。In the present invention, the mask is a 100×1 vector, and a 3100×100 projection matrix P is constructed from it.

为达上述目的,首先应用的对象是光谱相机,与普通相机相比,光谱相机在像面位置上放置了一块光栅用以产生多光谱相机,等价于将场景的光谱信息映射到像面的不同角度的出射光线处,即光场的角度维度。首先我们需要确定一个衡量矩阵的不相关性的一个标准,这里我们选用的是最为常用的μt来进行衡量。In order to achieve the above purpose, the first application object is the spectral camera. Compared with the ordinary camera, the spectral camera places a grating on the image plane to generate a multi-spectral camera, which is equivalent to mapping the spectral information of the scene to the image plane. Where light rays emerge from different angles, that is, the angular dimension of the light field. First of all, we need to determine a standard to measure the irrelevance of the matrix. Here we choose the most commonly used μ t to measure.

本发明解决其技术问题采用的技术方案本发明的目标:最小化μt(PD)The present invention solves the technical scheme that its technical problem adopts The goal of the present invention: minimize μ t (PD)

输入的参数如下:The input parameters are as follows:

t:相关程度阈值t: Correlation degree threshold

n:过完备字典n:overcomplete dictionary

p:测量次数p: number of measurements

γ:相关程度阈值γ: Correlation degree threshold

Iter:迭代次数Iter: number of iterations

本发明的目标:最小化μt(PD)The goal of the invention: to minimize μ t (PD)

输入的参数如下:The input parameters are as follows:

t:相关程度阈值t: Correlation degree threshold

n:过完备字典n:overcomplete dictionary

p:测量次数p: number of measurements

γ:相关程度阈值γ: Correlation degree threshold

P:投影矩阵,由100×1个0至1之间的数组成。P: Projection matrix, consisting of 100×1 numbers between 0 and 1.

D:通过字典学习得到的一个过完备字典,大小为3100×387。D: An over-complete dictionary obtained through dictionary learning, with a size of 3100×387.

Iter:迭代次数Iter: number of iterations

具体实现步骤如下:The specific implementation steps are as follows:

步骤(1)通过掩膜在系统中的位置利用几何光学,得到初始投影矩阵P0,P0是实数域上一个p×n的矩阵,即设置初始循环迭代计数变量q=0;Step (1) Use geometric optics to obtain the initial projection matrix P 0 through the position of the mask in the system. P 0 is a p×n matrix in the real number field, namely Set initial loop iteration count variable q = 0;

所述的初始投影矩阵P0的推导如下:The derivation of the initial projection matrix P0 is as follows:

首先构造一个100×100的零矩阵;First construct a 100×100 zero matrix;

然后将掩膜的100个数作为该零矩阵的对角线元素,并且对角线上面元素存储形式是符号变量形式。将这个100×100的矩阵复制31次,构成3100×100的矩阵,即投影矩阵P0。其中这31个100×100的矩阵中的对角线上元素相同,但是元素排序不同,会有位置上的平移。这个3100×100的矩阵就是我们构造的投影矩阵P0Then the 100 numbers of the mask are used as the diagonal elements of the zero matrix, and the storage form of the elements above the diagonal is a symbol variable form. This 100×100 matrix is copied 31 times to form a 3100×100 matrix, namely the projection matrix P 0 . Among them, the elements on the diagonal in the 31 100×100 matrices are the same, but the order of the elements is different, and there will be a translation in position. This 3100×100 matrix is the projection matrix P 0 constructed by us.

步骤(2)将矩阵PqD进行列标准化,得到有效地字典 Step (2) Perform column standardization on the matrix P q D to obtain an effective dictionary

所述的标准化就是将矩阵PqD的每一列归一化为单位向量,使得其每一列向量的模值为一,其中Pq表示第q次循环得到的投影矩阵P;The standardization is to normalize each column of the matrix P q D into a unit vector, so that the modulus value of each column vector is one, where P q represents the projection matrix P obtained by the qth cycle;

步骤(3)构造Gram矩阵 Step (3) Construct the Gram matrix

即有效地字典的转置与本身相乘构造Gram矩阵。i.e. effectively a dictionary The transpose of is multiplied by itself to construct the Gram matrix.

步骤(4)收缩Gram矩阵Gq,即利用公式(1)更新Gram矩阵:Step (4) Shrink the Gram matrix G q , that is, update the Gram matrix using the formula (1):

其中:gij表示Gram矩阵中第i行第j列的元素;表示经过公式(1)变换之后的新的值;Among them: g ij represents the element of row i and column j in the Gram matrix; Indicates the new value transformed by formula (1);

步骤(5)利用SVD分解将收缩后的Gram矩阵的秩降为p,具体的:Step (5) Use SVD decomposition to decompose the contracted Gram matrix The rank of is reduced to p, specifically:

可知,由于奇异值算法取得的Σ矩阵对角元均为非负,因此V和U矩阵的列向量就可能相差正负号,由于U、V向量均是单位正交的,实际计算中矩阵也仅有极少数的半负定元,因此直接采用绝对值进行计算,即利用V·Σ·UT来求取Gram矩阵的平方根。Depend on It can be seen that since the diagonal elements of the Σ matrix obtained by the singular value algorithm are all non-negative, the column vectors of the V and U matrices may have different signs. Since the U and V vectors are unit orthogonal, the matrix in actual calculation is also There are only a very small number of semi-negative fixed elements, so the absolute value is directly used for calculation, that is, V·Σ· UT is used to obtain the square root of the Gram matrix.

步骤(6)求解Gram矩阵的平方根Sq,使得其中 Step (6) Solve the Gram matrix the square root of S q such that in

步骤(7)找到第q+1次循环得到的投影矩阵Pq+1,使得误差最小,q=q+1。Step (7) Find the projection matrix P q+ 1 obtained in the q+1th cycle, so that the error Minimum, q=q+1.

采用梯度下降法求取问题,详细计算过程如下:Using the gradient descent method to find problem, the detailed calculation process is as follows:

7-1.的定义是计算:7-1. The definition is computed:

即最小化i.e. minimize

tr(Sq TSq-Sq TPD-DTPTSq+DTPTPD) (3)tr(S q T S q -S q T PD-D T P T S q +D T P T PD) (3)

利用矩阵求trace的性质,原式可变为Using the properties of the matrix to find the trace, the original formula can be changed to

f(x)=tr(Sq TSq-2DTPTSq+DTPTPD) (4)f(x)=tr(S q T S q -2D T P T S q +D T P T PD) (4)

进一步求梯度得Further find the gradient to get

利用分步微分公式,根据之前掩膜生成投影矩阵的性质,就能够从公式(5)中获得针对于各个未知掩膜变量的梯度值。Using the step-differential formula, according to the properties of the projection matrix generated by the previous mask, the gradient value for each unknown mask variable can be obtained from the formula (5).

f(x)是关于投影矩阵P的一个函数,但是投影矩阵P是由100×1的掩膜构造而成的3100×100大小二维矩阵,里面变量只有100个,其它元素均为0,也必须保证为0的元素保持不变。因此,直接对投影矩阵P求导是不可以的。为此在MATLAB中,将其中的100个变量分别定义为符号变量,在MATLAB中让函数f(x)对这100个符号函数求导,用这种方法来绕过直接对投影矩阵P求导带来的问题。f(x) is a function about the projection matrix P, but the projection matrix P is a 3100×100 two-dimensional matrix constructed from a 100×1 mask, and there are only 100 variables in it, and the other elements are all 0. Elements that are 0 must be guaranteed to remain unchanged. Therefore, it is not possible to directly derive the projection matrix P. For this reason, in MATLAB, 100 of the variables are defined as symbolic variables, and the function f(x) is used to derive the 100 symbolic functions in MATLAB, and this method is used to bypass the direct derivative of the projection matrix P bring about problems.

步骤(8)重复步骤(2)到步骤(7)Iter次,输出优化后的投影矩阵Piter。由于操作方式是固定的,因此阈值t为设定的定值。Step (8) repeat step (2) to step (7) Iter times, and output the optimized projection matrix P iter . Since the operation mode is fixed, the threshold t is a fixed value.

本发明的有益效果:Beneficial effects of the present invention:

本发明所述的方法只需通过对掩膜进行优化,使得投影矩阵的相互一致性降低,以实现投影矩阵的更加稀疏化,利于重建。仿真实验结果表明,相比于通常使用的随机掩膜,优化后的掩膜的相互一致性明显低于随机掩膜的相互一致性,重建图像的信噪比也明显得到提高。The method of the present invention only needs to optimize the mask to reduce the mutual consistency of the projection matrix, so as to realize a more sparse projection matrix and facilitate reconstruction. Simulation results show that compared with the commonly used random mask, the mutual consistency of the optimized mask is significantly lower than that of the random mask, and the signal-to-noise ratio of the reconstructed image is also significantly improved.

附图说明Description of drawings

图1为本发明流程图;Fig. 1 is a flowchart of the present invention;

图2为本发明投影矩阵P相互一致性收敛曲线。Fig. 2 is the mutual consistency convergence curve of the projection matrix P of the present invention.

具体实施方式Detailed ways

以下结合附图及实施例,对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

如图1-2所示,本发明提出的一种压缩高光谱掩膜优化算法,通过算法来降低投影矩阵的相互一致性大小,以获得更加稀疏的投影矩阵。本发明所述方法包括以下步骤:As shown in Figure 1-2, a compressed hyperspectral mask optimization algorithm proposed by the present invention uses an algorithm to reduce the mutual consistency of the projection matrix to obtain a more sparse projection matrix. The method of the present invention comprises the following steps:

步骤(1)通过掩膜在系统中的位置利用几何光学,推导得到投影矩阵设置循环迭代计数变量q=0,重复进行步骤2到步骤7共Iter次。由于操作方式是固定的,因此阈值t为设定的定值。Step (1) Use geometric optics to derive the projection matrix through the position of the mask in the system Set the loop iteration count variable q=0, and repeat steps 2 to 7 for a total of Iter times. Since the operation mode is fixed, the threshold t is a fixed value.

步骤(2)将矩阵PqD进行列标准化,得到有效地字典这里标准化的方法就是将矩阵PqD的每一列归一化为单位向量,使得其每一列向量的模值为一。Step (2) Perform column standardization on the matrix P q D to obtain an effective dictionary The normalization method here is to normalize each column of the matrix P q D into a unit vector, so that the modulus value of each column vector is one.

步骤(3)计算Gram矩阵这里我们运用矩阵相关知识,让有效地字典的转置与本身相乘构造Gram矩阵。Step (3) Calculate the Gram matrix Here we use matrix-related knowledge to make the effective dictionary The transpose of is multiplied by itself to construct the Gram matrix.

步骤(4)收缩矩阵,利用一下公式更新Gram矩阵:Step (4) shrink the matrix, and use the following formula to update the Gram matrix:

这里这么做的目的是收缩Gram矩阵使得矩阵可以更容易收敛。The purpose of doing this here is to shrink the Gram matrix so that the matrix can converge more easily.

步骤(5)利用SVD分解将收缩后的Gram矩阵的秩降为p。由可知,由于奇异值算法取得的Σ矩阵对角元均为非负,因此V和U矩阵的列向量就可能相差正负号,由于U、V向量均是单位正交的,实际计算中矩阵也仅有极少数的半负定元,因此这里我们直接采用绝对值进行计算,即利用V·Σ·UT来求取Gram矩阵的平方根,实际计算结果显示,对于本问题这样造成的二范数意义下的误差在1左右。Step (5) Use SVD decomposition to decompose the contracted Gram matrix The rank of is reduced to p. Depend on It can be seen that since the diagonal elements of the Σ matrix obtained by the singular value algorithm are all non-negative, the column vectors of the V and U matrices may have different signs. Since the U and V vectors are unit orthogonal, the matrix in actual calculation is also There are only a very small number of semi-negative definite elements, so here we directly use the absolute value to calculate, that is, use V Σ UT to find the square root of the Gram matrix. The actual calculation results show that for the two norms caused by this problem The error in the sense is around 1.

步骤(6)求解Gram矩阵的平方根Sq,使得其中这里我们设这样做可以通过牺牲有限多求解精度,来保证算法的求解速度。Step (6) Solve the Gram matrix the square root of S q such that in Here we set Doing so can guarantee the solution speed of the algorithm by sacrificing finite solution accuracy.

步骤(7)找到Pq+1使得误差最小,q=q+1。在求取问题时我们分别尝试了梯度下降法。详细的计算过程如下:Step (7) finds P q+1 such that the error Minimum, q=q+1. seeking We tried gradient descent separately for the problem. The detailed calculation process is as follows:

1,我们知道的定义是计算:1. We know The definition is computed:

即最小化i.e. minimize

tr(Sq TSq-Sq TPD-DTPTSq+DTPTPD)tr(S q T S q -S q T PD-D T P T S q +D T P T PD)

利用矩阵求trace的性质,原式可变为Using the properties of the matrix to find the trace, the original formula can be changed to

f(x)=tr(Sq TSq-2DTPTSq+DTPTPD)f(x)=tr(S q T S q -2D T P T S q +D T P T PD)

进一步求梯度得Further find the gradient to get

这里利用分步微分公式,根据之前掩膜生成投影矩阵的性质,就可以从上述矩阵梯度中获得针对于各个未知掩膜变量的梯度值。Here, using the step-by-step differential formula, according to the properties of the projection matrix generated by the previous mask, the gradient value for each unknown mask variable can be obtained from the above matrix gradient.

2、这里f(x)是关于投影矩阵P的一个函数,但是投影矩阵P是由100×1的掩膜构造而成的3100×100大小二维矩阵,里面变量只有100个,其它元素均为0,也必须保证为0的元素保持不变。因此,直接对投影矩阵P求导是不可以的。为此在MATLAB中,我们将其中的100个变量分别定义为符号变量,在MATLAB中让函数f(x)对这100个符号函数求导,用这种方法来绕过直接对投影矩阵P求导带来的问题。2. Here f(x) is a function of the projection matrix P, but the projection matrix P is a 3100×100 two-dimensional matrix constructed from a 100×1 mask, and there are only 100 variables in it, and the other elements are 0, it must also ensure that the elements that are 0 remain unchanged. Therefore, it is not possible to directly derive the projection matrix P. For this reason, in MATLAB, we define 100 of the variables as symbolic variables, and let the function f(x) take derivatives of these 100 symbolic functions in MATLAB, and use this method to bypass the direct calculation of the projection matrix P lead problems.

3、利用梯度下降法求取过程如下:3. Using the gradient descent method to obtain the process is as follows:

Step1:给定初始点;Step1: given the initial point;

Step2: Step2:

Step3:直线搜索,通过回溯直线搜索方法确定步长t;Step3: Straight line search, determine the step size t by backtracking straight line search method;

Step4:x=x+Δx;Step4: x=x+Δx;

重复进行step2—step4,直到满足停止准则。Repeat step2-step4 until the stop criterion is met.

步骤(8)输出优化后的投影矩阵PiterStep (8) outputs the optimized projection matrix P iter .

用经过梯度下降法收敛之后的新的100×1的掩膜来构造投影矩阵P,作为新的投影矩阵Piter,输出,检验其相互一致性是否得到收敛即可。Use the new 100×1 mask after the convergence of the gradient descent method to construct the projection matrix P as the new projection matrix P iter , output it, and check whether its mutual consistency is converged.

Claims (2)

1. one kind compression EO-1 hyperion mask optimization method, it is characterised in that be implemented as follows:
Target:Minimize μt(PD)
The parameter of input is as follows:
t:Degree of correlation threshold value
n:Cross complete dictionary
p:Pendulous frequency
γ:Degree of correlation threshold value
P:Projection matrix, by the array between 100 × 10 to 1 into;
D:The excessively complete dictionary obtained by dictionary learning, size are 3100 × 387
Iter:Iterations
Wherein mask is the vector of one 100 × 1, and the projection matrix P of one 3100 × 100 is constructed by it;
It is as follows to implement step:
Step (1) utilizes geometric optics by the position of mask in systems, obtains initial projections matrix P0, P0It is in real number field One p × n matrix, i.e.,Initial cycle iteration count variable q=0 is set;
Step (2) is by matrix PqD enters ranks standardization, obtains effectively dictionary
Described standardization is exactly by matrix PqD each row normalization is unit vector so that the modulus value of its each column vector is One, wherein PqRepresent to circulate obtained projection matrix P the q times;
Step (3) constructs Gram matrixes
That is effectively dictionaryTransposition and itself be multiplied construction Gram matrixes;
Step (4) shrinks Gram matrixes Gq, i.e., update Gram matrixes using formula (1):
<mrow> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;gamma;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;gamma;</mi> <mi>t</mi> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&gt;</mo> <mo>|</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>&amp;gamma;</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mi>&amp;gamma;</mi> <mi>t</mi> <mo>&gt;</mo> <mo>|</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein:gijRepresent the element that the i-th row jth arranges in Gram matrixes;Represent the new value after formula (1) conversion;
Step (5) is decomposed the Gram matrixes after contraction using SVDOrder be reduced to p, specifically:
ByUnderstand, because the Σ matrix diagonals members that unusual value-based algorithm obtains are non-negative, therefore V and U matrixes Column vector may differ sign, because U, V vector are that unit is orthogonal, it is actual calculate in matrix also only have only a few Negative semidefinite member, therefore directly calculated using absolute value, that is, utilize V Σ UTTo ask for the square root of Gram matrixes;
Step (6) solves Gram matrixesSquare root SqSo thatWherein
Step (7) finds the q+1 times and circulates obtained projection matrix Pq+1So that errorMinimum, q=q+1;
Asked for using gradient descent methodProblem, detailed calculating process are as follows:
Definition be calculate:
<mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>-</mo> <mi>P</mi> <mi>D</mi> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mi>F</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>-</mo> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>(</mo> <mrow> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>-</mo> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Minimize
<mrow> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mi>T</mi> </msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>-</mo> <msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mi>T</mi> </msup> <mi>P</mi> <mi>D</mi> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>P</mi> <mi>T</mi> </msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>+</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>P</mi> <mi>T</mi> </msup> <mi>P</mi> <mi>D</mi> <mo>)</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Using Matrix Calculating trace property, former formula can be changed to
<mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mi>T</mi> </msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>-</mo> <mn>2</mn> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>P</mi> <mi>T</mi> </msup> <msub> <mi>S</mi> <mi>q</mi> </msub> <mo>+</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>P</mi> <mi>T</mi> </msup> <mi>P</mi> <mi>D</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Further gradient is asked to obtain
<mrow> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>dP</mi> <mi>T</mi> </msup> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msubsup> <mi>DS</mi> <mi>q</mi> <mi>T</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msup> <mi>DD</mi> <mi>T</mi> </msup> <msup> <mi>P</mi> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Using substep differential formulas, according to the property of the generation projection matrix of mask before, it becomes possible to be directed to from formula (5) In the Grad of each unknown mask variable;
Step (8) repeat step (2) arrives step (7) Iter times, the projection matrix P after output optimizationiter;Because mode of operation is Fixed, therefore threshold value t is the definite value of setting.
A kind of 2. compression EO-1 hyperion mask optimization method according to claim 1, it is characterised in that described initial projections Matrix P0Derivation it is as follows:
The null matrix of one 100 × 100 is constructed first;
Then the diagonal entry using 100 numbers of mask as the null matrix, and surface element storage form is on diagonal Symbolic variable form;By this 100 × 100 reproduction matrix 31 times, 3100 × 100 matrix, i.e. projection matrix P are formed0;Its In element is identical on diagonal in this 31 100 × 100 matrix, but element sequence is different, has the translation on position; This 3100 × 100 matrix is exactly the projection matrix P that we construct0
CN201710960143.0A 2017-10-16 2017-10-16 One kind compression EO-1 hyperion mask optimization method Pending CN107895063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710960143.0A CN107895063A (en) 2017-10-16 2017-10-16 One kind compression EO-1 hyperion mask optimization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710960143.0A CN107895063A (en) 2017-10-16 2017-10-16 One kind compression EO-1 hyperion mask optimization method

Publications (1)

Publication Number Publication Date
CN107895063A true CN107895063A (en) 2018-04-10

Family

ID=61803541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710960143.0A Pending CN107895063A (en) 2017-10-16 2017-10-16 One kind compression EO-1 hyperion mask optimization method

Country Status (1)

Country Link
CN (1) CN107895063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501071A (en) * 2019-08-02 2019-11-26 杭州电子科技大学 A Method of Optimizing Compressed Hyperspectral Mask Based on Fuzzy Coding
CN111475768A (en) * 2020-03-11 2020-07-31 重庆邮电大学 An observation matrix construction method based on low-coherence unit-norm compact frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106508A2 (en) * 2005-04-04 2006-10-12 Technion Research & Development Foundation Ltd. System and method for designing of dictionaries for sparse representation
CN103810755A (en) * 2014-03-04 2014-05-21 西安电子科技大学 Method for reconstructing compressively sensed spectral image based on structural clustering sparse representation
CN104063857A (en) * 2014-06-30 2014-09-24 清华大学 Hyperspectral image generating method and system
WO2016029276A1 (en) * 2014-08-29 2016-03-03 Commonwealth Scientific And Industrial Research Organisation Imaging method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106508A2 (en) * 2005-04-04 2006-10-12 Technion Research & Development Foundation Ltd. System and method for designing of dictionaries for sparse representation
CN103810755A (en) * 2014-03-04 2014-05-21 西安电子科技大学 Method for reconstructing compressively sensed spectral image based on structural clustering sparse representation
CN104063857A (en) * 2014-06-30 2014-09-24 清华大学 Hyperspectral image generating method and system
WO2016029276A1 (en) * 2014-08-29 2016-03-03 Commonwealth Scientific And Industrial Research Organisation Imaging method and apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRANKIE CAMACHO: "An Inverse Free Projected Gradient Descent Method for the Generalized Eigenvalue Problem", 《CAAM TECHNICAL REPORTS》 *
MICHAEL ELAD: "Optimized Projections for Compressed Sensing", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
XING LIN: "Spatial-spectral Encoded Compressive Hyperspectral Imaging", 《ACM TRANSACTIONS ON GRAPHICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501071A (en) * 2019-08-02 2019-11-26 杭州电子科技大学 A Method of Optimizing Compressed Hyperspectral Mask Based on Fuzzy Coding
CN110501071B (en) * 2019-08-02 2021-07-13 杭州电子科技大学 A Compressed Hyperspectral Mask Optimization Method Based on Fuzzy Coding
CN111475768A (en) * 2020-03-11 2020-07-31 重庆邮电大学 An observation matrix construction method based on low-coherence unit-norm compact frame

Similar Documents

Publication Publication Date Title
Yuan et al. Snapshot compressive imaging: Theory, algorithms, and applications
Ma et al. Deep tensor admm-net for snapshot compressive imaging
Liu et al. Rank minimization for snapshot compressive imaging
Fu et al. Exploiting spectral-spatial correlation for coded hyperspectral image restoration
Yang et al. Compressive hyperspectral imaging via sparse tensor and nonlinear compressed sensing
CN107451956B (en) A Reconstruction Method of Coded Aperture Spectral Imaging System
CN109697697B (en) Reconstruction method of spectral imaging system based on optimization-inspired neural network
Dong et al. Residual degradation learning unfolding framework with mixing priors across spectral and spatial for compressive spectral imaging
CN110501072B (en) A Reconstruction Method of Snapshot Spectral Imaging System Based on Tensor Low-Rank Constraints
CN106997581A (en) A kind of method that utilization deep learning rebuilds high spectrum image
CN108955882B (en) 3D data reconstruction method based on liquid crystal hyperspectral computational imaging system
CN107525588A (en) A kind of method for fast reconstruction of the double camera spectrum imaging system based on GPU
Tsagkatakis et al. Graph and rank regularized matrix recovery for snapshot spectral image demosaicing
CN111579506B (en) Multi-camera hyperspectral imaging method, system and medium based on deep learning
CN110378975B (en) A method and system for compressed coded aperture imaging based on deep neural network
CN109741407A (en) A High-Quality Reconstruction Method for Spectral Imaging System Based on Convolutional Neural Network
CN106485688A (en) High spectrum image reconstructing method based on neutral net
CN106373105A (en) Multi-exposure image deghosting integration method based on low-rank matrix recovery
CN117571128B (en) High-resolution polarized spectrum image imaging method and system
Chen et al. Prior image guided snapshot compressive spectral imaging
Arguello et al. Spatial super-resolution in code aperture spectral imaging
CN103954357B (en) The acquisition methods of compressed spectrum imaging system calculation matrix
Lin et al. All-addition hyperspectral compressed sensing for metasurface-driven miniaturized satellite
CN115791628A (en) Spectrum recovery method, spectrum recovery device and electronic equipment
CN107895063A (en) One kind compression EO-1 hyperion mask optimization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yan Chenggang

Inventor after: Lv Binbin

Inventor after: Wu Jiamin

Inventor before: Lv Binbin

Inventor before: Yan Chenggang

Inventor before: Wu Jiamin

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180410